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Abstract Let k be any field of characteristic zero, X a smooth cubic surface in P
3
k
and

G a group acting on X . We show that if X (k) �= ∅ and G is not trivial and not a group
of order 3 acting in a special way then the quotient surface X/G is rational over k.
For the group G of order 3 we construct examples of both rational and nonrational
quotients of both rational and nonrational G-minimal cubic surfaces over k.
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1 Introduction

Let k be any field of characteristic zero. If k is algebraically closed then any quotient of
a rational surface by an action of a finite group is rational by Castelnuovo’s criterion.
For del Pezzo surfaces of degree 4 and higher the following theorem holds.
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334 A. Trepalin

Theorem 1.1 ([6, Theorem 1.1]) Let k be a field of characteristic zero, X a del Pezzo
surface over k such that X (k) �= ∅ and G a finite subgroup of automorphisms of X.
If K 2

X � 5 then the quotient variety X/G is k-rational. If K 2
X = 4 and the order of G

is not equal to 1, 2 or 4 then X/G is k-rational.

Moreover we have the following corollary.

Corollary 1.2 ([6, Corollary 1.2]) Let k be a field of characteristic zero, X a smooth
rational surface over k such that X (k) �= ∅ and G a finite subgroup of automorphisms
of X. If K 2

X � 5 then the quotient variety X/G is k-rational.

In this paper we find for which finite groups a quotient of cubic surface is k-rational
and for which is not. The main result of this paper is the following.

Theorem 1.3 Let k be a field of characteristic zero, X a del Pezzo surface over k of
degree 3 such that X (k) �= ∅ and G a subgroup of Autk(X). Suppose that G is not
trivial and G is not a group of order 3 having no curves of fixed points. Then X/G is
k-rational.

Note that if G is trivial and X is minimal then X is not k-rational (see [5, Theo-
rem V.1.1]). This gives us an example of a del Pezzo surface of degree 3 such that its
quotient by the trivial group is not k-rational. For a group G of order 3 acting without
curves of fixed points on X we construct examples of quotients of G-minimal cubic
surface X such that X is k-rational and X/G is k-rational, X is k-rational and X/G is
not k-rational, X is not k-rational and X/G is k-rational, and X is not k-rational and
X/G is not k-rational.

To prove Theorem 1.3 we consider possibilities for groups G acting on X . Our
main method is to find a normal subgroup N in G such that the quotient X/N is G/N -
birationally equivalent to a smooth rational surface of degree 5 or more. Therefore
k-rationality of X/G is equivalent to k-rationality of the quotient of the obtained
surface by the group G/N and we can use Corollary 1.2.

The plan of this paper is as follows. In Sect. 2 we recall some facts about minimal
rational surfaces, groups, singularities and quotients. In Sect. 3 we consider quotients
of cubic surfaces by nontrivial groups of automorphisms and show that all of them
except a case are always k-rational.

In the rest of paper we consider the remaining case of a groupG of order 3 acting on
a G-minimal surface X without curves of fixed points and construct explicit examples
of four possible combinations of k-rationality and non-k-rationality of X and X/G.
To do this we need to find some conditions on the image of the Galois group Gal(k/k)

in the Weyl group W(E6) and then find geometric interpretation of the action of the
Galois group Gal(k/k) on X . Thus Sects. 4 and 5 consist of complicated computations
which are required to construct explicit examples in Sect. 6.

In Sect. 4 for non-k-rational quotients of a k-rational cubic surfaces X by a group of
order 3 we find all possibilities of the image of the Galois group Gal(k/k) in the Weyl
groupW(E6) acting on the Picard group of X . In Sect. 5 we find an explicit geometric
interpretation of the obtained actions of the Galois group in terms of equations of X . In
Sect. 6 for a group G of order 3 acting on aG-minimal cubic surface X without curves
of fixed points we construct examples of k-rational and non-k-rational quotients.
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Quotients of cubic surfaces 335

Notation Throughout this paper k is any field of characteristic zero, k is its alge-
braic closure. For a surface X we denote X⊗k by X . For a surface X we denote
the Picard group (respectively G-invariant Picard group) by Pic(X) (respectively
Pic(X)G ). The number ρ(X) = rk Pic(X) (respectively ρ(X)G = rk Pic(X)G ) is
the Picard number (respectively G-invariant Picard number) of X . If two surfaces X
and Y are k-birationally equivalent then we write X ≈ Y . If two divisors A and B are
linearly equivalent then we write A ∼ B.

