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1 Introduction

This paper was motivated by the following problem posed by Protasov in Kourovka
Notebook [7].

Problem 1.1 (Protasov, 1995) Is it true that for any partition G = A1 ∪ · · · ∪ An of a
group G some cell Ai of the partition has cov(Ai A

−1
i ) � n?

Here for a non-empty subset A ⊂ G by

cov(A) = min{|F | : F ⊂ G, G = FA}

we denote the covering number of A.
In fact, Protasov’s problem can be posed in a more general context of ideal G-

spaces. Let us recall that a G-space is a set X endowed with an action G×X → X ,
(g, x) �→ gx , of a group G. An ideal G-space is a pair (X, I) consisting of a G-space
X and a G-invariant Boolean ideal I ⊂ B(X) in the Boolean algebra B(X) of all
subsets of X . A Boolean ideal on X is a proper non-empty subfamily I � B(X) such
that for any A, B ∈ I any subset C ⊂ A ∪ B belongs to I. A Boolean ideal I is
G-invariant if {gA : g ∈ G, A ∈ I} ⊂ I. A Boolean ideal I ⊂ B(G) on a group
G will be called invariant if {x Ay : x, y ∈ G, A ∈ I} ⊂ I. By [X ]<ω and [X ]�ω

we denote the families of all finite and countable subsets of a set X , respectively. The
family [X ]<ω (respectively [X ]�ω) is a Boolean ideal on X if X is infinite (respectively
uncountable).

For a subset A ⊂ X of an ideal G-space (X, I) by

�(A) = {g ∈ G : gA ∩ A �= ∅} and �I(A) = {g ∈ G : gA ∩ A /∈ I}

we denote the difference set and I-difference set of A, respectively.
Given a Boolean ideal J on a group G and two subsets A, B ⊂ G, we shall write

A=JB if the symmetric difference A	B = (A\B) ∪ (B \ A) belongs to the ideal J.
For a non-empty subset A ⊂ G put

covJ(A) = min{|F | : F ⊂ G, FA=JG }

be the J-covering number of A. For the empty subset we put covJ(∅) = ∞ and assume
that ∞ is larger than any cardinal number.

Observe that for the left action of the group G on itself we get �(A) = AA−1 for
every subset A ⊂ G. That is why Problem 1.1 is a partial case of the following general
problem.

Problem 1.2 Is it true that for any partition X = A1 ∪ · · · ∪ An of an ideal G-space
(X, I) some cell Ai of the partition has cov(�I(Ai )) � n?

This problem has an affirmative answer for G-spaces with amenable acting group G,
see [2, Theorem 4.3]. The paper [2] gives a survey of available partial solutions of
Protasov’s Problems 1.1 and 1.2. Here we mention the following result of Banakh,
Ravsky and Slobodianiuk [3].
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764 T. Banakh, M. Frączyk

Theorem 1.3 For any partition X = A1 ∪ · · · ∪ An of an ideal G-space (X, I) some
cell Ai of the partition has

cov(�I(Ai )) � max
0<k�n

n−k∑

p=0

k p � n!

In this paper we shall give another two partial solutions to Protasov’s Problems 1.1
and 1.2.

Theorem 1.4 For any partition X = A1 ∪ · · · ∪ An of an ideal G-space (X, I) either

• cov(�I(Ai )) � n for all cells Ai or else
• covJ(�I(Ai )) < n for some cell Ai and some G-invariant ideal J �� �I(Ai ) on

G.

Corollary 1.5 For any partition X = A1 ∪· · ·∪ An of an ideal G-space (X, I) either
cov(�I(Ai )) � n for all cells Ai or else cov(�I(Ai ) ·�I(Ai )) < n for some cell Ai .

Proof ByTheorem1.4, either cov(�I(Ai )) � n for all cells Ai or else there is a cell Ai

of the partition such that covJ(�I(Ai )) < n for some G-invariant ideal J �� �I(Ai )

on X . In the first case we are done. In the second case we can find a F ⊂ G of
cardinality |F | < n such that F ·�I(Ai )=JG. It follows that for every x ∈ G the
shift x�I(Ai ) does not belong to J and hence intersects the set F ·�I(Ai ). So x ∈
F ·�I(Ai ) ·�I(Ai )

−1=F ·�I(Ai ) ·�I(Ai ) and cov(�I(Ai ) ·�I(Ai )) � |F | � n. �
For groups G (considered as G-spaces endowed with the left action of G on itself),
we can prove a bit more.

