

RESEARCH ARTICLE

Nonrational del Pezzo fibrations admitting an action of the Klein simple group

Takuzo Okada¹

Received: 20 June 2015 / Accepted: 5 October 2015 / Published online: 30 October 2015 © Springer International Publishing AG 2015

Abstract We present a series of del Pezzo fibrations of degree 2 admitting an action of the Klein simple group and prove their nonrationality by the reduction modulo p method of Kollár. This is relevant to the embedding of the Klein simple group into the Cremona group of rank 3.

Keywords Rationality question · Del Pezzo fibration · Klein simple group

Mathematics Subject Classification 14E08 · 14E07

1 Introduction

The Klein simple group G_K is a finite simple group $G_K \cong PSL_2(\mathbb{F}_7)$ of order 168. It is well known that G_K is the automorphism group of the Klein quartic curve which is defined in \mathbb{P}^2 by the equation $x_0^3 x_1 + x_1^3 x_2 + x_2^3 x_0 = 0$. Let S_K be the double cover of \mathbb{P}^2 ramified along the Klein quartic curve. Then S_K is a nonsingular del Pezzo surface of degree 2 admitting a faithful action of G_K . Belousov [3] proved that \mathbb{P}^2 and S_K are the only del Pezzo surfaces admitting a faithful action of G_K . In [1], Ahmadinezhad presented a series of G_K -Mori fiber spaces X_n/\mathbb{P}^1 over \mathbb{P}^1 whose general fibers are isomorphic to S_K for $n \ge 0$. A *G*-Mori fiber space, where *G* is a group, is a *G*equivariant version of Mori fiber space (see Definition 2.9). Among the above series

The author is partially supported by JSPS KAKENHI Grant Number 26800019.

[☑] Takuzo Okada okada@cc.saga-u.ac.jp

¹ Department of Mathematics, Faculty of Science and Engineering, Saga University, 1 Honjo-machi, Saga 840-8502, Japan

of varieties, X_n/\mathbb{P}^1 is a del Pezzo fibration for $n \ge 1$ while $X_0/\mathbb{P}^1 = \mathbb{P}^1 \times S_K/\mathbb{P}^1$ is not (see Sect. 2 for details). We have the following conjectures concerning these varieties.

Conjecture 1.1 (Cheltsov–Shramov [3, Conjecture 1.4]) *The fibrations* $\mathbb{P}^1 \times \mathbb{P}^2/\mathbb{P}^1$ and X_n/\mathbb{P}^1 , for $n \ge 0$, are the only G_K -Mori fiber spaces over \mathbb{P}^1 in dimension 3.

Conjecture 1.2 (Ahmadinezhad [1, Conjecture 3.5]) *The varieties* X_n *are non-rational for* $n \ge 2$.

Note that X_0 and X_1 are both rational. The main result of this paper is the following theorem which supports Conjecture 1.2.

Theorem 1.3 For $n \ge 5$, a very general X_n is not rational.

We refer the reader to Sect. 3 for the meaning of very generality. Note that X_n/\mathbb{P}^1 is a del Pezzo fibration of degree 2 and it satisfies the so-called *K*-condition (or K^2 -condition) for $n \ge 2$. Thus, by the results of Pukhlikov [12] and Grinenko [5–7] on nonsingular del Pezzo fibrations of degree 2, if X_n were nonsingular, then it would be birationally rigid for $n \ge 2$, which would imply nonrationality in a strong sense. Unfortunately, X_n is singular and we cannot apply the above results directly. Instead, we apply the Kollár's reduction modulo p method introduced in [8] (see also [9]) to prove nonrationality of X_n .

This is relevant to the study of embeddings of the Klein simple group $G_{\rm K}$ = $PSL_2(\mathbb{F}_7)$ into the Cremona group $Cr_3(\mathbb{C})$ of rank 3. If we are given a finite simple subgroup G of $Cr_3(\mathbb{C}^3)$, then there is a rational G-Mori fiber space X/S such that the embedding $G \subset \operatorname{Cr}_3(\mathbb{C})$ is given by $G \subset \operatorname{Aut}(X) \subset \operatorname{Bir}(X) \cong \operatorname{Cr}_3(\mathbb{C})$ (see [11, Section 4.2]). Such a G-Mori fiber space X/S is called a *Mori regularization* of $G \subset Cr_3(\mathbb{C})$. Moreover, two embeddings G_1 and G_2 into $Cr_3(\mathbb{C})$ of a finite simple subgroup G are *conjugate* if and only if there is a G-equivariant birational map between Mori regularizations X_1/S_1 and X_2/S_2 of $G_1 \subset Cr_3(\mathbb{C})$ and $G_2 \subset Cr_3(\mathbb{C})$, respectively. In [4], Cheltsov and Shramov proved that there are at least three non-conjugate embeddings of $PSL_2(\mathbb{F}_7)$ into $Cr_3(\mathbb{C})$ and each of them comes from rational $(G_{K^{-}})$ Fano threefolds. Theorem 1.3 implies that, for $n \ge 5$, a very general X_n/\mathbb{P}^1 cannot be a Mori regularization of any subgroup of $Cr_3(\mathbb{C})$ isomorphic to G_K . If Conjectures 1.1 and 1.2 are both true, then it follows that there is no embedding of $PSL_2(\mathbb{F}_7)$ into $\operatorname{Cr}_3(\mathbb{C})$ coming from a G_K -Mori fiber space over \mathbb{P}^1 other than $\mathbb{P}^1 \times \mathbb{P}^2/\mathbb{P}^1$, X_0/\mathbb{P}^1 and X_1/\mathbb{P}^1 . Note that, by [1, Theorem 3.4], there is a G_K -equivariant birational map between X_1 and $\mathbb{P}^1 \times \mathbb{P}^2$.

The paper is organized as follows. In Sect. 2, we give an explicit construction of varieties X_n . They are constructed as hypersurfaces of suitable weighted projective space bundle over \mathbb{P}^1 . Then we show that X_n/\mathbb{P}^1 is indeed a del Pezzo fibration for $n \ge 1$. In Sect. 3, we prove the main theorem. The proof will be done by the Kollár's reduction modulo p method, which we briefly recall in Sect. 3.2. The very first reduction step is done in Sect. 3.1. In Sect. 3.3, we work over a field of characteristic 2 and construct a specific big line bundle on some nonsingular model of X_n by making use of the purely inseparable double covering structure. This will complete the proof in view of the non-ruledness criterion given in Lemma 3.2.

2 Construction of del Pezzo fibrations

We construct del Pezzo fibrations X_n/\mathbb{P}^1 as hypersurfaces in suitable weighted projective space bundles over \mathbb{P}^1 . We refer the reader to [2] for Cox rings (which are also known as homogeneous coordinate rings) of toric varieties. In this section we work over \mathbb{C} .