2 Preliminaries

2.1 G-minimal rational surfaces

In this subsection we reviewmain notions and results ofG-equivariant minimal model
program following the papers [1,2,4]. Throughout this subsection G is a finite group.

Definition 2.1 A rational variety X is a variety over k such that X = X⊗k is bira-
tionally equivalent to P

n
k
. A k-rational variety X is a variety over k such that X is

birationally equivalent to P
n
k
. A variety X over k is a k-unirational variety if there

exists a k-rational variety Y and a dominant rational map ϕ : Y ��� X .

Definition 2.2 A G-surface is a pair (X,G) where X is a projective surface over k

andG is a finite subgroup ofAutk(X). AmorphismofG-surfaces f : X → X ′ is called
a G-morphism if for each g ∈ G one has f g = g f . A smooth G-surface (X,G) is
calledG-minimal if any birationalmorphismof smoothG-surfaces (X,G) → (X ′,G)

is an isomorphism. Let (X,G) be a smooth G-surface. A G-minimal surface (Y,G) is
called aminimal model of (X,G) or G-minimal model of X if there exists a birational
G-morphism X → Y .

The following theorem is a classical result about G-equivariant minimal model pro-
gram.

Theorem 2.3 Any birational G-morphism of smooth G-surfaces f : X → Y can be
factorized in the following way:

X = X0
f0−→ X1

f1−→ · · · fn−2−−−→ Xn−1
fn−1−−−→ Xn = Y,

where each fi is a contraction of a set �i of disjoint (−1)-curves on Xi such that �i

is defined over k and G-invariant. In particular,

K 2
Y − K 2

X � ρ(X)G − ρ(Y )G .

The classification ofG-minimal rational surfaces is well known due to Iskovskikh and
Manin (see [2,4]). We introduce some important notions before surveying it.

Definition 2.4 A smooth rational G-surface (X,G) admits a conic bundle structure
if there exists a G-morphism ϕ : X → B such that any scheme fibre is isomorphic to
a reduced conic in P

2
k
and B is a smooth curve.
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336 A. Trepalin

Definition 2.5 A del Pezzo surface is a smooth projective surface X such that the anti-
canonical divisor −KX is ample. A singular del Pezzo surface is a normal projective
surface X such that the anticanonical divisor −KX is ample and all singularities of
X are du Val singularities. A weak del Pezzo surface is a smooth projective surface X
such that the anticanonical divisor −KX is nef and big. The number d = K 2

X is called
the degree of a (singular) del Pezzo surface X .

A del Pezzo surface X of degree 3 is isomorphic to a smooth cubic surface in P
3
k
. The

following theorem classifies G-minimal rational surfaces.

Theorem 2.6 ([2, Theorem 1]) Let X be a G-minimal rational G-surface. Then either
X admits a G-equivariant conic bundle structure with Pic(X)G ∼= Z

2, or X is a del
Pezzo surface with Pic(X)G ∼= Z.

Theorem 2.7 (cf. [2, Theorem 4]) Let X admit a G-equivariant conic bundle struc-
ture. Suppose that K 2

X = 3, 5, 6 or X is a blowup of P
2
k
at a point. Then X is not

G-minimal.

The following theorem is an important criterion of k-rationality over an arbitrary
perfect field k.

Theorem 2.8 ([3, Chapter 4]) A minimal rational surface X over a perfect field k is
k-rational if and only if the following two conditions are satisfied:

(i) X (k) �= ∅;
(ii) K 2

X � 5.

Corollary 2.9 Let X be a smooth rational G-surface such that X (k) �= ∅ and
ρ(X)G + K 2

X � 7. Then there exists a G-minimal model Y of X such that K 2
Y � 6. In

particular, X is k-rational.

Proof By Theorem 2.6, there exists a birational G-morphism f : X → Z such that
ρ(Z)G � 2. By Theorem 2.3, one has

K 2
Z � K 2

X + ρ(X)G − ρ(Z)G � 7 − ρ(Z)G .

If ρ(Z)G = 1 then K 2
Z � 6. If ρ(Z)G = 2 and K 2

Z = 5 then Z is not G-minimal, by
Theorem 2.7. Therefore there exists a G-minimal model Y of Z such that K 2

Y � 6.
The set X (k) is not empty. Thus Y (k) �= ∅ and X ≈ Y is k-rational, by Theo-

rem 2.8. 	

In this paper we use the notation of the following remark.

