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Abstract In this note, strongly densematrices are defined and somebasic properties of
these matrices are obtained. In particular, it is shown that for nonnegative and Boolean
matrices, the product of conformable strongly dense matrices is strongly dense. Struc-
tural characterizations are presented for the idempotent nonnegative strongly dense
matrices, as well as for the idempotent Boolean strongly dense matrices with a full
diagonal. Connections with generalized complementary basic matrices are made.
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1 Introduction

In [8], the authors introduced and studied so-called row-dense, column-dense, and
dense matrices. A matrix is dense (row-dense, column-dense) if there are no zeros
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722 M. Fiedler, F.J. Hall

between two nonzero entries for every line (row, column) of this matrix. In this note,
we show that if we specify these notions in a certain way, we obtain a class of matrices
which in certain cases forms a subclass closed under multiplication. We now define
a matrix to be strongly row-dense, SRD for short, if it is row-dense, does not have a
zero row, and, in addition, the union of nonzero positions in any two consecutive rows
is also, in a clear way, row-dense. Analogously, strongly column-dense, shortly SCD,
and strongly dense, shortly SD, matrices are defined.

In the following examples, ∗ indicates a nonzero entry. The matrix

A =

⎡
⎢⎢⎣
0 ∗ 0 0
∗ ∗ ∗ 0
0 ∗ ∗ ∗
0 0 ∗ 0

⎤
⎥⎥⎦

is both SRD and SCD, hence SD. The matrix

A1 =

⎡
⎢⎢⎣
0 0 0 0
∗ 0 0 0
0 0 ∗ ∗
0 ∗ 0 0

⎤
⎥⎥⎦

is row-dense, but not SRD for two reasons: A contains a zero row and the union of the
nonzero positions in rows 2 and 3 is not row-dense. Also, A1 is column-dense but not
SCD, as the union of the nonzero positions in columns 1 and 2 is not column-dense.
The matrix

A2 =

⎡
⎢⎢⎣
0 ∗ 0 0
∗ ∗ 0 0
0 0 ∗ ∗
0 ∗ 0 0

⎤
⎥⎥⎦

is SRD but not SCD (A2 is not even column-dense), while

AT
2 =

⎡
⎢⎢⎣
0 ∗ 0 0
∗ ∗ 0 ∗
0 0 ∗ 0
0 0 ∗ 0

⎤
⎥⎥⎦

is SCD but not SRD.
In this paper, we first give some basic properties of these matrices. In particular, we

show that for nonnegative matrices and Boolean matrices, the product of conformable
SRD- (SCD-, SD-) matrices is SRD (SCD, SD). We then obtain structural characteri-
zations for the idempotent nonnegative SRD- (SCD-, SD-) matrices, as well as for the
idempotent Boolean SD-matrices with a full diagonal. Connections with generalized
complementary basic matrices are made.
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A note on strongly dense matrices 723

2 Basic properties

By induction with respect to the number of rows one easily observes that

Lemma 2.1 The union of nonzero positions in any non-void set of consecutive rows
of an SRD-matrix is row-dense and nonzero.

We observe that two classes of matrices, namely nonnegative matrices and Boolean
matrices, share common combinatorial properties with respect to density. In particular,
applying Lemma 2.1, we have the following.

Theorem 2.2 In the classes of nonnegative matrices and Boolean matrices, the prod-
uct of SRD nonnegative matrices which can be multiplied is SRD.

Proof For nonnegative matrices and Boolean matrices Lemma 2.1 states: If u is a
dense row-vector and P an SRD-matrix, then uP is a dense row-vector.

Let thus A and B be nonnegative SRD-matrices or (both) Boolean SRD-matrices
which can be multiplied, and C their product. Since each row of A is dense, each row
of C is dense. To show that C is SRD, let ci and ci+1 be two consecutive rows of C .
Multiply C from the left by the row vector v = (0, 0, . . . , 1, 1, 0, . . . , 0), where the
ones are in the i th and (i+1)st positions. We have vC = vAB and w = vA is dense,
then vC = wB is also dense, and thus C is SRD. ��
Remark 2.3 An analogous result holds for SCD- and SD-matrices. Also, instead of
assuming nonnegativity or Boolean in Theorem 2.2 one can assume that the product
is intrinsic in the sense introduced in [3].

Example 2.4 Observe that square nonsingular bidiagonal matrices are SRD- as well
as SCD- and SD-matrices. If they are nonnegative, it is known that their products
generate the class of nonsingular totally nonnegative matrices. This fact opens many
new aspects and problems for these matrices.

In the sequel, we find some simple properties of SRD-matrices useful. The following
is clear.

