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Abstract We present a series of del Pezzo fibrations of degree 2 admitting an action
of the Klein simple group and prove their nonrationality by the reduction modulo p
method of Kollár. This is relevant to the embedding of the Klein simple group into the
Cremona group of rank 3.
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1 Introduction

The Klein simple group GK is a finite simple group GK ∼= PSL2(F7) of order 168. It
is well known that GK is the automorphism group of the Klein quartic curve which is
defined in P

2 by the equation x30 x1 + x31 x2 + x32 x0 = 0. Let SK be the double cover of
P
2 ramified along the Klein quartic curve. Then SK is a nonsingular del Pezzo surface

of degree 2 admitting a faithful action of GK. Belousov [3] proved that P
2 and SK are

the only del Pezzo surfaces admitting a faithful action of GK. In [1], Ahmadinezhad
presented a series of GK-Mori fiber spaces Xn/P

1 over P
1 whose general fibers are

isomorphic to SK for n � 0. A G-Mori fiber space, where G is a group, is a G-
equivariant version of Mori fiber space (see Definition 2.9). Among the above series
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320 T. Okada

of varieties, Xn/P
1 is a del Pezzo fibration for n � 1 while X0/P

1 = P
1×SK/P

1

is not (see Sect. 2 for details). We have the following conjectures concerning these
varieties.

Conjecture 1.1 (Cheltsov–Shramov [3, Conjecture 1.4]) The fibrations P
1×P

2/P
1

and Xn/P
1, for n � 0, are the only GK-Mori fiber spaces over P

1 in dimension 3.

Conjecture 1.2 (Ahmadinezhad [1, Conjecture 3.5]) The varieties Xn are non-
rational for n � 2.

Note that X0 and X1 are both rational. The main result of this paper is the following
theorem which supports Conjecture 1.2.

Theorem 1.3 For n � 5, a very general Xn is not rational.

We refer the reader to Sect. 3 for the meaning of very generality. Note that Xn/P
1

is a del Pezzo fibration of degree 2 and it satisfies the so-called K -condition (or K 2-
condition) for n � 2. Thus, by the results of Pukhlikov [12] and Grinenko [5–7] on
nonsingular del Pezzo fibrations of degree 2, if Xn were nonsingular, then it would
be birationally rigid for n � 2, which would imply nonrationality in a strong sense.
Unfortunately, Xn is singular and we cannot apply the above results directly. Instead,
we apply the Kollár’s reduction modulo p method introduced in [8] (see also [9]) to
prove nonrationality of Xn .

This is relevant to the study of embeddings of the Klein simple group GK =
PSL2(F7) into the Cremona group Cr3(C) of rank 3. If we are given a finite sim-
ple subgroup G of Cr3(C3), then there is a rational G-Mori fiber space X/S such
that the embedding G ⊂ Cr3(C) is given by G ⊂ Aut(X) ⊂ Bir(X) ∼= Cr3(C)

(see [11, Section 4.2]). Such a G-Mori fiber space X/S is called aMori regularization
of G ⊂ Cr3(C). Moreover, two embeddings G1 and G2 into Cr3(C) of a finite simple
subgroupG are conjugate if and only if there is aG-equivariant birationalmap between
Mori regularizations X1/S1 and X2/S2 of G1 ⊂ Cr3(C) and G2 ⊂ Cr3(C), respec-
tively. In [4], Cheltsov and Shramov proved that there are at least three non-conjugate
embeddings of PSL2(F7) into Cr3(C) and each of them comes from rational (GK-)
Fano threefolds. Theorem1.3 implies that, for n � 5, a very general Xn/P

1 cannot be a
Mori regularization of any subgroup of Cr3(C) isomorphic to GK. If Conjectures 1.1
and 1.2 are both true, then it follows that there is no embedding of PSL2(F7) into
Cr3(C) coming from a GK-Mori fiber space over P

1 other than P
1×P

2/P
1, X0/P

1

and X1/P
1. Note that, by [1, Theorem 3.4], there is a GK-equivariant birational map

between X1 and P
1×P

2.
The paper is organized as follows. In Sect. 2, we give an explicit construction of

varieties Xn . They are constructed as hypersurfaces of suitable weighted projective
space bundle over P

1. Then we show that Xn/P
1 is indeed a del Pezzo fibration

for n � 1. In Sect. 3, we prove the main theorem. The proof will be done by the
Kollár’s reduction modulo p method, which we briefly recall in Sect. 3.2. The very
first reduction step is done inSect. 3.1. InSect. 3.3,weworkover afield of characteristic
2 and construct a specific big line bundle on some nonsingular model of Xn by making
use of the purely inseparable double covering structure. This will complete the proof
in view of the non-ruledness criterion given in Lemma 3.2.
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Nonrational del Pezzo fibrations admitting... 321

2 Construction of del Pezzo fibrations

We construct del Pezzo fibrations Xn/P
1 as hypersurfaces in suitable weighted pro-

jective space bundles over P
1. We refer the reader to [2] for Cox rings (which are also

known as homogeneous coordinate rings) of toric varieties. In this section we work
over C.