Remark 2.10 Let X be a smooth cubic surface in P
3
k
. Then X can be realized as a

blowup f : X → P
2
k
at six points p1, . . . , p6 in general position. Put Ei = f −1(pi )

and L = f ∗(l), where l is the class of a line on P
2
k
. One has

−KX ∼ 3L −
6∑

i=1

Ei .
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Quotients of cubic surfaces 337

The (−1)-curves on X are Ei , the proper transforms Li j ∼ L − Ei − E j of the lines
passing through a pair of points pi and p j , and the proper transforms

Q j ∼ 2L + E j −
6∑

i=1

Ei

of the conics passing through five points from the set {p1, p2, p3, p4, p5, p6}.
In this notation one has

Ei ·E j = 0, Ei ·Li j = 1, Ei ·L jk = 0,

Li j ·Lik = 0, Li j ·Lkl = 1, Ei ·Qi = 0, Ei ·Q j = 1,

Qi ·Q j = 0, Qi ·Li j = 1, Qi ·L jk = 0,

where i, j and k are different numbers from the set {1, 2, 3, 4, 5, 6}.

2.2 Groups

In this subsection we collect some results and notation concerning groups used in this
paper. We use the following notation:

• Cn denotes the cyclic group of order n;
• D2n denotes the dihedral group of order 2n;
• Sn denotes the symmetric group of degree n;
• An denotes the alternating group of degree n;
• (i1i2 . . . i j ) denotes a cyclic permutation of i1, . . . , i j ;
• V4 denotes the Klein group isomorphic to C2

2;• 〈g1, . . . , gn〉 denotes a group generated by g1, . . . , gn ;
• diag(a1, . . . , an) denotes the diagonal n×n matrix with entries a1, . . . , an ;
• i = √−1;
• ξn = e2π i/n ;
• ω = ξ3 = e2π i/3.

The groupS5 can act on a cubic surface. Therefore it is important to know some facts
about subgroups of this group. The following lemma is an easy exercise.

Lemma 2.11 Any nontrivial subgroup G ⊂ S5 contains a normal subgroup N con-
jugate in S5 to one of the following groups:

• C2 ∼= 〈(12)〉;
• C2 ∼= 〈(12)(34)〉;
• C3 ∼= 〈(123)〉;
• V4 ∼= 〈(12)(34), (13)(24)〉;
• C5 ∼= 〈(12345)〉;
• A5.
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338 A. Trepalin

2.3 Singularities

In this subsection we review some results about quotient singularities and their
resolutions. All singularities appearing in this paper are toric singularities. These
singularities are locally isomorphic to the quotient of A

2 by a cyclic group generated
by diag(ξm, ξ

q
m). Such a singularity is denoted by 1/m ·(1, q). If gcd(m, q) > 1 then

the group

Cm ∼= 〈diag(ξm, ξ
q
m)〉

contains a reflection and the quotient singularity is isomorphic to a quotient singularity
with smaller m.

A toric singularity can be resolved by a sequence of weighted blowups. Therefore
it is easy to describe numerical properties of a quotient singularity. We list here these
properties for singularities appearing in our paper.

Remark 2.12 Let the groupCm act on a smooth surface X and f : X → S be a quotient
map. Let p be a singular point on S of type 1/m ·(1, q). LetC and D be curves passing
through p such that f −1(C) and f −1(D) areCm-invariant and tangent vectors of these
curves at the point f −1(p) are eigenvectors of the natural action of Cm on T f −1(p)X
(the curve C corresponds to the eigenvalue ξm and the curve D corresponds to the
eigenvalue ξ

q
m).

Let π : S̃ → S be the minimal resolution of the singular point p. Table 1 presents
some numerical properties of S̃ and S for the singularities appearing in this paper.

The exceptional divisor of π is a chain of transversally intersecting exceptional
curves Ei whose selfintersection numbers are listed in the last column of Table 1. The
curves π−1∗ (C) and π−1∗ (D) transversally intersect at a point only the first and the last
of these curves respectively and do not intersect other components of the exceptional
divisor of π .

2.4 Quotients

In this subsection we collect some additional information about quotients of rational
surfaces. We use the following definition for convenience.

Definition 2.13 Let X be a G-surface (respectively surface), X̃ → X be its minimal
resolution of singularities, and Y be aG-minimal model (respectively minimal model)
of X̃ . We call the surface Y a G-MMP-reduction (respectivelyMMP-reduction) of X .