Lemma 2.5 If an SRD-matrix has a zero column c, then either all columns before
c are zero columns, or all columns behind c are zero columns. Analogously, if an
SCD-matrix has a zero row r, then either all rows above r are zero rows, or all rows
below r are zero rows.

Lemma 2.6 If an SRD-matrix A has a block diagonal form

A =

⎡
⎢⎢⎢⎣

D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...

0 0 · · · Dk

⎤
⎥⎥⎥⎦, (1)

where Di are square positive matrices of rank one, then for every permutation matrix
P for which P APT is SRD, the matrix P APT also has such form with the same k.
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724 M. Fiedler, F.J. Hall

Proof Every diagonal block Di can be written as XiY T
i , where Xi and Yi are positive

column vectors of the same mutual dimension. Thus A = XY T, where

X =

⎡
⎢⎢⎢⎣

X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...

0 0 · · · Xk

⎤
⎥⎥⎥⎦, Y =

⎡
⎢⎢⎢⎣

Y1 0 · · · 0
0 Y2 · · · 0
...

...
. . .

...

0 0 · · · Yk

⎤
⎥⎥⎥⎦

are equally partitioned.
Then Y T PT is a row-dense matrix. Indeed, suppose that in the mth row of Y T PT

there is a zero between nonzeros. There is a row in PX , say row q, which has a single
nonzero entry in the mth column. It follows that in PAPT the qth row is not dense,
a contradiction. This fact implies that the groups of consecutive indices in Y T PT are
by the permutation P either only permuted, or the groups as a whole are permuted
themselves. The same happens with PX . Altogether, PAPT has a block form, with
k blocks positive and of rank one. ��

Remark 2.7 We call a square positive matrix of rank one basic. We also call a direct
sum of matrices complete if it does not have a zero row. In this sense, matrices (1) and
PAPT are complete direct sums of basic matrices.

3 Idempotents

In this section, we investigate the structure of SRD-matrices. Since nonnegative matri-
ces form a multiplicative semigroup, it is natural to study idempotent SRD-matrices
first. For nonnegative matrices, the basic result of Flor [9], as given in the book [2],
can be used for SRD-matrices.

Theorem 3.1 (Flor) Let E be a nonnegative idempotent matrix of rank k. Then there
exists a permutation matrix P such that

PE PT =

⎡
⎢⎢⎣

J JU 0 0
0 0 0 0
V J V JU 0 0
0 0 0 0

⎤
⎥⎥⎦, J =

⎡
⎢⎢⎢⎣

J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...

0 0 · · · Jk

⎤
⎥⎥⎥⎦, (2)

where Ji are idempotent matrices of rank one, i.e., Ji = x (i)y(i)T, where x (i), y(i)

are positive column vectors satisfying y(i)T x (i) = 1, and U and V are nonnegative
matrices of appropriate sizes.

Conversely, every squarematrix of the form (2), withU and V arbitrary nonnegative
matrices of appropriate sizes, is idempotent and of rank k.

If specified for matrices without zero rows, Flor’s theorem states
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Lemma 3.2 Let E be a nonnegative idempotent matrix of rank k without zero rows.
Then there exists a permutation matrix P such that

PE PT =
[

J 0
V J 0

]
, J =

⎡
⎢⎢⎢⎣

J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...

0 0 · · · Jk

⎤
⎥⎥⎥⎦, (3)

where Ji are idempotent matrices of rank one and V is a nonnegative matrix of
appropriate size.

Conversely, every square matrix of the form (3), with V an arbitrary nonnegative
matrix of appropriate size, is idempotent and of rank k.

Remark 3.3 If E does not have a zero row, then the same holds for V .

Theorem 3.4 A nonnegative matrix E is an idempotent SRD-matrix of rank r if and
only if it has the symmetrically partitioned form

E =
⎡
⎣
0 CY T 0
0 XY T 0
0 DYT 0

⎤
⎦,

where

X =

⎡
⎢⎢⎢⎣

X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...

0 0 · · · Xr

⎤
⎥⎥⎥⎦, Y =

⎡
⎢⎢⎢⎣

Y1 0 · · · 0
0 Y2 · · · 0
...

...
. . .

...

0 0 · · · Yr

⎤
⎥⎥⎥⎦

are equally partitioned, Xi and Y j are positive column vectors satisfying Y T
i Xi = 1,

i = 1, . . . , r , and C and D nonnegative matrices such that

⎡
⎣
C
Ir
D

⎤
⎦ (4)

is an SRD-matrix.