Theorem 1.6 Let G be a group and I an invariant Boolean ideal on G with [G]�ω �⊂
I. For any partition G = A1 ∪ · · · ∪ An of G either

• cov(�I(Ai )) � n for all cells Ai or else
• covJ(�I(Ai )) < n for some cell Ai and for some G-invariant Boolean ideal
J �� A−1

i on G.

Corollary 1.7 For any partitionG = A1∪· · ·∪An of a groupG either cov(Ai A
−1
i ) �

n for all cells Ai or else cov(Ai A
−1
i Ai ) < n for some cell Ai of the partition.

Proof On the group G consider the trivial ideal I = {∅}. By Theorem 1.6, either
cov(Ai A

−1
i ) � n for all cells Ai or else covJ(Ai A

−1
i ) < n for some cell Ai and some

G-invariant idealJ �� A−1
i onG. In thefirst caseweare done. In the second case, choose

a finite subset F ⊂ G of cardinality |F | < n such that the set FAi A
−1
i =JG. Since

A−1
i /∈ J, for every x ∈ G the set x A−1

i intersects FAi A
−1
i and thus x ∈ FAi A

−1
i Ai

and cov(Ai A
−1
i Ai ) � |F | < n. �

Taking into account that the ideal J appearing in Theorem 1.6 is G-invariant but not
necessarily invariant, we can ask the following question.

Problem 1.8 Is it true that for any partition G = A1 ∪ · · · ∪ An of a group G some
cell Ai of the partition has covJ(Ai A

−1
i ) � n for some invariant Boolean ideal J on

G?
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2 Minimal measures on G-spaces

Theorems 1.4 and 1.6 will be proved with help of minimal probability measures on X
and right quasi-invariant idempotent measures on G.

For a G-space X by P(X) we denote the (compact Hausdorff) space of all finitely
additive probability measures on X . The action of the group G on X extends to an
action of the convolution semigroup P(G) on P(X): for two measures μ ∈ P(G) and
ν ∈ P(X) their convolution is defined as the measure μ∗ν ∈ P(X) assigning to each
bounded function ϕ : X → R the real number

μ∗ν(ϕ) =
∫

G

∫

X
ϕ(g−1x) dν(x)dμ(g).

The convolution map ∗: P(G)×P(X) → P(X) is right-continuous in the sense
that for any fixed measure ν ∈ P(X) the right shift P(G) → P(X), μ �→ μ∗ν, is
continuous. This implies that the P(G)-orbit P(G)∗ν = {μ∗ν : μ ∈ P(G)} of ν

coincides with the closure conv(G ·ν) of the convex hull of the G-orbit G ·ν of ν in
P(X).

A measure μ ∈ P(X) will be called minimal if for any measure ν ∈ P(G)∗μ

we get P(G)∗ν = P(G)∗μ. Zorn’s Lemma combined with the compactness of the
orbits implies that the orbit P(G)∗μ of each measure μ ∈ P(X) contains a minimal
measure.

It follows from Day’s Fixed Point Theorem [8, 1.14] that for a G-space X with
amenable acting groupG each minimal measureμ on X isG-invariant, which implies
that the set conv(G ·μ) coincides with the singleton {μ}.

For an ideal G-space (X, I) let PI(X) = {μ ∈ P(X) : μ(A) = 0, A ∈ I}.
Lemma 2.1 For any ideal G-space (X, I) the set PI(X) contains some minimal prob-
ability measure.

Proof Let U be any ultrafilter on X , which contains the filter F = {F ⊂ X : X \F ∈
I}. This ultrafilter U can be identified with the 2-valued measure μU : B(X) → {0, 1}
such that μ−1

U (1) = U. It follows that μU(A) = 0 for any subset A ∈ I. In the P(G)-
orbit P(G)∗μU choose any minimal measure μ = ν∗μU and observe that for every
A ∈ I the G-invariance of the ideal I implies μ(A) = ∫

G μU(x−1A) dν(x) = 0. So,
μ ∈ PI(X). �
For a subset A of a group G put

Is12(A) = inf
μ∈P(G)

sup
y∈G

μ(Ay).

Lemma 2.2 If a subset A of a group G has Is12(A) = 1, then cov(A−1) < ω and
cov(G \ A) � ω.