Throughout this paper, we define $f = x_0^3 x_1 + x_1^3 x_2 + x_2^3 x_0$. We see that f is the defining polynomial of the Klein quartic curve whose automorphism group is the Klein simple group. Let P_n be the projective simplicial toric variety with the Cox ring

$$\operatorname{Cox}(P_n) = \mathbb{C}[w_0, w_1, x_0, x_1, x_2, y]$$

which is \mathbb{Z}^2 -graded as

$$\begin{pmatrix} w_0 & w_1 & x_0 & x_1 & x_2 & y \\ 1 & 1 & 0 & 0 & 0 & -n \\ 0 & 0 & 1 & 1 & 1 & 2 \end{pmatrix}$$

and with the irrelevant ideal $I = (w_0, w_1) \cap (x_0, x_1, x_2, y)$, that is, P_n is the geometric quotient

$$P_n = (\mathbb{A}^6 \setminus V(I)) / (\mathbb{C}^*)^2,$$

where the action of $(\mathbb{C}^*)^2$ on \mathbb{A}^6 = Spec Cox (P_n) is given by the above matrix. Note that the Weil divisor class group Cl (P_n) is isomorphic to \mathbb{Z}^2 . There is a natural morphism $\Pi: P \to \mathbb{P}^1$ defined as the projection to coordinates w_0, w_1 , and this realizes P as a weighted projective space bundle over \mathbb{P}^1 whose fibers are $\mathbb{P}(1, 1, 1, 2)$. For a nonnegative integer n and homogeneous polynomials $a \in \mathbb{C}[w_0, w_1]$ and $f \in \mathbb{C}[x_0, x_1, x_2]$ of degree respectively 2n and 4, define

$$X_n = (ay^2 + f = 0) \subset P_n,$$

and let $\pi = \prod |_{X_n} \colon X_n \to \mathbb{P}^1$. Throughout this paper, we assume that *a* does not have a multiple component.

Remark 2.1 Let us note that X_n/\mathbb{P}^1 constructed as above coincides with the one given in [1, Section 3]. Indeed, choose and fix any pair $b, c \in \mathbb{C}[w_0, w_1]$ of homogeneous polynomials of degree n such that a = bc and define

$$\mathfrak{X}'_n = (bt^2 + cf = 0) \subset \mathbb{P}^1_{w_0, w_1} \times \mathbb{P}(1_{x_0}, 1_{x_1}, 1_{x_2}, 2_t).$$

Let $\pi' \colon \mathfrak{X}'_n \to \mathbb{P}^1$ be the projection to the coordinates w_0, w_1 . Then, $(c = t = f = 0) \subset \mathfrak{X}'_n$ is a disjoint union of *n*-curves C'_1, \ldots, C'_n and \mathfrak{X}'_n has a singularity of type $\mathbb{C} \times 1/2(1, 1)$ along each C'_i . Blowing up \mathfrak{X}'_n along these curves and then contracting the strict transforms of the π' -fibers containing C'_i , we obtain a birational map $\mathfrak{X}'_n \to \mathfrak{X}_n$ to the del Pezzo fibration $\mathfrak{X}_n \to \mathbb{P}^1$ constructed in [1].

Now we have a birational map $\Psi: P_n \longrightarrow \mathbb{P}^1 \times \mathbb{P}(1, 1, 1, 2)$ defined by the correspondence t = cy. It is easy to see that Ψ restricts to a birational map $\psi: X_n \longrightarrow \mathcal{X}'_n$. Moreover, it is straightforward to see that $\psi^{-1}: \mathcal{X}'_n \longrightarrow X_n$ is obtained by blowing up \mathcal{X}'_n along C'_1, \ldots, C'_n and then contracting the strict transforms of the fibers containing C'_i . This shows $\mathcal{X}_n/\mathbb{P}^1 \cong X_n/\mathbb{P}^1$.

Remark 2.2 Let us explain that both X_0 and X_1 are rational. If n = 0, then we have $X_0 \cong \mathbb{P}^1 \times S$, where $S = (y^2 + f = 0) \subset \mathbb{P}(1, 1, 1, 2)$ is a (nonsingular) del Pezzo surface of degree 2, and thus X_0 is clearly rational. Suppose n = 1. Then, as explained in Remark 2.1, X_1 is birational to $\mathcal{X}'_1 = (by^2 + cf = 0) \subset \mathbb{P}^1 \times \mathbb{P}(1, 1, 1, 2)$, where $b, c \in \mathbb{C}[w_0, w_1]$ are homogeneous polynomials of degree 1 such that a = bc. It is clear that the projection $\mathcal{X}'_1 \dashrightarrow \mathbb{P}(1, 1, 1, 2)$ is birational. Hence \mathcal{X}'_1 and X_1 are rational.

In the rest of this section, we show that $\pi : X_n \to \mathbb{P}^1$ is indeed a del Pezzo fibration for $n \ge 1$.

Definition 2.3 Let $\pi : X \to \mathbb{P}^1$ be a surjective morphism with connected fibers from a normal projective 3-fold *X*. We say that $\pi : X \to \mathbb{P}^1$ is a *del Pezzo fibration* over \mathbb{P}^1 if the following conditions are satisfied:

- *X* is \mathbb{Q} -factorial and has only terminal singularities.
- $-K_X$ is π -ample.
- $\rho(X) = 2.$

Remark 2.4 We explain the natural affine open subsets of P_n and X_n . We refer the reader to [13] for details. Since we will work over an algebraically closed field of characteristic 2 in the next section, we assume in this remark that the ground field of P_n and X_n is an algebraically closed field k of arbitrary characteristic.

Denote by U_{w_i,x_j} the open subset $(w_i \neq 0) \cap (x_j \neq 0) \subset P_n$ and by $U_{w_i,y}$ the open subset $(w_i \neq 0) \cap (y \neq 0) \subset P_n$. Then P_n is covered by U_{w_i,x_j} and $U_{w_i,y}$ for i = 0, 1and j = 0, 1, 2; and U_{w_0,x_0} is the affine 4-space \mathbb{A}^4 . The restrictions of w_1, x_1, x_2, y on U_{w_0,x_0} form affine coordinates of U_{w_0,x_0} . Indeed, if we denote by $\widetilde{w}_1 = w_1/w_0$, $\widetilde{x}_i = x_i/x_0$ for i = 1, 2 and $\widetilde{y} = yw_0^n/x_0^2$, then U_{w_0,x_0} is an affine 4-space with affine coordinates $\widetilde{w}_0, \widetilde{x}_1, \widetilde{x}_2, \widetilde{y}$. The affine scheme $X_n \cap U_{w_0,x_0}$ is defined by the equation $\widetilde{y}a(1, \widetilde{w}_1) + f(1, \widetilde{x}_1, \widetilde{x}_2) = 0$. The same description applies for the other U_{w_i,x_j} .