Throughout this paper, we define f = x30 x1 + x31 x2 + x32 x0. We see that f is
the defining polynomial of the Klein quartic curve whose automorphism group is the
Klein simple group. Let Pn be the projective simplicial toric variety with the Cox ring

Cox(Pn) = C[w0, w1, x0, x1, x2, y]

which is Z
2-graded as

⎛
⎜⎝

w0 w1 x0 x1 x2 y

1 1 0 0 0 −n

0 0 1 1 1 2

⎞
⎟⎠

and with the irrelevant ideal I = (w0, w1)∩(x0, x1, x2, y), that is, Pn is the geometric
quotient

Pn = (A6\V (I ))/(C∗)2,

where the action of (C∗)2 on A
6 = SpecCox(Pn) is given by the above matrix.

Note that the Weil divisor class group Cl(Pn) is isomorphic to Z
2. There is a natural

morphism � : P → P
1 defined as the projection to coordinates w0, w1, and this

realizes P as a weighted projective space bundle overP
1 whose fibers areP(1, 1, 1, 2).

For a nonnegative integer n and homogeneous polynomials a ∈ C[w0, w1] and f ∈
C[x0, x1, x2] of degree respectively 2n and 4, define

Xn = (ay2 + f = 0) ⊂ Pn,

and let π = �|Xn : Xn → P
1. Throughout this paper, we assume that a does not have

a multiple component.

Remark 2.1 Let us note that Xn/P
1 constructed as above coincides with the one given

in [1, Section 3]. Indeed, choose and fix any pair b, c ∈ C[w0, w1] of homogeneous
polynomials of degree n such that a = bc and define

X′
n = (bt2 + c f = 0) ⊂ P

1
w0,w1

×P(1x0 , 1x1 , 1x2 , 2t ).

Let π ′ : X′
n → P

1 be the projection to the coordinates w0, w1. Then, (c = t =
f = 0) ⊂ X′

n is a disjoint union of n-curves C ′
1, . . . ,C

′
n and X′

n has a singularity
of type C×1/2(1, 1) along each C ′

i . Blowing up X′
n along these curves and then

contracting the strict transforms of the π ′-fibers containing C ′
i , we obtain a birational

map X′
n ��� Xn to the del Pezzo fibration Xn → P

1 constructed in [1].
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322 T. Okada

Now we have a birational map � : Pn ��� P
1×P(1, 1, 1, 2) defined by the corre-

spondence t = cy. It is easy to see that � restricts to a birational map ψ : Xn ��� X′
n .

Moreover, it is straightforward to see thatψ−1 : X′
n ��� Xn is obtained by blowing up

X′
n alongC

′
1, . . . ,C

′
n and then contracting the strict transforms of the fibers containing

C ′
i . This shows Xn/P

1 ∼= Xn/P
1.

Remark 2.2 Let us explain that both X0 and X1 are rational. If n = 0, then we have
X0 ∼= P

1×S, where S = (y2 + f = 0) ⊂ P(1, 1, 1, 2) is a (nonsingular) del Pezzo
surface of degree 2, and thus X0 is clearly rational. Suppose n = 1. Then, as explained
in Remark 2.1, X1 is birational to X′

1 = (by2 + c f = 0) ⊂ P
1×P(1, 1, 1, 2), where

b, c ∈ C[w0, w1] are homogeneous polynomials of degree 1 such that a = bc. It
is clear that the projection X′

1 ��� P(1, 1, 1, 2) is birational. Hence X′
1 and X1 are

rational.

In the rest of this section, we show that π : Xn → P
1 is indeed a del Pezzo fibration

for n � 1.

Definition 2.3 Let π : X → P
1 be a surjective morphism with connected fibers from

a normal projective 3-fold X . We say that π : X → P
1 is a del Pezzo fibration over P

1

if the following conditions are satisfied:

• X is Q-factorial and has only terminal singularities.
• −KX is π -ample.
• ρ(X) = 2.

Remark 2.4 We explain the natural affine open subsets of Pn and Xn . We refer the
reader to [13] for details. Since we will work over an algebraically closed field of
characteristic 2 in the next section, we assume in this remark that the ground field of
Pn and Xn is an algebraically closed field k of arbitrary characteristic.