Table 1 Resolutions of singularities

m q K 2
S̃

− K 2
S π−1∗ (C)2 − C2 π−1∗ (D)2 − D2 E2

i

2 1 0 −1/2 −1/2 −2

3 1 −1/3 −1/3 −1/3 −3

3 2 0 −2/3 −2/3 −2, −2

5 2 −2/5 −2/5 −3/5 −3, −2
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Table 2 Elements of prime order acting on a cubic surface

Type Order Equation Action

1 2 x3 + y3 + z3 + αxyz + t2(ux + vy + wz) = 0 (x : y : z :−t)

2 2 x3 + y3 + xz(z + αt) + yt (z + βt) = 0 (x : y :−z :−t)

3 3 x3 + y3 + z3 + αxyz + t3 = 0 (x : y : z :ωt)
4 3 x3 + y3 + z3 + t3 = 0 (x : y :ωz :ωt)
5 3 x3 + y3 + zt (ux + vy) + z3 + t3 = 0 (x : y :ωz :ω2t)

6 5 x2y + y2z + z2t + t2x = 0 (x :ξ5y :ξ45 z :ξ35 t)

We need some results about quotients of del Pezzo surfaces of degree 4.

Lemma 2.14 ([6, Remark 6.2]) Let a finite group G act on a del Pezzo surface X of
degree 4 and N ∼= C2 be a normal subgroup in G such that N has no curves of fixed
points. Then the surface X/N is G/N-birationally equivalent to a conic bundle Y
with K 2

Y = 2. If there exists a G×Gal(k/k)-fixed point then Y is not G/N-minimal
and there exists a G/N-MMP-reduction Z of Y such that K 2

Z = 8.

3 del Pezzo surface of degree 3

In this section we prove Theorem 1.3. We start from cyclic groups of prime order. The
following theorem classifies actions of cyclic groups of prime order on smooth cubics.

Theorem 3.1 (cf. [1, Theorem 6.10]) Let a group Cp of prime order p act on a del
Pezzo surface of degree 3. Then one can choose homogeneous coordinates x, y, z, t
in P

3
k
such that the equation of X and the action of Cp are presented in Table 2, where

u, v, w, α and β are coefficients. These actions have different sets of fixed points on X
and correspond to different conjugacy classes of cyclic subgroups in the Weyl group
W(E6) acting on Pic(X).

Note that elements of type 3 and 4 of Table 2 have curves of fixed points t = 0 and
x = y = 0 respectively. Therefore an element of order 3 having no curves of fixed
points is of type 5 of Table 2. In the latter case the following lemma holds.

Lemma 3.2 Let a finite group G act on a del Pezzo surface X of degree 3 and N ∼= C3
be a normal subgroup in G such that N acts as in type 5 of Table 2. Then the surface
X/N is G/N-birationally equivalent to a del Pezzo surface of degree 3.

Proof Let X be given by the equation

x3 + y3 + zt (ux + vy) + z3 + t3 = 0

in P
3
k
and N act as

(x : y : z : t) �→ (x : y :ωz :ω2t).
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340 A. Trepalin

The fixed points of N lie on the line z = t = 0. Thus N has three fixed points q1, q2
and q3. One can easily check that on the tangent spaces of X at these points N acts
as 〈diag(ω, ω2)〉. Denote by C1 and C2 invariant curves z = 0 and t = 0 each passing
through the three points qi .

Let f : X → X/N be the quotient morphism and

π : X̃/N → X/N

theminimal resolution of singularities. The curves f (C1) and f (C2)meet each other at
the three singular points of X/N and f (C1) · f (C2) = 1. Thus two curves π−1∗ f (C j )

are disjoint. Moreover (see Table 1), one has

π−1∗ f (C j )
2 = f (C j )

2 − 3 · 2
3

= 1

3
C2

j − 2 = −1.

Therefore we can G/N -equivariantly contract the two (−1)-curves π−1∗ f (C j ) and
get a surface Y with K 2

Y = 3.
The surface X/N has only du Val singularities. Therefore X/N is a singular del

Pezzo surface and X̃/N is a weak del Pezzo surface containing exactly six curves
π−1(qi ) whose selfintersection is less than −1. Thus Y does not contain curves with
selfintersection less than −1. So Y is a del Pezzo surface of degree 3. 	


Remark 3.3 Note that in the notation of Lemma 3.2 there are two points on the surface
Y where three (−1)-curves meet each other. These points are images of π−1∗ f (C j ).
Such a point is called an Eckardt point (see Definition 5.1 below).