We see that $U_{w_0,y}$ is the quotient \mathbb{A}^4/μ_2 of \mathbb{A}^4 by the action of $\mu_2 = \text{Spec } \mathbb{k}[t]/(t^2)$. Indeed, if we denote by $\widetilde{w}_1 = w_1/w_0$, $\widetilde{x}_i = x_i w_0^{n/2}/y^{1/2}$ for i = 0, 1, 2, then $U_{w_0,y}$ is the quotient of \mathbb{A}^4 with coordinates $\widetilde{w}_1, \widetilde{x}_0, \widetilde{x}_1, \widetilde{x}_2$ under the μ_2 -action given by

$$\widetilde{w}_0 \mapsto \widetilde{w}_0, \qquad \widetilde{x}_i \mapsto \widetilde{x}_i \otimes \overline{t},$$

where $\overline{t} \in \mathbb{k}[t]/(t^2)$. Here, the above operation defines a ring homomorphism $R \to R \otimes \mathbb{k}[t]/(t^2)$, where $R = \mathbb{k}[\widetilde{w}_0, \widetilde{x}_0, \widetilde{x}_1, \widetilde{x}_2]$, and $\mathbb{A}^4/\mu_2 = \operatorname{Spec} R^{\mu_2}$. When $\mathbb{k} = \mathbb{C}$, we can replace μ_2 with $\mathbb{Z}/2\mathbb{Z}$ and the action is given simply by $\widetilde{w}_0 \mapsto \widetilde{w}_0$ and $\widetilde{x}_i \mapsto -\widetilde{x}_i$. The affine scheme $X_n \cap U_{w_0,y}$ is the quotient of the affine scheme $a(1, \widetilde{w}_1) + f(\widetilde{x}_0, \widetilde{x}_1, \widetilde{x}_2) = 0$ defined by the μ_2 -action. The same description applies for $U_{w_1,y}$.

Sometimes we will abuse the notation and say that U_{w_0,x_0} is the affine 4-space \mathbb{A}^4 with coordinates w_1, x_1, x_2, y and $X_n \cap U_{w_0,x_0}$ is defined by $ya(1, w_1) + f(1, x_1, x_2) = 0$.

Lemma 2.5 The variety X_n is nonsingular outside $(x_0 = x_1 = x_2 = 0) \cap X_n$ and it has a singular point of type 1/2(1, 1, 1) at each point of $(x_0 = x_1 = x_2 = 0) \cap X_n$.

Proof Set $U = U_{w_0,x_0}$ which is an affine 4-space with affine coordinates w_1, x_1, x_2, y , then $X_n \cap U$ is defined by $y^2 a_0 + f_0 = 0$, where $a_0 = a(1, w_1)$ and $f_0 = f(1, x_1, x_2)$. It is straightforward to see that

$$\operatorname{Sing}(X_n \cap U) = \left(y^2 \frac{\partial a_0}{\partial w_1} = \frac{\partial f_0}{\partial x_1} = \frac{\partial f_0}{\partial x_2} = 2ya_0 = y^2a_0 + f_0 = 0 \right)$$
$$\subset \left(\frac{\partial f_0}{\partial x_1} = \frac{\partial f_0}{\partial x_2} = f_0 = 0 \right) = \emptyset,$$

where the last equality holds since $f_0 = f(1, x_1, x_2)$ defines a nonsingular curve in \mathbb{A}^2 . By symmetry, we conclude that $X \cap U_{w_i, x_j}$ is nonsingular for i = 0, 1 and j = 0, 1, 2. Since the open subsets U_{w_i, x_j} for i = 0, 1 and j = 0, 1, 2 cover $P_n \setminus (x_0 = x_1 = x_2 = 0)$, we see that X_n is nonsingular outside $(x_0 = x_1 = x_2 = 0) \cap X_n$.

Let $P \in (x_0 = x_1 = x_2 = 0) \cap X_n$. Then a(P) = 0 and we may assume that w_1 vanishes at P after replacing w_0, w_1 . We work on $U = U_{w_0,y} \cong \mathbb{A}^4/\mu_2$. We see that $X_n \cap U$ is the quotient of $V = (a(1, w_1) + f = 0) \subset \mathbb{A}^4$ by the μ_2 -action and P corresponds to the origin. Since a vanishes at P and it does not have a multiple component, we have $a(1, w_1) = w_1$ + higher order terms, so that x_0, x_1, x_2 form local coordinates of V at the origin. Thus the point P is of type 1/2(1, 1, 1).

For $n \ge 1$, we construct a birational morphism $\theta \colon X_n \to V_n$ as follows. Set $\xi_0 = w_0^n$, $\xi_1 = w_0^{n-1} w_1, \ldots, \xi_n = w_1^n$ and let

$$\Theta: P_n \to \mathbb{P}(1_{x_0}, 1_{x_1}, 1_{x_2}, 2_{y_0}, \dots, 2_{y_n})$$

be the toric morphism defined by the correspondence $y_i = y\xi_i$. Then the image of Θ , which we denote by T_n , is defined by $h_1 = \cdots = h_N = 0$, where h_1, \ldots, h_N are the homogeneous polynomials in y_0, \ldots, y_n defining the image of the *n*-ple Veronese embedding $\mathbb{P}^1 \hookrightarrow \mathbb{P}^n_{y_0,\ldots,y_n}$. We see that $\Theta: P_n \to T_n$ is a birational morphism contracting the divisor $(y = 0) \cong \mathbb{P}^1 \times \mathbb{P}^2$ to the plane $\Delta = (y_0 = \cdots = y_n = 0) \subset T_n$. It follows that T_n is a projective simplicial toric variety with Picard number 1. The image of X_n under Θ is a hypersurface V_n in T_n defined by q + f = 0, where $q = q(y_0, \ldots, y_n)$ is a quadratic polynomial such that $q(y\xi_0, \ldots, y\xi_n) = ay^2$. The morphism $\theta = \Theta|_{X_n}: X_n \to V_n$ is a birational morphism contracting the divisor $(y = 0) \cap X_n \cong \mathbb{P}^1 \times C$ to the curve $\Delta \cap V_n \cong C$, where *C* is the plane curve defined by f = 0.

Lemma 2.6 If $n \ge 1$, then V_n is a normal projective \mathbb{Q} -factorial 3-fold with Picard number 1.