Denote byUwi ,x j the open subset (wi 	= 0)∩(x j 	= 0) ⊂ Pn and byUwi ,y the open
subset (wi 	= 0)∩ (y 	= 0) ⊂ Pn . Then Pn is covered byUwi ,x j andUwi ,y for i = 0, 1
and j = 0, 1, 2; and Uw0,x0 is the affine 4-space A

4. The restrictions of w1, x1, x2, y
on Uw0,x0 form affine coordinates of Uw0,x0 . Indeed, if we denote by w̃1 = w1/w0,
x̃i = xi/x0 for i = 1, 2 and ỹ = ywn

0/x
2
0 , then Uw0,x0 is an affine 4-space with affine

coordinates w̃0, x̃1, x̃2, ỹ. The affine scheme Xn ∩ Uw0,x0 is defined by the equation
ỹ a(1, w̃1) + f (1, x̃1, x̃2) = 0. The same description applies for the other Uwi ,x j .

We see thatUw0,y is the quotientA
4/µ2 ofA

4 by the action ofµ2 = Spec k[t]/(t2).
Indeed, if we denote by w̃1 = w1/w0, x̃i = xi w

n/2
0 /y1/2 for i = 0, 1, 2, then Uw0,y

is the quotient of A
4 with coordinates w̃1, x̃0, x̃1, x̃2 under the µ2-action given by

w̃0 
→ w̃0, x̃i 
→ x̃i⊗ t,

where t ∈ k[t]/(t2). Here, the above operation defines a ring homomorphism R →
R⊗k[t]/(t2), where R = k[w̃0, x̃0, x̃1, x̃2], and A

4/µ2 = Spec Rµ2 . When k = C,
we can replace µ2 with Z/2Z and the action is given simply by w̃0 
→ w̃0 and x̃i 
→
− x̃i . The affine scheme Xn ∩ Uw0,y is the quotient of the affine scheme a(1, w̃1) +
f (̃x0, x̃1, x̃2) = 0 defined by the µ2-action. The same description applies for Uw1,y .
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Nonrational del Pezzo fibrations admitting... 323

Sometimes we will abuse the notation and say that Uw0,x0 is the affine 4-space
A
4 with coordinates w1, x1, x2, y and Xn ∩ Uw0,x0 is defined by ya(1, w1) +

f (1, x1, x2) = 0.

Lemma 2.5 The variety Xn is nonsingular outside (x0 = x1 = x2 = 0) ∩ Xn and it
has a singular point of type 1/2(1, 1, 1) at each point of (x0 = x1 = x2 = 0) ∩ Xn.

Proof SetU = Uw0,x0 which is an affine 4-spacewith affine coordinatesw1, x1, x2, y,
then Xn∩U is defined by y2a0+ f0 = 0, where a0 = a(1, w1) and f0 = f (1, x1, x2).
It is straightforward to see that

Sing(Xn ∩U ) =
(
y2

∂a0
∂w1

= ∂ f0
∂x1

= ∂ f0
∂x2

= 2ya0 = y2a0 + f0 = 0

)

⊂
(

∂ f0
∂x1

= ∂ f0
∂x2

= f0 = 0

)
= ∅,

where the last equality holds since f0 = f (1, x1, x2) defines a nonsingular curve inA
2.

By symmetry, we conclude that X ∩Uwi ,x j is nonsingular for i = 0, 1 and j = 0, 1, 2.
Since the open subsets Uwi ,x j for i = 0, 1 and j = 0, 1, 2 cover Pn \(x0 = x1 =
x2 = 0), we see that Xn is nonsingular outside (x0 = x1 = x2 = 0) ∩ Xn .

Let P ∈ (x0 = x1 = x2 = 0) ∩ Xn . Then a(P) = 0 and we may assume that
w1 vanishes at P after replacing w0, w1. We work on U = Uw0,y

∼= A
4/µ2. We see

that Xn ∩ U is the quotient of V = (a(1, w1) + f = 0) ⊂ A
4 by the µ2-action and

P corresponds to the origin. Since a vanishes at P and it does not have a multiple
component, we have a(1, w1) = w1+higher order terms, so that x0, x1, x2 form local
coordinates of V at the origin. Thus the point P is of type 1/2(1, 1, 1). �
For n � 1, we construct a birational morphism θ : Xn → Vn as follows. Set ξ0 = wn

0 ,
ξ1 = wn−1

0 w1, . . . , ξn = wn
1 and let


 : Pn → P
(
1x0 , 1x1 , 1x2 , 2y0 , . . . , 2yn

)

be the toric morphism defined by the correspondence yi = yξi . Then the image of

, which we denote by Tn , is defined by h1 = · · · = hN = 0, where h1, . . . , hN are
the homogeneous polynomials in y0, . . . , yn defining the image of the n-ple Veronese
embedding P

1 ↪→ P
n
y0,...,yn . We see that 
 : Pn → Tn is a birational morphism

contracting the divisor (y = 0) ∼= P
1×P

2 to the plane � = (y0 = · · · = yn = 0) ⊂
Tn . It follows that Tn is a projective simplicial toric variety with Picard number 1.
The image of Xn under 
 is a hypersurface Vn in Tn defined by q + f = 0, where
q = q(y0, . . . , yn) is a quadratic polynomial such that q(yξ0, . . . , yξn) = a y2. The
morphism θ = 
|Xn : Xn → Vn is a birational morphism contracting the divisor
(y = 0) ∩ Xn ∼= P

1×C to the curve � ∩ Vn ∼= C , where C is the plane curve defined
by f = 0.