Proof (⇐) The SRD property of E follows from Theorem 2.2 since E is the product
of the SRD-matrices

⎡
⎣
0 C 0
0 X 0
0 D 0

⎤
⎦ and

⎡
⎣
I 0 0
0 Y T 0
0 0 I

⎤
⎦.
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726 M. Fiedler, F.J. Hall

(⇒) Let E be an idempotent SRD-matrix of rank r . By Lemma 2.5, the zero columns
in E can be at most some first columns and at most some last columns. By Lemma 3.2,
there exists a permutation matrix P such that

PEPT =
[
J 0
V J 0

]
, J =

⎡
⎢⎢⎢⎣

J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...

0 0 · · · Jr

⎤
⎥⎥⎥⎦,

where Ji are idempotent matrices of rank one. Since P preserves the diagonal of E ,
E has the block symmetrically partitioned form

E =
⎡
⎣
0 E1 0
0 E2 0
0 E3 0

⎤
⎦,

where E2 is a permuted matrix of J . Since E is an SRD-matrix, the diagonal block
E2 is, by Lemma 2.6, also a matrix of the form XY T with possibly permuted rows
of X and correspondingly permuted columns of Y T. The condition Y T X = I is also
satisfied. Since E is idempotent, E1 = E1E2 = E1XY T, the matrix E1X plays the
role of C and E3X plays the role of D. It remains to show that the matrix [C Ir D]T
in (4) is an SRD-matrix.

Since [CY T XY T DY T ]T is an SRD-matrix and Y is an SRD-matrix, the matrix
[CY T Y XY T Y DY T Y ]T is an SRD-matrix. Since Y T Y is a diagonal matrix with
positive diagonal entries, the matrix [C X D]T is an SRD-matrix, and thus also the
matrix [C Ir D]T is SRD. ��

Corollary 3.5 A complete characterization of idempotent nonnegative SCD-matrices
is obtained by transposition of the result in Theorem 3.4.

Recalling definitions in Remark 2.7, we also have

Corollary 3.6 A nonnegative matrix is an idempotent SD-matrix if and only if it is a
complete direct sum of idempotent basic matrices. The number of the basic matrices
is then the rank of the direct sum.

Let us turn now to idempotents in the class of Boolean matrices. We start with idem-
potent SD-matrices. The following is clear.

Observation 3.7 A Boolean idempotent upper triangular SD-matrix U is a matrix
which is formed by the upper triangular part of a direct sum BU of unit (i.e. full of
ones) diagonal blocks. Similarly, a Boolean idempotent lower triangular SD-matrix
L is a matrix which is formed by the lower triangular part of a direct sum BL of unit
diagonal blocks. (Of course, the diagonal is considered included to the triangular
part.)
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A note on strongly dense matrices 727

For example, if

BU =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1

⎤
⎥⎥⎥⎥⎦

,

then

U =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0
0 1 0 0 0
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

is a Boolean idempotent upper triangular SD-matrix.
We can now completely characterize Boolean idempotent SD-matrices with a full

diagonal.

Remark 3.8 The example

⎡
⎣
0 1 0
0 1 0
1 1 1

⎤
⎦

shows that not every idempotent SD-matrix has a full diagonal.

Theorem 3.9 A Boolean SD-matrix with a full diagonal is idempotent if and only if
both its upper and lower parts are idempotent Boolean SD-matrices.

Proof Let a Boolean n×n SD-matrix A with a full diagonal be written as A =
I + L0 +U0, where I is the identity matrix, L0 is the strict lower, and U0 is the strict
upper triangular part of A.

Suppose first that both matrices U = I + U0 and L = I + L0 are idempotent
SD-matrices. To prove that A is idempotent, it suffices to show that both Boolean
products LU and UL are majorized by I + L0 +U0.

In addition to the notation BU and BL from Observation 3.7 we use the nota-
tion LC for the complete Boolean lower triangular matrix and UC for the complete
Boolean upper triangular matrix with ones in the whole part. We thus have the chain
of inequalities in the Boolean sense

LU � LCU = LC + BU = LC +U,

which implies that the upper triangular part of LU is majorized by the upper triangular
part of A. Also,

LU � LUC = BLUC = BL +UC = L +UC
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728 M. Fiedler, F.J. Hall

which implies that the lower triangular part of LU is majorized by the lower triangular
part of A. Altogether, LU is majorized by A. Analogously, one shows that UL is
majorized by A, so that A is idempotent.

To prove the converse part, suppose that a Boolean SD-matrix Awith a full diagonal
is idempotent. Write as before A = I + L0 + U0. For L = I + L0, A = L + U0 so
that

L2 � (L +U0)
2 = L +U0.