Proof Note that X_n is \mathbb{Q} -factorial since it has only quotient singularities. It follows that V_n is \mathbb{Q} -factorial since θ is an extremal contraction (which is not necessarily K_{X_n} -negative). We see that the singularity of T_n along the plane Δ is of type $\mathbb{P}^2 \times 1/n(1, 1)$ and V_n intersects Δ transversally. Moreover, outside the curve $\Delta \cap V_n$, singular points of V_n are of type 1/2(1, 1, 1). This implies that V_n is a *V*-submanifold of T_n and thus, by [2, Proposition 3.5], V_n is quasi-smooth in T_n . Here, we refer the reader to [2, Section 3] for the definitions of *V*-submanifold and quasi-smoothness. It then follows, from [14, Proposition 4], that $\rho(V_n) = \rho(T_n) = 1$ since V_n is quasi-smooth hypersurface defined by a global section of an ample divisor on T_n .

Lemma 2.7 For $n \ge 1$, the fibration $\pi : X_n \to \mathbb{P}^1$ is a del Pezzo fibration.

Proof Assume that $n \ge 1$. We see that X has only terminal singularities of type 1/2(1, 1, 1) and it is Q-factorial. By Lemma 2.6, we have $\rho(X_n) = \rho(V_n) + 1 = 2$ since $\theta: X_n \to V_n$ is a birational morphism contracting a prime divisor. This shows that π is an extremal contraction and thus X_n/\mathbb{P}^1 is indeed a del Pezzo fibration. \Box

Remark 2.8 The above arguments apply to more general cases without any change. Let $g \in \mathbb{C}[x_0, x_1, x_2]$ be a homogeneous polynomial of degree 4 such that the plane curve in \mathbb{P}^2 defined by g is nonsingular. Then the hypersurface $X_n = (ay^2 + g = 0) \subset P_n$, where $a \in \mathbb{C}[w_0, w_1]$ is a homogeneous polynomial of degree 2n which does not have a multiple component, together with the projection $\pi : X_n \to \mathbb{P}^1$ is a del Pezzo fibration provided that $n \ge 1$.

The variety V_n and the birational map $\theta: X_n \dashrightarrow V_n$ are constructed in order to prove Lemma 2.7 and we will not use them in what follows. We give a definition of *G*-Mori fiber space.

Definition 2.9 Let *G* be a group. A *G*-*Mori fiber space* is a normal projective variety *X*, where *G* acts faithfully on *X*, together with a *G*-equivariant morphism $\pi : X \to S$ onto a normal projective variety *S* with the following properties:

- *X* is *G*Q-factorial, that is, every *G*-invariant Weil divisor on *X* is Q-Cartier, and *X* has only terminal singularities.
- $-K_X$ is π -ample.
- dim $S < \dim X$ and π has connected fibers.
- rank $\operatorname{Pic}^{G}(X)$ rank $\operatorname{Pic}^{G}(S) = 1$.

Note that the Klein simple group $G = \text{PSL}_2(\mathbb{F}_7)$ acts on X_n/\mathbb{P}^1 along the fibers, so that X_n/\mathbb{P}^1 is a *G*-Mori fiber space for $n \ge 1$. For n = 0, $X_0/\mathbb{P}^1 \cong S \times \mathbb{P}^1/\mathbb{P}^1$ is not a del Pezzo fibration. Nevertheless, we have $\rho^G(X_0) = 1$, so that X_0/\mathbb{P}^1 is a *G*-Mori fiber space as well.

3 Proof of Theorem 1.3

3.1 Reduction modulo 2

In the following, we drop the subscript *n* and write $P = P_n$, $X = X_n$. In the previous section, the toric variety *P* was defined over \mathbb{C} . We can define *P* over an arbitrary

field or more generally an arbitrary ring. For a field or a ring *K*, we denote by P_K the toric variety over Spec *K* defined by the same fan as that of *P*. Then, since $f = x_0^3 x_1 + x_1^3 x_2 + x_2^3 x_0$ is defined over \mathbb{Z} , we can define the subscheme $X_K = (ay^2 + f = 0) \subset P_K$ for a homogeneous polynomial $a \in K[w_0, w_1]$ of degree 2n. Let $a = \alpha_0 w_0^{2n} + \alpha_1 w_0^{2n-1} w_1 + \dots + \alpha_{2n} w_1^{2n}$, $\alpha_i \in \mathbb{C}$. Assume that $\alpha_0, \dots, \alpha_{2n}$

Let $a = \alpha_0 w_0^{2n} + \alpha_1 w_0^{2n-1} w_1 + \dots + \alpha_{2n} w_1^{2n}$, $\alpha_i \in \mathbb{C}$. Assume that $\alpha_0, \dots, \alpha_{2n}$ are very general so that they are algebraically independent over \mathbb{Z} . Then, the ring $\mathbb{Z}[\alpha_0, \dots, \alpha_{2n}]$ is isomorphic to a polynomial ring of 2n + 1 variables over \mathbb{Z} and the ideal (2) is a prime ideal. Define

$$R = \mathbb{Z}[\alpha_0, \ldots, \alpha_{2n}]_{(2)}$$

which is a DVR whose residue field is of characteristic 2. Then we can define $X_R = (ay^2 + f = 0) \subset P_R$, which is a scheme over Spec *R* and whose geometric generic fiber is isomorphic to $X_{\mathbb{C}}$.

Lemma 3.1 Let \Bbbk be an algebraically closed field which is uncountable. If $X_{\Bbbk} = (ay^2 + f = 0) \subset P_{\Bbbk}$ is not ruled for a very general $a \in \Bbbk[w_0, w_1]$, then $X = X_{\mathbb{C}} = (ay^2 + f = 0) \subset P_{\mathbb{C}}$ is not ruled for a very general $a \in \mathbb{C}[w_0, w_1]$.

Proof Let X' be the geometric special fiber of $X_R \to \text{Spec } R$ defined over k. We can write $X' = (a'y^2 + f = 0) \subset P_k$ for some $a' \in k[w_0, w_1]$ and a' corresponds to a very general element. By the Matsusaka theorem [9, V.1.6 Theorem], if X' is not ruled, then X is not ruled. This completes the proof.

3.2 Kollár's technique

In this subsection, we briefly recall Kollár's argument of proving non-ruledness of suitable covering spaces in positive characteristic. We apply the following non-ruledness criterion which is a slight generalization of [9, V.5.1 Lemma].

Lemma 3.2 Let Y be a smooth proper variety defined over an algebraically closed field and \mathcal{M} a big line bundle on Y. If there is an injection $\mathcal{M} \hookrightarrow (\Omega_Y^i)^{\otimes m}$ for some i > 0 and m > 0, then Y is not separably uniruled.