Lemma 2.6 If n � 1, then Vn is a normal projective Q-factorial 3-fold with Picard
number 1.
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324 T. Okada

Proof Note that Xn is Q-factorial since it has only quotient singularities. It follows
that Vn isQ-factorial since θ is an extremal contraction (which is not necessarily KXn -
negative). We see that the singularity of Tn along the plane� is of type P

2×1/n(1, 1)
and Vn intersects � transversally. Moreover, outside the curve �∩Vn , singular points
of Vn are of type 1/2(1, 1, 1). This implies that Vn is a V -submanifold of Tn and
thus, by [2, Proposition 3.5], Vn is quasi-smooth in Tn . Here, we refer the reader
to [2, Section 3] for the definitions of V -submanifold and quasi-smoothness. It then
follows, from [14, Proposition 4], that ρ(Vn) = ρ(Tn) = 1 since Vn is quasi-smooth
hypersurface defined by a global section of an ample divisor on Tn . �
Lemma 2.7 For n � 1, the fibration π : Xn → P

1 is a del Pezzo fibration.

Proof Assume that n � 1. We see that X has only terminal singularities of type
1/2(1, 1, 1) and it is Q-factorial. By Lemma 2.6, we have ρ(Xn) = ρ(Vn) + 1 = 2
since θ : Xn → Vn is a birational morphism contracting a prime divisor. This shows
that π is an extremal contraction and thus Xn/P

1 is indeed a del Pezzo fibration. �
Remark 2.8 The above arguments apply tomore general caseswithout any change. Let
g ∈ C[x0, x1, x2] be a homogeneous polynomial of degree 4 such that the plane curve
in P

2 defined by g is nonsingular. Then the hypersurface Xn = (a y2 + g = 0) ⊂ Pn ,
where a ∈ C[w0, w1] is a homogeneous polynomial of degree 2n which does not
have a multiple component, together with the projection π : Xn → P

1 is a del Pezzo
fibration provided that n � 1.

The variety Vn and the birational map θ : Xn ��� Vn are constructed in order to prove
Lemma 2.7 and we will not use them in what follows. We give a definition of G-Mori
fiber space.

Definition 2.9 Let G be a group. A G-Mori fiber space is a normal projective variety
X , where G acts faithfully on X , together with a G-equivariant morphism π : X → S
onto a normal projective variety S with the following properties:

• X is GQ-factorial, that is, every G-invariant Weil divisor on X is Q-Cartier, and
X has only terminal singularities.

• −KX is π -ample.
• dim S < dim X and π has connected fibers.
• rank PicG(X) − rank PicG(S) = 1.

Note that the Klein simple group G = PSL2(F7) acts on Xn/P
1 along the fibers, so

that Xn/P
1 is a G-Mori fiber space for n � 1. For n = 0, X0/P

1 ∼= S×P
1/P

1 is not
a del Pezzo fibration. Nevertheless, we have ρG(X0) = 1, so that X0/P

1 is a G-Mori
fiber space as well.

3 Proof of Theorem 1.3

3.1 Reduction modulo 2

In the following, we drop the subscript n and write P = Pn , X = Xn . In the previous
section, the toric variety P was defined over C. We can define P over an arbitrary
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Nonrational del Pezzo fibrations admitting... 325

field or more generally an arbitrary ring. For a field or a ring K , we denote by PK
the toric variety over Spec K defined by the same fan as that of P . Then, since f =
x30 x1+x31 x2+x32 x0 is defined overZ, we can define the subscheme XK = (a y2+ f =
0) ⊂ PK for a homogeneous polynomial a ∈ K [w0, w1] of degree 2n.

Let a = α0w
2n
0 + α1w

2n−1
0 w1 + · · · + α2nw2n

1 , αi ∈ C. Assume that α0, . . . , α2n
are very general so that they are algebraically independent over Z. Then, the ring
Z[α0, . . . , α2n] is isomorphic to a polynomial ring of 2n + 1 variables over Z and the
ideal (2) is a prime ideal. Define

R = Z[α0, . . . , α2n](2)
which is a DVR whose residue field is of characteristic 2. Then we can define XR =
(a y2 + f = 0) ⊂ PR , which is a scheme over Spec R and whose geometric generic
fiber is isomorphic to XC.