Remark 3.4 Note that in the notation of Lemma 3.2 if ρ(X)G > 1 then X is not G-
minimal by Theorem 2.7. Therefore the quotient of X/N is equivalent to a quotient of
a del Pezzo surface with degree greater than 3 by a group of order 3. By Theorem 1.1
such a quotient is k-rational.

In Sect. 4 for non-k-rational quotient X/C3 of k-rational surface X we find restrictions
on the image of the Galois group Gal(k/k) in the Weyl group W(E6) which acts
on Pic(X). Now we show that in all other cases of Theorem 1.3 the quotient of X is
k-rational.

Lemma 3.5 Let a finite group G act on a del Pezzo surface X of degree 3 and N ∼= Cp

be a normal cyclic subgroup of prime order in G such that N acts not as in type 5 of
Table 2. Then there exists a G/N-MMP-reduction Y of X/N such that K 2

Y � 5.

Proof Let us consider the possibilities case by case. In types 1 and 3 of Table 2 the
group N has a pointwisely fixed hyperplane section t = 0. In type 3 there are no other
fixed points and in type 1 there is only one other fixed point (0 : 0 : 0 : 1). By the
Hurwitz formula we have
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Quotients of cubic surfaces 341

K 2
X/N = 1

ord N

⎛

⎜⎜⎝KX −
∑

g∈N
g �=id

Rg

⎞

⎟⎟⎠

2

,

where Rg is the ramification divisor of an element g. In the both cases for nontrivial
elements of the group N the ramification divisor is a hyperplane section and it is equal
to −KX . Therefore one has

K 2
X/C2

= 1

2
(KX + KX )2 = 1

2
(2KX )2 = 6,

K 2
X/C3

= 1

3
(KX + 2KX )2 = 1

3
(3KX )2 = 9

in types 1 and 3 respectively. The surface X/N has at most du Val singularities.
Therefore for the minimal resolution of singularities X̃/N → X/N one has K 2

X̃/N
=

K 2
X/N . Thus for any G/N -MMP-reduction Y of X/N one has K 2

Y � 6.
In type 2 of Table 2 the group C2 fixes pointwisely the lines x = y = 0 and

z = t = 0. The line z = t = 0 intersects X at three C2-fixed points and the line
x = y = 0 is contained in X . This line is definedoverk since it is unique. Therefore this
line and can be G-equivariantly contracted. So the quotient X/N is G/N -birationally
equivalent to the quotient of del Pezzo surface of degree 4 by a group of order 2 having
four fixed points one of which is G×Gal(k/k)-fixed. By Lemma 2.14, there exists a
G/N -MMP-reduction Y of the latter quotient such that K 2

Y = 8.
In type 4 of Table 2 the group C3 fixes pointwisely the lines x = y = 0 and

z = t = 0. These lines intersect X given by

x3 + y3 + z3 + t3 = 0

at points p1, p2, p3 and q1, q2, q3 respectively. LetCi j be a line in P
3
k
passing through

pi and q j . Assume that Ci j does not lie in X . For some integer a the involution

(x : y : z : t) �→ (ω2az : t :ωax : y)

permutes points pi and q j , thus the line Ci j is invariant under the action of this
involution. Therefore the line Ci j cannot be tangent to X at any of the points pi and
q j . Then the third point of intersection of Ci j with X is C3-fixed. Thus there are three
C3-fixed points on Ci j but this contradicts the fact that the action of C3 is faithful on
Ci j . So Ci j lies in X and C2

i j = −1.

Let f : X → X/N be the quotient morphism and π : X̃/N → X/N the minimal
resolution of singularities. Then f (pi ) and f (q j ) are singularities of type 1/3 ·(1, 1).
Thus π−1∗ f (Ci j ) are nine disjoint (−1)-curves (see Table 1). We can contract these
curves and get a surface Y . One has
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342 A. Trepalin

K 2
Y = K 2

X̃/N
+ 9 = K 2

X/N + 9 − 6 · 1
3

= 1

3
K 2

X + 7 = 8.

In type 6 of Table 2 the group C5 has two invariant lines x = z = 0 and y = t = 0
lying in X given by the equation

x2y + y2z + z2t + t2x = 0.

One can G-equivariantly contract this pair and get a del Pezzo surface of degree 5. So
the quotient X/N is G/N -birationally equivalent to the quotient of del Pezzo surface
of degree 5 by a group of order 5. By Theorem 1.1, this quotient is k-rational so it is
G/N -birationally equivalent to a surface Y such that K 2

Y � 5. 	