Proof If cov(A−1) � ω, then for every non-empty finite subset T ⊂ G we could find
a point xT /∈ T T−1A−1 and observe that x−1

T /∈ AT T−1 and hence x−1
T T ∩ AT = ∅.
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766 T. Banakh, M. Frączyk

Then for the uniformly distributed measure μT = 1/|T | · ∑
t∈T δx−1

T t on the set x
−1
T T

we get μT (AT ) = 0. By the compactness of the space P(G), the net (μT )T∈[G]<ω

has a limit point μ∞ ∈ P(X), which means that for every set B ⊂ G, finite subset
F ⊂ G and ε > 0 there is a finite set T ⊃ F in G such that |μT (B) − μ∞(B)| < ε.
Since Is12(A) = 1, for the measure μ∞ there is a point y ∈ G such that μ∞(Ay) >

1/2. By the limit property of μ∞ there is a finite subset T � y in G such that
|μT (Ay) − μ∞(Ay)| > 1/2. Then 0 < μT (Ay) � μT (AT ) = 0, which is a desired
contradiction showing that cov(A−1) < ω.

To see that cov(G \ A) � ω, it suffices to check that G �= F(G \ A) for any finite
set F ⊂ G. Consider the uniformly distributed measure μ = 1/|F | · ∑

x∈F δx−1 on
the set F−1. Since Is12(A) = 1, for the measure μ there is a point y ∈ G such that
1 − 1/|F | < μ(Ay) = 1/|F | ·∑x∈F δx−1(Ay), which implies that μ(Ay) = 1 and
suppμ = F−1 ⊂ Ay. Then F−1y−1 ∩ (G \ A) = ∅ and y−1 /∈ F(G \ A). �
Remark 2.3 By [1, Theorem 3.8], for every subset A of a group G we get Is12(A) =
1 − is21(G \ A) where is21(B) = infμ∈Pω(G) supx∈G μ(x B) for B ⊂ G and Pω(G)

denotes the set of finitely supported probability measures on G.

For a probability measure μ ∈ P(X) on a G-space X and a subset A ⊂ X put
μ(A) = supx∈G μ(x A).

3 A density version of Theorem 1.4

In this section we shall prove the following density theorem, which will be used in the
proof of Theorem 1.4 presented in the next section.

Theorem 3.1 Let (X, I) be an ideal G-space and μ ∈ PI(X) a minimal measure
on X. If some subset A ⊂ X has μ(A) > 0, then the I-difference set �I(A) has
J-covering number covJ(�I(A)) � 1/μ(A) for some G-invariant ideal J �� �I(A)

on G.

Proof By the compactness of P(G)∗μ = conv(G ·μ), there is a measure μ′ ∈
P(G)∗μ ⊂ PI(X) such that μ′(A) = sup{ν(A) : ν ∈ P(G)∗μ} = μ(A). We
can replace the measure μ by μ′ and assume that μ(A) = μ(A). Choose a positive ε

such that

⌊
1

μ(A) − ε

⌋
=

⌊
1

μ(A)

⌋
,

where �r� = max{n ∈ Z : n � r} denotes the integer part of a real number r .
Consider the set L = {x ∈ G : μ(x A) > μ(A) − ε} and choose a maximal

subset F ⊂ L such that μ(x A ∩ yA) = 0 for any distinct points x, y ∈ F . The
additivity of the measure μ implies that 1 �

∑
x∈F μ(x A) > |F |(μ(A) − ε) and

hence |F | � �1/(μ(A) − ε)� = �1/(μ(A))� � 1/μ(A). By the maximality of F ,
for every x ∈ L there is y ∈ F such that μ(x A ∩ yA) > 0. Then x A ∩ yA /∈ I and
y−1x ∈ �I(A). It follows that x ∈ y ·�I(A) ⊂ F ·�I(A) and L ⊂ F ·�I(A).
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We claim that Is12(L) = 1. Given any measure ν ∈ P(G), consider the measure
ν−1 ∈ P(G) defined by ν−1(B) = ν(B−1) for every subset B ⊂ G. By theminimality
of μ, we can find a measure η ∈ P(G) such that η∗ν−1∗μ = μ. Then

μ(A) = μ(A) = η∗ν−1∗μ(A) =
∫

G
μ(x−1A) dη∗ν−1(x)

� (μ(A) − ε) ·η∗ν−1({x ∈ G : μ(x−1A) � μ(A) − ε
})

+ μ(A) ·η∗ν−1({x ∈ G : μ(x−1A) > μ(A) − ε
})

� (μ(A) − ε) ·(1 − η∗ν−1(L−1)
) + μ(A) ·η∗ν−1(L−1) � μ(A)

implies that η∗ν−1(L−1) = 1. It follows from

1 = η∗ν−1(L−1) =
∫

G
ν−1(y−1L−1) dη(y)

that for every δ > 0 there is a point y ∈ G such that ν(Ly) = ν−1(y−1L−1) > 1− δ.
So, Is12(L) = 1.