Lemma 3.1 Let k be an algebraically closed field which is uncountable. If Xk =
(a y2 + f = 0) ⊂ Pk is not ruled for a very general a ∈ k[w0, w1], then X = XC =
(a y2 + f = 0) ⊂ PC is not ruled for a very general a ∈ C[w0, w1].
Proof Let X ′ be the geometric special fiber of XR → Spec R defined over k. We can
write X ′ = (a′y2 + f = 0) ⊂ Pk for some a′ ∈ k[w0, w1] and a′ corresponds to
a very general element. By the Matsusaka theorem [9, V.1.6 Theorem], if X ′ is not
ruled, then X is not ruled. This completes the proof. �

3.2 Kollár’s technique

In this subsection, we briefly recall Kollár’s argument of proving non-ruledness of suit-
able covering spaces in positive characteristic. We apply the following non-ruledness
criterion which is a slight generalization of [9, V.5.1 Lemma].

Lemma 3.2 Let Y be a smooth proper variety defined over an algebraically closed
field and M a big line bundle on Y . If there is an injection M ↪→ (�i

Y )⊗m for some
i > 0 and m > 0, then Y is not separably uniruled.

Proof Suppose that Y is separably uniruled. Then, there exists a separable dominant
map ϕ : P

1×V ��� Y , where V is a normal projective variety. After shrinking V , we
may assume that ϕ is a morphism and V is smooth. The homomorphism ϕ∗�1

Y ↪→
�1

V×P1 is an isomorphism on a non-empty open subset since ϕ is separable. This

induces an injection ϕ∗M⊗k ↪→ (�i
V×P1)

⊗mk for any k � 1. The invertible sheaf M

is big so that the global sections of ϕ∗M⊗k separate points on a nonempty open subset
of V ×P

1 for a sufficiently large k. This is a contradiction since the global sections of
(�i

V×P1)
⊗mk do not separate points in a fiber. �

Remark 3.3 Our aim is to prove that the variety Xn defined over an algebraically
closed field of characteristic 2 is not ruled. In view of Lemma 3.2, it is enough to
construct a resolution r : Y → Xn and a big line bundle M which is a subsheaf of
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(�i
Y )⊗m for some m > 0. As we will see in Sect. 3.3, there is a purely inseparable

cover Xn → Zn of degree 2 for some normal projective variety Zn . In the following
we explain the Kollár’s construction of a big line bundle on a nonsingular model of a
suitable cyclic covering space in a general setting.

Let Z be a variety of dimension n defined over an algebraically closed field k of
characteristic p > 0, L a line bundle on Z and s ∈ H0(Z ,L⊗m) a global section of
Lm for some m > 0. Let U = Spec

⊕
i�0 L

−i be the total space of the line bundle
L and let ρU : U → Z be the natural morphism. We denote by y ∈ H0(U, ρ∗

UL) the
zero section and define

Z
[
m
√
s
] = (ym − s = 0) ⊂ U.

We say that Z
[
m
√
s
]
is the cyclic covering of Z obtained by taking mth roots of s. Set

X = Z
[
m
√
s
]
and let ρ = ρU |X : X → Z be the cyclic covering.

From now on we assume that Z is nonsingular and m is divisible by p. We have a
natural differential d : Lm → Lm⊗�1

Z whose construction is given below. Let τ be a
local generator of L and t = gτm a local section. Let x1, . . . , xn be local coordinates
of of Z . Then define

d(t) =
∑ ∂g

∂xi
τmdxi .

This is independent of the choices of local coordinates and the local generator τ ,
and thus defines d. For the section s ∈ H0(Z ,Lm), we can view d(s) as a sheaf
homomorphism d(s) : OZ → Lm⊗�1

Z . By taking the tensor product with L−m , we
obtain ds : L−m → �1

Z .

Definition 3.4 ([9, V.5.8 Definition]) We define Q(L, s) = (det Coker(ds))∨∨.

We have Q(L, s) ∼= Lm⊗ωZ .

Lemma 3.5 ([9, 5.5 Lemma]) There is an injection ρ∗Q(L, s) ↪→ (�n−1
X )∨∨.

Remark 3.6 Let x1, . . . , xn be local coordinates of Z at a point P and s = gτ⊗m as
before. Then, ρ∗Q(L, s) ⊂ (�1

X )∨∨ is generated by the form

η = (±)
dx2∧· · ·∧dxn

∂ f/∂x1
= (±)

dx1∧dx3∧· · ·∧dxn
∂ f/∂x2

= (±)
dx1∧· · ·∧dxn−1

∂ f/∂xn
.

See [9, V.5.9 Lemma] for details.

Let us show that if the singularity of X is mild, then we can lift ρ∗Q(L, s) to an invert-
ible subsheaf of �n−1

Y , where Y is a suitable nonsingular model of X . For simplicity
of description, we assume that p = 2 and n = dim Z = 3.