Proof Suppose that *Y* is separably uniruled. Then, there exists a separable dominant map $\varphi \colon \mathbb{P}^1 \times V \dashrightarrow Y$, where *V* is a normal projective variety. After shrinking *V*, we may assume that φ is a morphism and *V* is smooth. The homomorphism $\varphi^* \Omega^1_Y \hookrightarrow \Omega^1_{V \times \mathbb{P}^1}$ is an isomorphism on a non-empty open subset since φ is separable. This induces an injection $\varphi^* \mathcal{M}^{\otimes k} \hookrightarrow (\Omega^i_{V \times \mathbb{P}^1})^{\otimes mk}$ for any $k \ge 1$. The invertible sheaf \mathcal{M} is big so that the global sections of $\varphi^* \mathcal{M}^{\otimes k}$ separate points on a nonempty open subset of $V \times \mathbb{P}^1$ for a sufficiently large *k*. This is a contradiction since the global sections of $(\Omega^i_{V \times \mathbb{P}^1})^{\otimes mk}$ do not separate points in a fiber. \Box

Remark 3.3 Our aim is to prove that the variety X_n defined over an algebraically closed field of characteristic 2 is not ruled. In view of Lemma 3.2, it is enough to construct a resolution $r: Y \to X_n$ and a big line bundle \mathcal{M} which is a subsheaf of

 $(\Omega_Y^i)^{\otimes m}$ for some m > 0. As we will see in Sect. 3.3, there is a purely inseparable cover $X_n \to Z_n$ of degree 2 for some normal projective variety Z_n . In the following we explain the Kollár's construction of a big line bundle on a nonsingular model of a suitable cyclic covering space in a general setting.

Let *Z* be a variety of dimension *n* defined over an algebraically closed field \Bbbk of characteristic p > 0, \mathcal{L} a line bundle on *Z* and $s \in H^0(Z, \mathcal{L}^{\otimes m})$ a global section of \mathcal{L}^m for some m > 0. Let $U = \operatorname{Spec} \bigoplus_{i \ge 0} \mathcal{L}^{-i}$ be the total space of the line bundle \mathcal{L} and let $\rho_U : U \to Z$ be the natural morphism. We denote by $y \in H^0(U, \rho_U^* \mathcal{L})$ the zero section and define

$$Z\left[\sqrt[m]{s}\right] = (y^m - s = 0) \subset U.$$

We say that $Z\left[\sqrt[m]{s}\right]$ is the cyclic covering of Z obtained by taking mth roots of s. Set $X = Z\left[\sqrt[m]{s}\right]$ and let $\rho = \rho_U|_X \colon X \to Z$ be the cyclic covering.

From now on we assume that Z is nonsingular and m is divisible by p. We have a natural differential $d: \mathcal{L}^m \to \mathcal{L}^m \otimes \Omega^1_Z$ whose construction is given below. Let τ be a local generator of \mathcal{L} and $t = g\tau^m$ a local section. Let x_1, \ldots, x_n be local coordinates of of Z. Then define

$$d(t) = \sum \frac{\partial g}{\partial x_i} \tau^m dx_i.$$

This is independent of the choices of local coordinates and the local generator τ , and thus defines d. For the section $s \in H^0(Z, \mathcal{L}^m)$, we can view d(s) as a sheaf homomorphism $d(s): \mathcal{O}_Z \to \mathcal{L}^m \otimes \Omega_Z^1$. By taking the tensor product with \mathcal{L}^{-m} , we obtain $ds: \mathcal{L}^{-m} \to \Omega_Z^1$.

Definition 3.4 ([9, V.5.8 Definition]) We define $Q(\mathcal{L}, s) = (\det \operatorname{Coker}(ds))^{\vee \vee}$.

We have $Q(\mathcal{L}, s) \cong \mathcal{L}^m \otimes \omega_Z$.

Lemma 3.5 ([9, 5.5 Lemma]) *There is an injection* $\rho^* \mathfrak{Q}(\mathcal{L}, s) \hookrightarrow (\Omega_X^{n-1})^{\vee \vee}$.

Remark 3.6 Let x_1, \ldots, x_n be local coordinates of Z at a point P and $s = g\tau^{\otimes m}$ as before. Then, $\rho^* \mathfrak{Q}(\mathcal{L}, s) \subset (\Omega^1_X)^{\vee \vee}$ is generated by the form

$$\eta = (\pm) \frac{dx_2 \wedge \dots \wedge dx_n}{\partial f / \partial x_1} = (\pm) \frac{dx_1 \wedge dx_3 \wedge \dots \wedge dx_n}{\partial f / \partial x_2} = (\pm) \frac{dx_1 \wedge \dots \wedge dx_{n-1}}{\partial f / \partial x_n}$$

See [9, V.5.9 Lemma] for details.

Let us show that if the singularity of X is mild, then we can lift $\rho^* \Omega(\mathcal{L}, s)$ to an invertible subsheaf of Ω_Y^{n-1} , where Y is a suitable nonsingular model of X. For simplicity of description, we assume that p = 2 and $n = \dim Z = 3$.

Definition 3.7 ([9, V.5.6 Definition], see also [9, V.5.7 Exercise]) We say that $s \in H^0(Z, \mathcal{L}^m)$ has a *critical point* at $P \in Z$ if $d(s) \in H^0(Z, \mathcal{L}^m \otimes \Omega^1_Z)$ vanishes at P.

Denote by $Crit(s) \subset Z$ the set of critical points of *s*. We say that *s* has an *almost nondegenerate critical point* at *P* if in suitable choice of local coordinates x_1, x_2, x_3 we can write

$$g = \alpha x_1^2 + x_2 x_3 + x_1^3 + h,$$

where $\alpha \in \mathbb{k}$, $s = g\tau^m$ for a local generator τ of \mathcal{L} at P, $h = h(x_1, x_2, x_3)$ consists of monomials of degree at least 3 and it does not involve x_1^3 .

Lemma 3.8 ([9, V.5.10 Proposition]) Suppose that *s* has only almost nondegenerate critical points. Then the singularities of *X* are isolated singularities and they can be resolved by blowing up each singular point of *X*. Moreover, if we denote by $r: Y \to X$ the blowup of each singular point of *X*, then $r^*\rho^*\mathfrak{Q}(\mathcal{L}, s) \hookrightarrow \Omega_Y^2$.