By Lemma 2.2, the family J = {B ⊂ G : B ⊂ E(G \L) for some E ∈ [G]<ω} is
a G-invariant ideal on G, which does not contain the set L ⊂ F ·�I(Ai ) and hence
does not contain the set �I(Ai ). It follows that covJ(�I(Ai )) � |F | � 1/μ(A). �

4 Proof of Theorem 1.4

Let X = A1 ∪· · ·∪ An be a partition of an ideal G-space (X, I). By Lemma 2.1, there
exists a minimal probability measure μ ∈ P(X) such that I ⊂ {A ∈ B(G) : μ(A) =
0}.

For every i ∈ {1, . . . , n} consider the numberμ(Ai ) = supx∈G μ(x Ai ) and observe
that

∑n
i=1 μ(Ai ) � 1. There are two cases.

Case 1. For every i ∈ {1, . . . , n}, μ(Ai ) � 1/n. In this case for every x ∈ G we get

1 =
n∑

i=1

μ(x Ai ) �
n∑

i=1

μ(Ai ) � n · 1
n

= 1

and hence μ(x Ai ) = 1/n for every i ∈ {1, . . . , n}. For every i ∈ {1, . . . , n} fix a
maximal subset Fi ⊂ G such thatμ(x Ai ∩ yAi ) = 0 for any distinct points x, y ∈ Fi .
The additivity of the measure μ implies that 1 �

∑
x∈Fi μ(x Ai ) � |Fi |/n and hence

|Fi | � n. By the maximality of Fi , for every x ∈ G there is a point y ∈ Fi such
that μ(x Ai ∩ yAi ) > 0 and hence x Ai ∩ yAi /∈ I. The G-invariance of the ideal I
implies that y−1x ∈ �I(Ai ) and so x ∈ y ·�I(Ai ) ⊂ Fi ·�I(Ai ). Finally, we get
G = Fi ·�I (Ai ) and cov(�I(Ai )) � |Fi | � n.

Case 2. For some i we get μ(Ai ) > 1/n. In this case Theorem 3.1 guarantees that
covJ(�I(Ai )) � 1/μ(Ai ) < n for some G-invariant ideal J �� �I(Ai ) on G.

123



768 T. Banakh, M. Frączyk

5 Applying idempotent quasi-invariant measures

In this section we develop a technique involving idempotent right quasi-invariant
measures, which will be used in the proof of Theorem 1.6 presented in the next
section.

A measure μ ∈ P(G) on a group G will be called right quasi-invariant if for any
y ∈ G there is a positive constant c > 0 such that c ·μ(Ay) � μ(A) for any subset
A ⊂ G.

For an ideal G-space (X, I) and a measure μ ∈ P(X) consider the set

PI(G;μ) = {
λ ∈ P(G) : λ∗δg ∗μ ∈ PI(X) for all g ∈ G

}

and observe that it is closed and convex in the compact Hausdorff space P(G).

Lemma 5.1 Let (X, I) be an ideal G-space with countable acting group G. If for
some measure μ ∈ P(X) the set PI(G;μ) is not empty, then it contains a right
quasi-invariant idempotent measure ν ∈ PI(G;μ).

Proof Choose any strictly positive function c : G → (0, 1] such that ∑g∈G c(g) = 1
and consider the σ -additive probability measure λ = ∑

g∈G c(g)δg−1 ∈ P(G). On
the compact Hausdorff space P(G) consider the right shift � : P(G) → P(G),
� : ν �→ ν∗λ.

We claim that �(PI(G;μ)) ⊂ PI(G;μ). Given any measure ν ∈ PI(G;μ), we
need to check that �(ν) = ν∗λ ∈ PI(G;μ), which means that ν∗λ∗δx ∗μ ∈ PI(X)

for all x ∈ G. It follows from ν ∈ PI(G;μ) that ν∗δg−1x ∗μ ∈ PI(X). Since the set
PI(X) is closed and convex in P(X), we get

ν∗λ∗δx ∗μ =
∑

g∈G
c(g) ·ν∗δg−1 ∗δx ∗μ =

∑

g∈G
ν∗δg−1x ∗μ ∈ PI(X).