Corollary 3.6 Let a finite group G of order 6 act on a del Pezzo surface X of degree
3. Then the surface X/G is birationally equivalent to a surface Y such that K 2

Y � 5.

Proof Let N ⊂ G be the subgroup of order 3. Then, by Lemmas 3.2 and 3.5, the
quotient X/N is G/N -birationally equivalent to a surface Z such that either K 2

Z � 5
or Z is a del Pezzo surface of degree 3. There exists an MMP-reduction Y of X/G ≈
Z/(G/N ) such that K 2

Y � 5, by Theorem 1.1 and Lemma 3.5 respectively. 	


Remark 3.7 Note that for an element g of type 3 of Table 2 the quotient X/〈g〉 is
isomorphic to P

2
k
. Therefore one has

ρ(X)〈g〉 = ρ(P2
k
) = 1.

To prove Theorem 1.3 we need to list all possible automorphism groups of cubic
surfaces.

Theorem 3.8 (cf. [1, Section 6.5, Table 4]) Let X be a del Pezzo surface of degree 3.
Then one can choose homogeneous coordinates x, y, z, t in P

3
k
such that the equation

of X and the full automorphism group Aut(X) are presented in Table 3, where u, v

and α are coefficients, and H3(3) is a group generated by the transformation

(x : y : z : t) �→ (x :ωy :ω2z : t)

and a cyclic permutation of x, y and z.

In the paper [1] there is one more column in this table which contains conditions on
the parameters. But we are interested only in the structure of the group and its action
on P

3
k
so we omit this column.

Lemma 3.9 Let a finite group G act on a del Pezzo surface X of degree 3 and N ∼= V4
be a normal subgroup in G such that nontrivial elements of N act as in type 2 ofTable 2.
Then there exists a G/N-MMP-reduction Y of X/N such that K 2

Y = 6.
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Quotients of cubic surfaces 343

Table 3 Automorphisms
groups of cubic surfaces

Type Group Equation

I C33�S4 x3 + y3 + z3 + t3 = 0

II S5 x2y + y2z + z2t + t2x = 0

III H3(3)�C4 x3 + y3 + z3 + αxyz + t3 = 0

IV H3(3)�C2 x3 + y3 + z3 + αxyz + t3 = 0

V S4 t (x2 + y2 + z2) + αxyz + t3 = 0

VI S3×C2 x3 + y3 + αzt (x + y) + z3 + t3 = 0

VII C8 x3 + xy2 + yz2 + zt2 = 0

VIII S3 x3 + y3 + zt (ux + vy) + z3 + t3 = 0

IX C4 x3 + αy3 + xy2 + yz2 + zt2 = 0

X C22 x3 + y3 + z3 + αxyz + t2(x + y + uz) = 0

XI C2 x3 + y3 + z3 + αxyz + t2(x + uy + vz) = 0

Proof One can choose coordinates in P
3
k
in which X is given by the equation

t (x2 + y2 + z2) + αxyz + t3 = 0

and nontrivial elements of V4 switch signs of t and one other variable. The set of
points fixed by nontrivial elements of group V4 consists of three pointwisely fixed
lines

x = t = 0, y = t = 0, z = t = 0

lying in X and six isolated fixed points (1 :0 :0 :±i), (0 :1 :0 :±i) and (0 :0 :1 :±i).
Thus the quotient X/N is a singular del Pezzo surface with three A1 singularities. By
the Hurwitz formula,

K 2
X/N = 1

4
(2KX )2 = 3.

Let q1, q2 and q3 be singular points of X/N . Consider the anticanonical embedding

X/N ↪→ P
3
k
.

Denote byCi j a line in P
3
k
passing through qi and q j . Such a line contains two singular

points on the surface X/N of degree 3, therefore all lines Ci j lie in X/N . Moreover,
one has

KX/N ·Ci j = −1.

Thus we can resolve the singularities of X/N , then G/N -equivariantly contract the
proper transforms of Ci j and get a surface Y with K 2

Y = 6. 	
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Lemma 3.10 Let a finite group G act on a del Pezzo surface X of degree 3 and
N ∼= A5 be a normal subgroup in G. Then there exists a G/N-MMP-reduction Y of
X/N such that K 2

Y � 6.