Definition 3.7 ([9, V.5.6 Definition], see also [9, V.5.7 Exercise]) We say that s ∈
H0(Z ,Lm) has a critical point at P ∈ Z if d(s) ∈ H0(Z ,Lm⊗�1

Z ) vanishes at P .
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Nonrational del Pezzo fibrations admitting... 327

Denote by Crit(s) ⊂ Z the set of critical points of s. We say that s has an almost
nondegenerate critical point at P if in suitable choice of local coordinates x1, x2, x3
we can write

g = αx21 + x2 x3 + x31 + h,

where α ∈ k, s = gτm for a local generator τ of L at P , h = h(x1, x2, x3) consists
of monomials of degree at least 3 and it does not involve x31 .

Lemma 3.8 ([9, V.5.10 Proposition]) Suppose that s has only almost nondegenerate
critical points. Then the singularities of X are isolated singularities and they can be
resolved by blowing up each singular point of X. Moreover, if we denote by r : Y → X
the blowup of each singular point of X, then r∗ρ∗Q(L, s) ↪→ �2

Y .

3.3 Construction of a big line bundle

Throughout this subsection, we work over an algebraically closed field k of charac-
teristic 2 which is uncountable. We write P = Pk and X = Xk. We do not assume
n � 5 for the moment. Let P◦ = P \(x0 = x1 = x2 = 0) and X◦ = X ∩ P◦. Note that
P◦ is the nonsingular locus of P . Define

Q =
⎛
⎝

w0 w1 x0 x1 x2 z
1 1 0 0 0 −2n
0 0 1 1 1 4

⎞
⎠

and set Z to be the hypersurface in Q defined by za + f = 0. Let ρ : X → Z
be the morphism which is defined by the correspondence z = y2, which is a purely
inseparable finite morphism of degree 2.

Lemma 3.9 Let a ∈ k[w0, w1] be a general homogeneous polynomial of degree 2n.
Then the set

Crit(a) =
(

∂a

∂w0
= ∂a

∂w1
= 0

)
⊂ P

1
w0,w1

consists of finitely many points and Crit(a) ∩ (a = 0) = ∅. Moreover, for each
P ∈ Crit(a), we can choose a local coordinate w of P

1 at P such that

a = α + βw2 + w3 + higher order terms

for some α, β ∈ k with α 	= 0.

Proof The set Crit(a) is clearly a finite set of points. As a generality of a, we in
particular require that a does not have a multiple component. It is then clear that
Crit(a)∩ (a = 0) = ∅. The last assertion follows by counting dimension. Let P ∈ P

1

be a point and w a local coordinate of P
1 at P . We can write a = ∑

αi w
i , αi ∈ k. We

say that a has a bad critical point at P if α1 = α3 = 0. Two conditions α1 = α3 = 0
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are imposed for a to have a bad critical point at a given P ∈ P
1. Since P runs through

P
1, we see that homogeneous polynomials a which have a bad critical point at some

point P ∈ P
1 form at most 2 − 1 = 1 codimensional subfamily in the space of all

a ∈ k[w0, w1]. Thus, a general a does not have a bad critical point at all and the proof
is completed. �
Lemma 3.10 The set

Crit( f ) =
(

∂ f

∂x0
= ∂ f

∂x1
= ∂ f

∂x2
= 0

)
⊂ P

2
x0,x1,x2

consists of finitely many closed points and Crit( f ) ∩ ( f = 0) = ∅. Moreover, for
each P ∈ Crit( f ), we can choose local coordinates t1, t2 of P

2 at P such that

f = γ + t1t2 + higher order terms

for some γ 	= 0.

Proof We have

∂ f

∂x0
= x20 x1 + x32 ,

∂ f

∂x1
= x30 + x21 x2,

∂ f

∂x2
= x31 + x22 x0.

By a straightforward computation, we have

Crit( f ) = {
(1 :ζ 3i :ζ i ) : 0 � i � 6

}
,

where ζ ∈ k is a primitive 7th root of unity. It is also straightforward to see that
f (P) 	= 0 for P ∈ Crit( f ). For the last assertion, we work on the affine open subset
U = (x0 	= 0) ⊂ P

2. Note that Crit( f ) ⊂ U . By setting x0 = 1, we think of
x1, x2 as affine coordinates of U ∼= A

2. We have f = x1 + x31 x2 + x32 on U . For
the verification of the last assertion, it is enough to show that the Hessian of f at
P = (1 : ζ 3i : ζ i ) ∈ Crit( f ) is nonzero. We have ∂2 f/∂x21 = 1, ∂2 f/∂x1∂x2 = x21
and ∂2/∂x22 = 0, so that we can compute the Hessian as

∣∣∣∣
1 x21
x21 0

∣∣∣∣ (P) = ζ 12i 	= 0.