So,�(PI(G;μ)) ⊂ PI(G;μ) and, by the Schauder Fixed Point Theorem, the continu-
ous map� on the non-empty compact convex set PI(G;μ) ⊂ P(G) has a fixed point,
which implies that the closed set S = {ν ∈ PI(G;μ) : ν∗λ = ν} is not empty. It is
easy to check that S is a subsemigroup of the convolution semigroup (P(G), ∗). Being
a compact right-topological semigroup, S contains an idempotent ν ∈ S ⊂ PI(G;μ)

according to the Ellis Theorem (see [4, Corollary 2.6] or [9, Theorem 4.1]). Since
ν∗λ = ν, for every A ⊂ G and x ∈ G we get

ν(A) = ν∗λ(A) =
∑

g∈G
c(g) ·ν∗δg−1(A) =

∑

g∈G
c(g) ·ν(Ag) � c(x) ·ν(Ax),

which means that ν is right quasi-invariant. �
Remark 5.2 Lemma 5.1 does not hold for uncountable groups, in particular for the
free group Fα with uncountable set α of generators. This group admits no right quasi-
invariant measure. Assuming conversely that some measureμ ∈ P(Fα) is right quasi-
invariant, fix a generator a ∈ α and consider the set A of all reduced words w ∈ Fα
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that end with an for some n ∈ Z\{0}. Observe that Fα = Aa∪ A and henceμ(A) > 0
or μ(Aa) > 0. Since μ is right quasi-invariant both cases imply that μ(A) > 0 and
then μ(Ab) > 0 for any generator b ∈ α\{a}. But this is impossible since the family
(Ab)b∈α \{a} is disjoint and uncountable.

In the following lemma for a measure μ ∈ P(X) we put μ(A) = supx∈G μ(x A).

Lemma 5.3 Let (X, I) be an ideal G-space and μ ∈ P(X) a measure on X such
that the set PI(G;μ) contains an idempotent right quasi-invariant measure λ. For a
subset A ⊂ X and numbers δ � ε < supx∈G λ∗μ(x A) consider the sets Mδ = {x ∈
G : μ(x A) > δ} and Lε = {x ∈ G : λ∗μ(x A) > ε}. Then:
(i) λ(gM−1

δ ) > (ε − δ)/(μ(A) − δ) for any point g ∈ Lε;
(ii) the set Mδ does not belong to theG-invariant Boolean ideal Jδ ⊂ P(G) generated

by G \Lδ;
(iii) covJδ

(�I(A)) < 1/δ.

Proof Consider the measure ν = λ∗μ and put ν(A) = supx∈G ν(x A) for a subset
A ⊂ X .
(i) Fix a point g ∈ Lε and observe that

ε < λ∗μ(gA) =
∫

G
μ(x−1gA) dλ(x)

� δ ·λ({x ∈ G : μ(x−1gA) � δ}) + μ(A) ·λ({x ∈ G : μ(x−1gA) > δ})

= δ ·(1 − λ(gM−1
δ )

) + μ(A)λ(gM−1
δ ) = δ + (μ(A) − δ)λ(gM−1

δ )

which implies λ(gM−1
δ ) > γ

def= (ε − δ)/(μ(A) − δ).

(ii) To derive a contradiction, assume that the set Mδ belongs to the G-invariant ideal
generated by G \Lδ and hence Mδ ⊂ E(G \Lδ) for some finite subset E ⊂ G. Then

Mδ ⊂ E(G \Lδ) = G \
⋂

e∈E
eLδ.

Choose an increasing number sequence (εk)
∞
k=0 such that δ � ε < ε0 and

limk→∞ εk = ν(A). For every k ∈ ω fix a point gk ∈ Lεk . The preceding item
applied to the measure ν and set Lδ (instead of μ and Mδ) yields the lower bound

λ(gk L
−1
δ ) >

εk − δ

ν(A) − δ

for every k ∈ ω. Then limk→∞ λ(gk L
−1
δ ) = 1 and hence limk→∞ λ(gk L

−1
δ g) = 1 for

every g ∈ G by the right quasi-invariance and additivity of the measure λ. Choose k
so large that λ(gk L

−1
δ g−1) > 1− γ /|E | for all g ∈ E . Then the set

⋂
g∈E gk L

−1
δ g−1

has measure > 1 − γ and hence it intersects the set gkM
−1
δ which has measure

λ(gkMδ) � γ . Consequently, the set M−1
δ intersects

⋂
g∈E L−1

δ g−1, and the set Mδ

intersects
⋂

g∈E gLδ = G \E(G \Lδ), which contradicts the choice of the set E .