Proof From Theorem 3.8, one can see that there is a unique cubic surface X with A5
action on it. This cubic surface is called the Clebsch cubic. It is well known that the
Clebsch cubic is isomorphic to the A5-equivariant blowup at six points on P

2
k
. For

convenience of the reader we remind this construction.
Consider the group A5 acting on P

2
k
. By a direct computation one can show that

each element g of A5 is a composition of two elements h1 and h2 of order two. Any
element of order 2 in PGL3(k) has a line of fixed points. Thus each element g of
A5 has an isolated fixed point p which is the intersection point of the lines fixed by
elements h1 and h2. The stabilizer group Np of p acts on the tangent space of P

2
k
at

p. Therefore Np is a subgroup in A5 and GL2(k). Thus this is isomorphic to C2
2,S3

or D10 if ord g is 2, 3 or 5 respectively. The images of these groups in GL2(k) are
generated by reflections.

Consider such a point p for an element g of order 5. The stabilizer Np of p is
isomorphic toD10 and g acts in the tangent space of P

2
k
at p as diag(ξ5, ξ45 ). One can

easily check that the action of g in the tangent spaces of the two other fixed points is
conjugate to diag(ξ5, ξ25 ).

The group A5 contains six subgroups isomorphic to C5. Let p1, . . . , p6 be fixed
points of these subgroups whose stabilizers are isomorphic to D10. Consider an A5-
equivariant blowup σ : X → P

2
k
of the points p1, . . . , p6. The surface X is a del Pezzo

surface of degree 3.
We use the notation of Remark 2.10. Let g2, g3 and g5 be elements in A5 of order

2, 3 and 5 respectively.
The stabilizer of any point pi in A5 is isomorphic to D10. Therefore there are five

lines passing through the point pi that are pointwisely fixed by an element of order 2
in A5. But in A5 there are only 15 elements of order 2. Thus each element of order
2 fixes pointwisely a line passing through a pair of points pi and p j on P

2
k
and fixes

pointwisely a (−1)-curve Li j on X . By the Lefschetz fixed-point formula, the element
g2 has three isolated fixed points. Two of them are Ei ∩ Q j and Qi ∩ E j and the third
is the preimage of the isolated fixed point p of g2 on P

2
k
. In the tangent space of X at

p the stabilizer group Np of p acts as C2
2 generated by reflections.

An element g3 does not have any invariant (−1)-curve. Therefore it cannot have
curves of fixed points. Thus the action of g3 on P

2
k
is conjugate to diag(1, ω, ω2).

Hence on the surface X the element g3 has three isolated points and acts in the tangent
spaces of P

2
k
at these points as diag(ω, ω2). These points cannot be points of the

blowup since the stabilizer of any point pi in A5 isD10. Therefore there are three g3-
fixed points on X and in the tangent spaces of X at these points as diag(ω, ω2). Two
of these points do not lie on (−1)-curves and the third one is a point of intersection of
three (−1)-curves.

An element g5 has three fixed points onP
2
k
: namely pk for some k ∈ {1, 2, 3, 4, 5, 6}

and two points in whose tangent space the action of g5 is conjugate to diag(ξ5, ξ25 ). The
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(−1)-curve Qk is g5-invariant thus the quadric σ(Qk) passes through two g5-fixed
points different from pk . Therefore the element g5 has four fixed points on X , two
of them lie on Ek and two on Qk . The element g5 acts in the tangent spaces of X at
g5-fixed points as diag(ξ5, ξ25 ).

Let f : X → X/N be the quotient morphism, π : X̃/N → X/N the minimal
resolution of singularities, and put E = f (Ei ), Q = f (Q j ). There are four singular
points on X/N : two singular points of type 1/5 ·(1, 2) lie on the curves E and Q
respectively, one singular point of type A1 is the intersection point E ∩ Q and one
singular point of type A2 lies neither on E nor on Q. We have (see Table 1)

K 2
X̃/N

= K 2
X/N − 4

5
= 1

60
(6KX )2 − 4

5
= 1,

ρ(X̃/N )G/N � ρ(X/N )G/N + 4 = ρ(X)G + 4 � 5,

π−1∗ (E)2 = E2 − 1

2
− 2

5
= 1

60

( 6∑

i=1

Ei

)2

− 9

10
= −1,

π−1∗ (Q)2 = Q2 − 1

2
− 2

5
= 1

60

( 6∑

i=1

Qi

)2

− 9

10
= −1.

Thus we can G/N -equivariantly contract curves π−1∗ (E) and π−1∗ (Q). We obtain a
surface Z such that K 2

Z = 3 and ρ(Z)G/N � 4. By Corollary 2.9, there exists a
G/N -minimal model Y of Z such that K 2

Y � 6. 	

Now we prove Theorem 1.3.