Therefore, the last assertion is proved. �
Set Q◦ = Q \(x0 = x1 = x2 = 0) and Z◦ = Z ∩ Q◦.
Lemma 3.11 The quasi projective variety Z◦ is nonsingular.
Proof We work on the open subset U = Uw0,x0 ⊂ Q which is an affine 4-space
with coordinates w1, x1, x2, z. We see that Z ∩U is defined by a0z + f0 = 0, where
a0 = a(1, w1) and f0 = f (1, x1, x2). We have

Sing(Z ∩U ) =
(
z

a0
∂w1

= ∂ f0
∂x1

= ∂ f0
∂x1

= a0 = f0 = 0

)
= ∅,
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where the last equality follows since the curve f0 = 0 in A
2 is nonsingular. By

symmetry, Z ∩Uwi ,x j is nonsingular for i = 0, 1 and j = 0, 1, 2. Since Z◦ is covered
by Uwi ,x j for i = 0, 1 and j = 0, 1, 2, the proof is completed. �
Let HQ and FQ be divisor classes on Q which correspond to the weight t (0 1) and
t (1 0), respectively, that is, FQ is the fiber class of the projection Q → P

1 and
HQ |FQ ∈ |OP(1,1,1,4)(1)|. We set HZ = HQ |Z and FZ = FQ |Z . Define L to be the
sheaf OZ (2HZ − nFZ ) whose restriction on Z◦ is an invertible sheaf. Note that we
have z ∈ H0(Z ,L2). It is clear that X ∼= Z [√z]. In the following we choose and fix
a general a ∈ k[w0, w1] so that the assertions of Lemma 3.9 hold.

Lemma 3.12 The section z ∈ H0(Z◦,L2) has only almost nondegenerate critical
points on Z◦.

Proof Let Crit(z) ⊂ Z◦ be the set of critical points of z. Since

∂(az + f )

∂z
= a,

z can be chosen as a part of local coordinates at every point P ∈ Z◦ such that a(P) = 0.
It follows that z does not have a critical point at any point P ∈ X∩(a = 0).Wework on
an open setU ⊂ Z◦ onwhich a 	= 0 and prove that z |U has only almost nondegenerate
critical points on U . Since z = − f/a on U and a is a unit on U , it is enough to show
that −a2z = a f has only almost nondegenerate critical points on U . Let P ∈ U be a
critical point of z. We have

∂(a f )

∂wi
= ∂a

∂wi
f,

∂(a f )

∂x j
= a

∂ f

∂x j
,

for i = 0, 1 and j = 0, 1, 2. Since a(P) 	= 0, we have (∂ f/∂x j )(P) = 0 for
j = 0, 1, 2. By Lemma 3.10, we have f (P) 	= 0, which implies (∂a/∂wi )(P) = 0
for i = 0, 1. By Lemmas 3.9 and 3.10, we can choose local coordinates w, t1, t2 of Z
at P such that

a f = (α + βw2 + w3 + · · · )(γ + t1 t2 + · · · )
= αγ + βγ w2 + α t1 t2 + γ w3

1 + h,

where α, β, γ ∈ k with α, γ 	= 0, h = h(w, t1, t2) consists of monomials of degree at
least 3 and it does not involve w3. This shows that z has only almost nondegenerate
critical points on Z◦. �
Define Q◦ = Q(L, z)|Z◦ which is an invertible sheaf on Z◦. By Lemma 3.5, we
have ρ∗Q◦ ↪→ (�2

X◦)∨∨, where ρ : X◦ = Z◦[√z] → Z◦. By adjunction, we have
ωZ ∼= OZ (−3HZ + (2n − 2)FZ ), hence Q◦ ∼= OZ◦(HZ − 2FZ ). Let HP and FP be
the divisors on P which correspond to t (0 1) and t (1 0), respectively, so that FP is
the fiber class of � : P → P

1 and HP |FP ∈ |OP(1,1,1,2)(1)|. We set H = HP |X and
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F = FP |X . We have H = ρ∗HZ and F = ρ∗FZ , hence ρ∗Q◦ ∼= OX◦(H − 2F). Let
ι : X◦ ↪→ X be the open immersion. The sheaf ι∗ρ∗Q◦ ∼= OX (H − 2F) is a reflexive
sheaf of rank 1 but is not invertible at each singular point of type 1/2(1, 1, 1). We
defineM = ι∗ρ∗Q◦2 ∼= OX (2H −4F)which is an invertible sheaf on X and we have
an injection M ↪→ ((�2

X )⊗2)∨∨.
Note that X has two kinds of singularities both of which are isolated: one of them

are the singular points on X◦ corresponding to the critical points of z and the other ones
are singular points of type 1/2(1, 1, 1). Let r : Y → X be the blowup of X at each
singular point. By Lemmas 3.8 and 3.12, Y is nonsingular and we have an injection
r∗M|Y ◦ ↪→ (�2

Y ◦)⊗2 on the open subset Y ◦ = r−1(X◦). We will show that there is an
injection r∗M ↪→ (�2

Y )⊗2.