123



770 T. Banakh, M. Frączyk

(iii) To show that covJδ
(�I(A)) < 1/δ, fix a maximal subset F ⊂ Lδ such that

ν(x A ∩ yA) = 0 for any distinct points x, y ∈ F . The additivity of the measure ν

guarantees that 1 �
∑

x∈F ν(x A) > |F | ·δ and hence |F | < 1/δ. On the other hand,
the maximality of F guarantees that for any x ∈ Lδ \F there is y ∈ F such that
ν(x A ∩ yA) > 0 and hence x A ∩ yA /∈ I and y−1x ∈ �I(A). Then x ∈ y ·�I(A) ⊂
F ·�I(A) and hence Lδ ⊂ F ·�I(A). The inclusion G \(F ·�I(A)) ⊂ G \Lδ ∈ Jδ

implies covJδ
(F ·�I(A)) � |F | < 1/δ. �

Corollary 5.4 Let (X, I) be an ideal G-space with countable acting group G and
μ ∈ P(X) a measure on X such that the set PI(G;μ) is not empty. For any partition
X = A1 ∪ · · · ∪ An of X either:

(i) cov(�I(Ai )) � n for all cells Ai or else
(ii) covJ(�I(Ai )) < n for some cell Ai and some G-invariant Boolean ideal J ⊂

P(G) such that {x ∈ G : μ(x A) > 1/n} /∈ J.

Proof By Lemma 5.1, the set PI(G;μ) contains an idempotent right quasi-invariant
measure λ. Then for the measure ν = λ∗μ ∈ PI(X) two cases are possible:

(i) Every cell Ai of the partition has ν(Ai ) = supx∈G ν(x Ai ) � 1/n. In this case we
can proceed as in the proof of Theorem 1.4 and prove that cov(�I(Ai )) � n for all
cells Ai of the partition.

(ii) Some cell Ai of the partition has ν(Ai ) > 1/n. In this case Lemma 5.3 guarantees
that covJ(�I(Ai )) < n for the G-invariant Boolean ideal J ⊂ P(G) generated by the
set {x ∈ G : ν(x Ai ) � 1/n}, and the set M = {x ∈ G : μ(x Ai ) > 1/n} does not
belong to the ideal J. �
Next, we extend Corollary 5.4 to G-spaces with arbitrary (not necessarily countable)
acting groupG. Given aG-space X , denote byH the family of all countable subgroups
of the acting group G. A subfamily F ⊂ H will be called

• closed if for each increasing sequence of countable subgroups {Hn}n∈ω ⊂ F the
union

⋃
n∈ω Hn belongs to F;

• dominating if each countable subgroup H ∈ H is contained in some subgroup
H ′ ∈ F;

• stationary if F ∩ C �= ∅ for every closed dominating subset C ⊂ H.

It is known (see [6, 4.3]) that the intersection
⋂

n∈ω Cn of any countable family of
closed dominating sets Cn ⊂ H, n ∈ ω, is closed and dominating in H.

For a measure μ ∈ P(X) and a subgroup H ∈ H let

PI(H ;μ) = {
λ ∈ P(H) : λ∗δx ∗μ ∈ PI(X) for all x ∈ H

}
.

Theorem 5.5 Let (X, I) be an ideal G-space and μ ∈ P(X) a measure on X such
that the set HI = {H ∈ H : PI(H ;μ) �= ∅} is stationary in H. For any partition
X = A1 ∪ · · · ∪ An of X either:

(i) cov(�I(Ai )) � n for all cells Ai or else
(ii) covJ(�I(Ai )) < n for some cell Ai and some G-invariant Boolean ideal J ⊂

P(G) such that {x ∈ G : μ(x Ai ) > 1/n} /∈ J.