3.3 Construction of a big line bundle

Throughout this subsection, we work over an algebraically closed field k of characteristic 2 which is uncountable. We write $P = P_k$ and $X = X_k$. We do not assume $n \ge 5$ for the moment. Let $P^\circ = P \setminus (x_0 = x_1 = x_2 = 0)$ and $X^\circ = X \cap P^\circ$. Note that P° is the nonsingular locus of *P*. Define

$$Q = \begin{pmatrix} w_0 & w_1 & x_0 & x_1 & x_2 & z \\ 1 & 1 & 0 & 0 & 0 & -2n \\ 0 & 0 & 1 & 1 & 1 & 4 \end{pmatrix}$$

and set Z to be the hypersurface in Q defined by za + f = 0. Let $\rho: X \to Z$ be the morphism which is defined by the correspondence $z = y^2$, which is a purely inseparable finite morphism of degree 2.

Lemma 3.9 Let $a \in \mathbb{k}[w_0, w_1]$ be a general homogeneous polynomial of degree 2n. Then the set

$$\operatorname{Crit}(a) = \left(\frac{\partial a}{\partial w_0} = \frac{\partial a}{\partial w_1} = 0\right) \subset \mathbb{P}^1_{w_0, w_1}$$

consists of finitely many points and $\operatorname{Crit}(a) \cap (a = 0) = \emptyset$. Moreover, for each $P \in \operatorname{Crit}(a)$, we can choose a local coordinate w of \mathbb{P}^1 at P such that

$$a = \alpha + \beta w^2 + w^3 + higher order terms$$

for some $\alpha, \beta \in \mathbb{k}$ with $\alpha \neq 0$.

Proof The set Crit(*a*) is clearly a finite set of points. As a generality of *a*, we in particular require that *a* does not have a multiple component. It is then clear that Crit(*a*) \cap (*a* = 0) = \emptyset . The last assertion follows by counting dimension. Let $P \in \mathbb{P}^1$ be a point and *w* a local coordinate of \mathbb{P}^1 at *P*. We can write $a = \sum \alpha_i w^i, \alpha_i \in \mathbb{K}$. We say that *a* has a bad critical point at *P* if $\alpha_1 = \alpha_3 = 0$. Two conditions $\alpha_1 = \alpha_3 = 0$

are imposed for *a* to have a bad critical point at a given $P \in \mathbb{P}^1$. Since *P* runs through \mathbb{P}^1 , we see that homogeneous polynomials *a* which have a bad critical point at some point $P \in \mathbb{P}^1$ form at most 2 - 1 = 1 codimensional subfamily in the space of all $a \in \mathbb{k}[w_0, w_1]$. Thus, a general *a* does not have a bad critical point at all and the proof is completed.

Lemma 3.10 The set

$$\operatorname{Crit}(f) = \left(\frac{\partial f}{\partial x_0} = \frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial x_2} = 0\right) \subset \mathbb{P}^2_{x_0, x_1, x_2}$$

consists of finitely many closed points and $\operatorname{Crit}(f) \cap (f = 0) = \emptyset$. Moreover, for each $P \in \operatorname{Crit}(f)$, we can choose local coordinates t_1, t_2 of \mathbb{P}^2 at P such that

$$f = \gamma + t_1 t_2 + higher order terms$$

for some $\gamma \neq 0$.

Proof We have

$$\frac{\partial f}{\partial x_0} = x_0^2 x_1 + x_2^3, \qquad \frac{\partial f}{\partial x_1} = x_0^3 + x_1^2 x_2, \qquad \frac{\partial f}{\partial x_2} = x_1^3 + x_2^2 x_0.$$

By a straightforward computation, we have

$$\operatorname{Crit}(f) = \left\{ (1 : \zeta^{3i} : \zeta^{i}) : 0 \leqslant i \leqslant 6 \right\},\$$

where $\zeta \in \mathbb{k}$ is a primitive 7th root of unity. It is also straightforward to see that $f(P) \neq 0$ for $P \in \operatorname{Crit}(f)$. For the last assertion, we work on the affine open subset $U = (x_0 \neq 0) \subset \mathbb{P}^2$. Note that $\operatorname{Crit}(f) \subset U$. By setting $x_0 = 1$, we think of x_1, x_2 as affine coordinates of $U \cong \mathbb{A}^2$. We have $f = x_1 + x_1^3 x_2 + x_2^3$ on U. For the verification of the last assertion, it is enough to show that the Hessian of f at $P = (1:\zeta^{3i}:\zeta^i) \in \operatorname{Crit}(f)$ is nonzero. We have $\partial^2 f/\partial x_1^2 = 1$, $\partial^2 f/\partial x_1 \partial x_2 = x_1^2$ and $\partial^2/\partial x_2^2 = 0$, so that we can compute the Hessian as

$$\begin{vmatrix} 1 & x_1^2 \\ x_1^2 & 0 \end{vmatrix} (P) = \zeta^{12i} \neq 0.$$

Therefore, the last assertion is proved.

Set $Q^{\circ} = Q \setminus (x_0 = x_1 = x_2 = 0)$ and $Z^{\circ} = Z \cap Q^{\circ}$.

Lemma 3.11 The quasi projective variety Z° is nonsingular.

Proof We work on the open subset $U = U_{w_0,x_0} \subset Q$ which is an affine 4-space with coordinates w_1, x_1, x_2, z . We see that $Z \cap U$ is defined by $a_0z + f_0 = 0$, where $a_0 = a(1, w_1)$ and $f_0 = f(1, x_1, x_2)$. We have

Sing
$$(Z \cap U) = \left(z \frac{a_0}{\partial w_1} = \frac{\partial f_0}{\partial x_1} = \frac{\partial f_0}{\partial x_1} = a_0 = f_0 = 0\right) = \emptyset,$$

where the last equality follows since the curve $f_0 = 0$ in \mathbb{A}^2 is nonsingular. By symmetry, $Z \cap U_{w_i,x_j}$ is nonsingular for i = 0, 1 and j = 0, 1, 2. Since Z° is covered by U_{w_i,x_j} for i = 0, 1 and j = 0, 1, 2, the proof is completed.

Let H_Q and F_Q be divisor classes on Q which correspond to the weight ${}^t(0\ 1)$ and ${}^t(1\ 0)$, respectively, that is, F_Q is the fiber class of the projection $Q \to \mathbb{P}^1$ and $H_Q|_{F_Q} \in |\mathfrak{O}_{\mathbb{P}(1,1,1,4)}(1)|$. We set $H_Z = H_Q|_Z$ and $F_Z = F_Q|_Z$. Define \mathcal{L} to be the sheaf $\mathfrak{O}_Z(2H_Z - nF_Z)$ whose restriction on Z° is an invertible sheaf. Note that we have $z \in H^0(Z, \mathcal{L}^2)$. It is clear that $X \cong Z[\sqrt{z}]$. In the following we choose and fix a general $a \in \mathbb{K}[w_0, w_1]$ so that the assertions of Lemma 3.9 hold.