Lemma 3.13 There is an injection r∗M ↪→ (�2
Y )⊗2.

Proof Let P be a singular point of type 1/2(1, 1, 1). Since we know that r∗M ↪→
(�2

Y )⊗2 on the open subset Y ◦ = r−1(X◦), it is enough to show that r∗M ↪→ (�2
Y )⊗2

locally around the exceptional divisor of r : Y → X over P . We can write MP =
OX,P ·η for some local section η of ((�2

X )⊗2)∨∨ sinceM ⊂ ((�2
X )⊗2)∨∨ is an invert-

ible sheaf. We will show that

η = g

(
dh1∧dh2

h1h2

)⊗2

,

for some g, h1, h2 ∈ OX,P , and then we will show that r∗η does not have a pole along
the exceptional divisor over P .

After replacing w0, w1, we assume that w1 vanishes at P (so that w0 does not
vanish at P). We work on an open subset U of Uw0,x0 ⊂ P . Shrinking U , we assume
a 	= 0 on U . Then z = − f/a ∈ OU . Let w̃1 = w1/w0, x̃1 = x1/x0, x̃2 = x2/x0
be the restrictions of w1, x1, x2 to Uw0,x0 . Then, in view of Remark 3.6, after further
shrinking U , we see that M|U is generated by

(
d x̃1∧d x̃2

∂(− f/a)/∂x2

)⊗2

.

In particular,

M⊗K (X) = K (X) ·(d x̃1∧d x̃2)
⊗2 ⊂ (

�2
K (X)

)⊗2
,

where K (X) is the function field of X .
Set ξi = xi/y1/2 for i = 0, 1, 2. Then ξ0, ξ1, ξ2 can be chosen as local coordinates

of the orbifold chart of (X, P). Now we have x̃i = ξ1/ξ0 for i = 1, 2, hence

d x̃1∧d x̃2 = d(ξ1/ξ0)∧d(ξ2/ξ0) = d(ξ1ξ
3
0 )∧d(ξ2ξ

3
0 )

ξ60
.
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Here, since the ground field is of characteristic 2 and ξ20 ∈ OX,P , we have the equality

d(ξi ξ
3
0 ) = d

(
(ξ20 )2

ξi

ξ0

)
= ξ40 d

(
ξi

ξ0

)

for i = 1, 2. Thus MP⊗K (X) = K (X) ·(dh1∧dh2)⊗2, where hi = ξi ξ
3
0 . It follows

that

η = g

(
dh1∧dh2

h1h2

)⊗2

for some rational function g. By [10, Lemma 5.3], we see that g = ξ20 ξ21 ξ22 h for some
h ∈ OX,P .

Now, by shrinking X , we assume that r : Y → X is the blowup (more precisely,
the weighted blowup with weight 1/2(1, 1, 1)) at P . Then the order of the pole of the
rational 2-form

r∗
(
dh1∧dh2
h1h2

)⊗2

along the exceptional divisor E is at most 2 (in fact, an explicit computation shows
that the above form does not have a pole along E but we do not need this strong
estimate). It is clear that r∗ξ2i vanishes along E to order 1 so that r∗g vanishes along
E to order at least 3. Therefore, r∗η does not have a pole along E and we have an
injection r∗M ↪→ (�2

Y )⊗2. �
Lemma 3.14 If n � 5, then the invertible sheafM is big.

Proof Letm be a positive integer such thatm > n/(n−4). We show that the complete
linear system ofMm ∼= OX (2mH−4mF) defines a birational map. Set k = (n−4)m
and l = (n − 4)m − n which are positive integers. Then

{
ymwk

0, ymwk−1
0 w1, . . . , ymwk

1

}

∪ {
ym−1wl

i x j1 x j2 : 0 � i � 1, 0 � j1, j2 � 2
}

is a set of sections ofMm and they define a generically finitemap. Indeed, the restriction
of sections ymwk

0, y
mwk−1

0 w1 and ym−1wl
0 x j1 x j2 for 0 � j1, j2 � 2 on X ∩ Uw0,y

are 1, w1 and x2i for 0 � j1, j2 � 2 and they clearly define a generically finite map
(in fact an isomorphism). It follows that the complete linear system of Mm defines a
generically finite map and thus M is big. �
Proof of Theorem 1.3 Assume that n � 5. By Lemmas 3.13, 3.14 and 3.2, a very
general Xn defined over k is not separably uniruled. In particular, it is not ruled.
Then a very general Xn defined over C is not ruled, by Lemma 3.1, and the proof is
completed. �
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