123



The covering number of the difference sets... 771

Proof LetH∀ = {H ∈ HI : cov(H∩�I(Ai )) � n for all i � n} andH∃ = HI\H∀.
It follows that for every H ∈ H∀ and i ∈ {1, . . . , n} we can find a subset fi (H) ⊂ H
of cardinality | fi (H)| � n such that H ⊂ fi (H) ·�I(Ai ). The assignment fi : H �→
fi (H) determines a function fi : H∀ → [G]<ω to the family of all finite subsets of
G. The function fi is regressive in the sense that fi (H) ⊂ H for every subgroup
H ∈ H∀.

By Corollary 5.4, for every subgroup H ∈ H∃, there are an index iH ∈ {1, . . . , n}
and a finite subset f (H) ⊂ H of cardinality | f (H)| < n such that the set JH =
H \(

f (H) ·(H ∩ �I(AiH ))
)
generates the H -invariant ideal JH ⊂ P(H) which does

not contain the set MH = {x ∈ H : μ(x AiH ) > 1/n}.
SinceHI = H∀ ∪H∃ is stationary inH, one of the setsH∀ orH∃ is stationary in

H.
If the set H∀ is stationary in H, then by Jech’s generalization [5], [6, 4.4] of

Fodor’s Lemma, the stationary set H∀ contains another stationary subset S ⊂ H∀
such that for every i ∈ {1, . . . , n} the restriction fi |S is a constant function and hence
fi (S) = {Fi } for some finite set Fi ⊂ G of cardinality |Fi | � n. We claim that
G = Fi ·�I(Ai ). Indeed, given any element g ∈ G, by the stationarity of S there is a
subgroup H ⊂ S such that g ∈ H . Then g ∈ H ⊂ fi (H) ·�I(Ai ) = Fi ·�I(Ai ) and
hence cov(�I(Ai )) � |Fi | � n for all i .

Now assume that the family H∃ is stationary in H. In this case for some i ∈
{1, . . . , n} the set Hi = {H ∈ H∃ : iH = i} is stationary in H∃. Since the func-
tion f : H∃ → [G]<ω is regressive, by Jech’s generalization [5], [6, 4.4] of Fodor’s
Lemma, the stationary set Hi contains another stationary subset S ⊂ Hi such that
the restriction f |S is a constant function and hence f (S) = {F} for some finite set
F ⊂ G of cardinality |F | < n. We claim that the set J = G \(F ·�I(Ai )) generates
a G-invariant ideal J, which does not contain the set M = {x ∈ G : μ(x Ai ) > 1/n}.
Assume conversely that M ∈ J and hence M ⊂ E J for some finite subset E ⊂ G. By
the stationarity of the set S, there is a subgroup H ∈ S such that E ⊂ H . It follows
H ∩ J = H \(

F ·(H ∩ �I(Ai ))
) = H \(

f (H) ·(H ∩ �I(AiH ))
) = JH and

MH =
{
x ∈ H : μ(x Ai ) >

1

n

}
= H ∩ M ⊂ H ∩ E J = E JH ∈ JH ,

which contradicts the choice of the ideal JH . �

6 Proof of Theorem 1.6

Theorem 1.6 is a simple corollary of Theorem 5.5. Indeed, assume thatG = A1∪· · ·∪
An is a partition of a group and I ⊂ P(G) is an invariant ideal on G which does not
contain some countable subset and hence does not contain some countable subgroup
H0 ⊂ G. LetH be the family of all countable subgroups ofG andμ = δ1 be the Dirac
measure supported by the unit 1G of the group G. We claim that for every subgroup
H ∈ H containing H0 the set PI(H ;μ) is not empty. It follows from H0 /∈ I that the
family IH = {H ∩ A : A ∈ I} is an invariant Boolean ideal on the group H . Then
the family {H \ A : A ∈ I} is a filter on H , which can be enlarged to an ultrafilter
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UH . The ultrafilterUH determines a 2-valued measure μH : P(H) → {0, 1} such that
μ−1
H (1) = UH . By the right invariance of the ideal I, for every A ∈ I and x ∈ H we

get μH ∗δx ∗μ(A) = μH (Ax) = 0, which means that μH ∈ PI(H ;μ). So, the set
HI = {H ∈ H : PI(H ;μ) �= ∅} ⊃ {H ∈ H : H ⊃ H0} is stationary inH.

Then, by Theorem 5.5, either

• cov(�I(Ai )) � n for all cells Ai or else
• covJ(�I(Ai )) < n for some cell Ai and someG-invariant Boolean ideal J ⊂ P(G)

such that A−1
i = {x ∈ G : δ1(x Ai ) > 1/n} /∈ J.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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