Lemma 3.12 The section $z \in H^0(Z^\circ, \mathcal{L}^2)$ has only almost nondegenerate critical points on Z° .

Proof Let $Crit(z) \subset Z^{\circ}$ be the set of critical points of z. Since

$$\frac{\partial(az+f)}{\partial z} = a,$$

z can be chosen as a part of local coordinates at every point $P \in Z^\circ$ such that a(P) = 0. It follows that *z* does not have a critical point at any point $P \in X \cap (a = 0)$. We work on an open set $U \subset Z^\circ$ on which $a \neq 0$ and prove that $z|_U$ has only almost nondegenerate critical points on *U*. Since z = -f/a on *U* and *a* is a unit on *U*, it is enough to show that $-a^2z = af$ has only almost nondegenerate critical point of *z*. We have

$$\frac{\partial(af)}{\partial w_i} = \frac{\partial a}{\partial w_i} f, \qquad \frac{\partial(af)}{\partial x_i} = a \frac{\partial f}{\partial x_i},$$

for i = 0, 1 and j = 0, 1, 2. Since $a(P) \neq 0$, we have $(\partial f/\partial x_j)(P) = 0$ for j = 0, 1, 2. By Lemma 3.10, we have $f(P) \neq 0$, which implies $(\partial a/\partial w_i)(P) = 0$ for i = 0, 1. By Lemmas 3.9 and 3.10, we can choose local coordinates w, t_1, t_2 of Z at P such that

$$af = (\alpha + \beta w^2 + w^3 + \cdots)(\gamma + t_1 t_2 + \cdots)$$
$$= \alpha \gamma + \beta \gamma w^2 + \alpha t_1 t_2 + \gamma w_1^3 + h,$$

where α , β , $\gamma \in \mathbb{k}$ with α , $\gamma \neq 0$, $h = h(w, t_1, t_2)$ consists of monomials of degree at least 3 and it does not involve w^3 . This shows that *z* has only almost nondegenerate critical points on Z° .

Define $\Omega^{\circ} = \Omega(\mathcal{L}, z)|_{Z^{\circ}}$ which is an invertible sheaf on Z° . By Lemma 3.5, we have $\rho^* \Omega^{\circ} \hookrightarrow (\Omega^2_{X^{\circ}})^{\vee \vee}$, where $\rho \colon X^{\circ} = Z^{\circ}[\sqrt{z}] \to Z^{\circ}$. By adjunction, we have $\omega_Z \cong \mathcal{O}_Z(-3H_Z + (2n-2)F_Z)$, hence $\Omega^{\circ} \cong \mathcal{O}_{Z^{\circ}}(H_Z - 2F_Z)$. Let H_P and F_P be the divisors on P which correspond to ${}^t(0 \ 1)$ and ${}^t(1 \ 0)$, respectively, so that F_P is the fiber class of $\Pi \colon P \to \mathbb{P}^1$ and $H_P|_{F_P} \in |\mathcal{O}_{\mathbb{P}(1,1,1,2)}(1)|$. We set $H = H_P|_X$ and

 $F = F_P|_X$. We have $H = \rho^* H_Z$ and $F = \rho^* F_Z$, hence $\rho^* \mathfrak{Q}^\circ \cong \mathfrak{O}_{X^\circ}(H - 2F)$. Let $\iota: X^\circ \hookrightarrow X$ be the open immersion. The sheaf $\iota_* \rho^* \mathfrak{Q}^\circ \cong \mathfrak{O}_X(H - 2F)$ is a reflexive sheaf of rank 1 but is not invertible at each singular point of type 1/2(1, 1, 1). We define $\mathcal{M} = \iota_* \rho^* \mathfrak{Q}^{\circ 2} \cong \mathfrak{O}_X(2H - 4F)$ which is an invertible sheaf on X and we have an injection $\mathcal{M} \hookrightarrow ((\Omega_X^2)^{\otimes 2})^{\vee \vee}$.

Note that X has two kinds of singularities both of which are isolated: one of them are the singular points on X° corresponding to the critical points of z and the other ones are singular points of type 1/2(1, 1, 1). Let $r: Y \to X$ be the blowup of X at each singular point. By Lemmas 3.8 and 3.12, Y is nonsingular and we have an injection $r^*\mathcal{M}|_{Y^{\circ}} \hookrightarrow (\Omega_{Y^{\circ}}^2)^{\otimes 2}$ on the open subset $Y^{\circ} = r^{-1}(X^{\circ})$. We will show that there is an injection $r^*\mathcal{M} \hookrightarrow (\Omega_Y^2)^{\otimes 2}$.

Lemma 3.13 There is an injection $r^*\mathcal{M} \hookrightarrow (\Omega_Y^2)^{\otimes 2}$.

Proof Let *P* be a singular point of type 1/2(1, 1, 1). Since we know that $r^*\mathcal{M} \hookrightarrow (\Omega_Y^2)^{\otimes 2}$ on the open subset $Y^\circ = r^{-1}(X^\circ)$, it is enough to show that $r^*\mathcal{M} \hookrightarrow (\Omega_Y^2)^{\otimes 2}$ locally around the exceptional divisor of $r: Y \to X$ over *P*. We can write $\mathcal{M}_P = \mathcal{O}_{X,P} \cdot \eta$ for some local section η of $((\Omega_X^2)^{\otimes 2})^{\vee\vee}$ since $\mathcal{M} \subset ((\Omega_X^2)^{\otimes 2})^{\vee\vee}$ is an invertible sheaf. We will show that

$$\eta = g \left(\frac{dh_1 \wedge dh_2}{h_1 h_2} \right)^{\otimes 2},$$

for some $g, h_1, h_2 \in \mathcal{O}_{X,P}$, and then we will show that $r^*\eta$ does not have a pole along the exceptional divisor over *P*.

After replacing w_0, w_1 , we assume that w_1 vanishes at P (so that w_0 does not vanish at P). We work on an open subset U of $U_{w_0,x_0} \subset P$. Shrinking U, we assume $a \neq 0$ on U. Then $z = -f/a \in \mathcal{O}_U$. Let $\tilde{w}_1 = w_1/w_0$, $\tilde{x}_1 = x_1/x_0$, $\tilde{x}_2 = x_2/x_0$ be the restrictions of w_1, x_1, x_2 to U_{w_0,x_0} . Then, in view of Remark 3.6, after further shrinking U, we see that $\mathcal{M}|_U$ is generated by

$$\left(\frac{d\widetilde{x}_1 \wedge d\widetilde{x}_2}{\partial (-f/a)/\partial x_2}\right)^{\otimes 2}$$

In particular,

$$\mathcal{M} \otimes K(X) = K(X) \cdot (d\tilde{x}_1 \wedge d\tilde{x}_2)^{\otimes 2} \subset \left(\Omega_{K(X)}^2\right)^{\otimes 2},$$

where K(X) is the function field of X.