Thus L2 is majorized by L +U0, and as well by L , sinceU0 is strict upper triangular.
Next, since

L2 = L(I + L0) = L + LL0 � L ,

L is majorized by L2. Altogether, L2 = L . Analogously, U = I +U0 is idempotent.
Finally, since A is an SD-matrix, L and U are SD-matrices. ��
Remark 3.10 Wemention the interesting paper [1] by Beasley et al., where it is proved
that a Booleanmatrix is idempotent if and only if it can represented as a sum of line and
rectangular parts of a certain specific structure. However, our Theorem 3.9 specifically
characterizes when a Boolean SD-matrix with a full diagonal is idempotent. It is not
clear how the structure in [1] would apply to SD-matrices.

4 Connections with GCB-matrices

Let A1, A2, . . . , As be real matrices of respective orders k1, k2, . . . , ks , ki � 2 for all
i . Denote n = ∑s

i=1 ki − s+1 and form the block diagonal matrices G1,G2, . . . ,Gs

as follows:

G1 =
[
A1 0
0 In−k1

]
, G2 =

⎡
⎣
Ik1−1 0 0
0 A2 0
0 0 In−k1−k2+1

⎤
⎦, · · · ,

Gs−1 =
⎡
⎣
In−ks−1−ks+1 0 0

0 As−1 0
0 0 Iks−1

⎤
⎦, Gs =

[
In−ks 0
0 As

]
.

Then, for any permutation (i1, i2, . . . , is) of (1, 2, . . . , s), we can consider the product

Gi1Gi2 · · ·Gis .

We call products of this form generalized complementary basic matrices, GCB-
matrices for short. We use the notation

∏
Gk for these general products. The diagonal

blocks Ak are called distinguished blocks andGk are called generators of
∏

Gk . GCB-
matrices have many striking properties such as permanental, graph theoretic, spectral,
and inheritance properties (see for example [5–7]).
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A note on strongly dense matrices 729

The upper-left and lower-right corner entries of each matrix Ak will be called
intermediate and will be assumed to be nonzero.

Lemma 4.1 Suppose n > k > 1. Let

A0 =
⎡
⎢⎣
a11 · · · a1k
...

. . .
...

ak1 · · · akk

⎤
⎥⎦

be a k×k matrix, and

B0 =
⎡
⎢⎣
bkk · · · bkn
...

. . .
...

bnk · · · bnn

⎤
⎥⎦

be an (n − k + 1)×(n − k + 1) matrix (the sum of orders of A0 and B0 thus exceeds
n by one). Then, for the n×n matrices

A =
[
A0 0
0 In−k

]
and B =

[
Ik−1 0
0 B0

]
,

the product AB has the explicit form

AB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 · · · a1,k−1 a1kbkk · · · a1kbkn
a21 · · · a2,k−1 a2kbkk · · · a2kbkn
...

. . .
...

...
. . .

...

ak1 · · · ak,k−1 akkbkk · · · akkbkn
0 · · · 0 bk+1,k · · · bk+1,n
...

. . .
...

...
. . .

...

0 · · · 0 bnk · · · bnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Theorem 4.2 Suppose that GCB-matrices A and B are as in Lemma 4.1, where
a11, akk, bkk, bnn are nonzero. If both A0 and B0 are SRD (SCD), then both AB
and BA are SRD (SCD).

Proof The proof of the assertion for AB follows by examining the product in (5); the
proof for BA is similar. ��
Corollary 4.3 Assume that all intermediate entries in matrices Ak are nonzero. If
each Ak is SRD (SCD), then the generalized complementary basic matrix

∏
Gk is

SRD (SCD), the order of factors does not matter.

Proof Let Ak , k = 1, . . . , s, be SRD; the proof for SCD is similar. We proceed by
induction. If s = 2, the result follows from Theorem 4.2. Suppose that s > 2 and
that the result holds for s − 1 matrices. Observe that matrices Gi and Gk commute if
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730 M. Fiedler, F.J. Hall

|i − k| > 1. This means that if 1 is before 2 in the permutation (i1, i2, . . . , is), we can
move G1 into the first position without changing the product. The product � of the
remaining s − 1 matrices Gk has the form

[
Ik1−1 0
0 B0

]
.

By the induction hypothesis, B0 is SRD. Hence, by Theorem 4.2,
∏

Gk = G1� is
SRD.

If 1 is behind 2 in the permutation, we can move G1 into the last position and then
we have a BA product as in Theorem 4.2. ��
Strongly dense matrices deserve further exploration. This investigation can include
minimum ranks of the corresponding sign pattern matrices, as was done in [4] for the
dense Alternating Sign Matrices. Connections to the interesting paper [1] might also
be made.
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