Set $\xi_i = x_i/y^{1/2}$ for i = 0, 1, 2. Then ξ_0, ξ_1, ξ_2 can be chosen as local coordinates of the orbifold chart of (X, P). Now we have $\tilde{x}_i = \xi_1/\xi_0$ for i = 1, 2, hence

$$d\tilde{x}_1 \wedge d\tilde{x}_2 = d(\xi_1/\xi_0) \wedge d(\xi_2/\xi_0) = \frac{d(\xi_1\xi_0^3) \wedge d(\xi_2\xi_0^3)}{\xi_0^6}$$

Here, since the ground field is of characteristic 2 and $\xi_0^2 \in \mathcal{O}_{X,P}$, we have the equality

$$d(\xi_i \xi_0^3) = d\left((\xi_0^2)^2 \frac{\xi_i}{\xi_0}\right) = \xi_0^4 d\left(\frac{\xi_i}{\xi_0}\right)$$

for i = 1, 2. Thus $\mathcal{M}_P \otimes K(X) = K(X) \cdot (dh_1 \wedge dh_2)^{\otimes 2}$, where $h_i = \xi_i \xi_0^3$. It follows that

$$\eta = g \left(\frac{dh_1 \wedge dh_2}{h_1 h_2} \right)^{\otimes 2}$$

for some rational function g. By [10, Lemma 5.3], we see that $g = \xi_0^2 \xi_1^2 \xi_2^2 h$ for some $h \in \mathcal{O}_{X,P}$.

Now, by shrinking X, we assume that $r: Y \to X$ is the blowup (more precisely, the weighted blowup with weight 1/2(1, 1, 1)) at P. Then the order of the pole of the rational 2-form

$$r^* \left(\frac{dh_1 \wedge dh_2}{h_1 h_2}\right)^{\otimes 2}$$

along the exceptional divisor *E* is at most 2 (in fact, an explicit computation shows that the above form does not have a pole along *E* but we do not need this strong estimate). It is clear that $r^*\xi_i^2$ vanishes along *E* to order 1 so that r^*g vanishes along *E* to order at least 3. Therefore, $r^*\eta$ does not have a pole along *E* and we have an injection $r^*\mathcal{M} \hookrightarrow (\Omega_Y^2)^{\otimes 2}$.

Lemma 3.14 If $n \ge 5$, then the invertible sheaf \mathcal{M} is big.

Proof Let *m* be a positive integer such that m > n/(n-4). We show that the complete linear system of $\mathcal{M}^m \cong \mathcal{O}_X(2mH-4mF)$ defines a birational map. Set k = (n-4)m and l = (n-4)m - n which are positive integers. Then

$$\{ y^m w_0^k, \ y^m w_0^{k-1} w_1, \ \dots, \ y^m w_1^k \} \\ \cup \{ y^{m-1} w_i^l x_{j_1} x_{j_2} : 0 \leqslant i \leqslant 1, \ 0 \leqslant j_1, \ j_2 \leqslant 2 \}$$

is a set of sections of \mathcal{M}^m and they define a generically finite map. Indeed, the restriction of sections $y^m w_0^k, y^m w_0^{k-1} w_1$ and $y^{m-1} w_0^l x_{j_1} x_{j_2}$ for $0 \leq j_1, j_2 \leq 2$ on $X \cap U_{w_0,y}$ are 1, w_1 and x_i^2 for $0 \leq j_1, j_2 \leq 2$ and they clearly define a generically finite map (in fact an isomorphism). It follows that the complete linear system of \mathcal{M}^m defines a generically finite map and thus \mathcal{M} is big.

Proof of Theorem 1.3 Assume that $n \ge 5$. By Lemmas 3.13, 3.14 and 3.2, a very general X_n defined over \Bbbk is not separably uniruled. In particular, it is not ruled. Then a very general X_n defined over \mathbb{C} is not ruled, by Lemma 3.1, and the proof is completed.

Acknowledgments The author would like to thank Dr. Hamid Ahmadinezhad for useful conversations. He also would like to thank Professor Ivan Cheltsov for showing his interest to this work.

References

- 1. Ahmadinezhad, H.: On conjugacy classes of the Klein simple group in Cremona group (2013). arXiv:1310.5548 (to appear in Glasg. Math. J.)
- Batyrev, V.V., Cox, D.A.: On the Hodge structure of projective hypersurfaces in toric varieties. Duke Math. J. 75(2), 293–338 (1994)
- Belousov, G.: Log del Pezzo surfaces with simple automorphism groups. Proc. Edinb. Math. Soc. 58(1), 33–52 (2015)
- Cheltsov, I., Shramov, C.: Three embeddings of the Klein simple group into the Cremona group of rank three. Transform. Groups 17(2), 303–350 (2012)
- Grinenko, M.M.: Birational properties of pencils of del Pezzo surfaces of degrees 1 and 2. Sb. Math. 191(5), 633–653 (2000)
- Grinenko, M.M.: Birational properties of pencils of del Pezzo surfaces of degrees 1 and 2. II. Sb. Math. 194(5), 669–696 (2003)
- 7. Grinenko, M.M.: Fibrations into del Pezzo surfaces. Russian Math. Surveys 61(2), 255-300 (2006)
- 8. Kollár, J.: Nonrational hypersurfaces. J. Amer. Math. Soc. 8(1), 241-249 (1995)
- Kollár, J.: Rational Curves on Algebraic Varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 32. Springer, Berlin (1996)
- 10. Okada, T.: Nonrational weighted hypersurfaces. Nagoya Math. J. 194, 1-32 (2009)
- Prokhorov, Yu.: Simple finite subgroups of the Cremona group of rank 3. J. Algebraic Geom. 21(3), 563–600 (2012)
- Pukhlikov, A.V.: Birational automorphisms of algebraic threefolds with a pencil of Del Pezzo surfaces. Izv. Math. 62(1), 115–155 (1998)
- Reid, M.: Chapters on algebraic surfaces. Complex Algebraic Geometry. IAS/Park City Mathematics Series, vol. 3. American Mathematical Society, Providence (1997)
- Roan, S.: Picard groups of hypersurfaces in toric varieties. Publ. Res. Inst. Math. Sci. 32(5), 797–834 (1996)