Proof of Theorem 1.3 We consider each case of Theorem 3.8 and show that if the
group G is not trivial and is not conjugate to C3 acting as in type 5 of Table 2 then
there exists a G/N -MMP-reduction Y of X/N such that K 2

Y � 5.
In case I, the group Aut(X) is C3

3�S4. The group C3
3 is a diagonal subgroup of

PGL4(k) andS4 permutes coordinates. We consider a normal subgroup H = G∩C3
3.

If there is an element of type 3 in this subgroup then we consider a group N ⊂ H
generated by elements of type 3. Then the group N is normal and one of the following
possibilities holds:

• If N is generated by one element of type 3 then N ∼= C3, the quotient X/N is
smooth and, by the Hurwitz formula, one has

K 2
X/N = 1

3
(3KX )2 = 9.

• If N is generated by two elements of type 3 then N ∼= C2
3, the quotient X/N has

only one singular point of type 1/3 ·(1, 1) and, by the Hurwitz formula, one has

K 2
X/N = 1

9
(5KX )2 = 25

3
.
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• If N is generated by three elements of type 3 then N ∼= C3
3, the quotient X/N is

smooth and, by the Hurwitz formula, one has

K 2
X/N = 1

27
(9KX )2 = 9.

For any G/N -MMP-reduction Y of X/N one has K 2
Y � 8.

If the group H does not contain elements of type 3 then either H is trivial or H
is isomorphic to C3 generated by an element of type 4 or 5 or C2

3 generated by the
elements diag(1, 1, ω, ω) and diag(1, ω, 1, ω).

In the last case the group G is a subgroup of C2
3�D8 where D8 = 〈(1243), (23)〉.

If G contains the element (14)(23) then the group N = 〈(14)(23)〉 is normal in G
and there exists a G/N -MMP-reduction Y of X/N such that K 2

Y � 5, by Lemma 3.5.
Otherwise the group G is isomorphic to C2

3 � C2 or C2
3.

If G contains a normal subgroup N ∼= C3 generated by element of type 4 then there
exists aG/N -MMP-reduction Y of X/N such that K 2

Y � 5, by Lemma 3.5. Otherwise
G is conjugate to C2

3�C2 where C2 is either 〈(23)〉 or 〈(14)〉. In this case G contains
a normal subgroup N ∼= C3 generated by an element of type 5. By Lemma 3.2, the
quotient X/N is G/N -birationally equivalent to a del Pezzo surface Z of degree 3 and
the group G/N ∼= S3. The quotient Z/S3 is k-birationally equivalent to a surface Y
with K 2

Y � 5, by Corollary 3.6.
If the group H ∼= C3 is generated by an element of type 4 then there exists a

G/H -MMP-reduction Y of X/H such that K 2
Y � 5, by Lemma 3.5.

If the group H ∼= C3 is generated by an element of type 5 then G ⊂ S3×C2 and
the quotient X/H is G/H -birationally equivalent to a del Pezzo surface Z of degree
3, by Lemma 3.2. Thus if G/H is nontrivial then it contains a subgroup N of order 2.
There exists a G/N -MMP-reduction Y of X/N such that K 2

Y � 5, by Lemma 3.5.
If the group H is trivial then G is a subgroup of S4. Then the group G contains

a normal subgroup N isomorphic to C2,C3 or V4, by Lemma 2.11. If N ∼= C2 or
N ∼= V4 then there exists a G/N -MMP-reduction Y of X/N such that K 2

Y � 5, by
Lemma 3.5 or Lemma 3.9 respectively. If N ∼= C3 then either G is generated by an
element of type 5 or G ∼= S3 and there exists an MMP-reduction Y of X/G such that
K 2
Y � 5, by Corollary 3.6.
In case II, the groupG contains a normal subgroup N isomorphic to C2,C3,V4,C5

or A5, by Lemma 2.11. If N is not isomorphic to C3 then there exists a G/N -MMP-
reduction Y of X/N such that K 2

Y � 5, by Lemmas 3.5, 3.9 or 3.10. Otherwise N ∼= C3
and G is a subgroup of S3×C2. Subgroups of this group are considered in case I.

In cases III and IV, let us consider the group H = G ∩ H3(3). If ord H > 3 then
H contains a normal subgroup N generated by an element of order 3 acting as in type
3 of Table 2. The group N is normal in G and there exists a G/N -MMP-reduction Y
of X/N such that K 2

Y � 5, by Lemma 3.5.
If H is generated by an element of type 5 and G/H is not trivial then G ∼= S3 and

there exists an MMP-reduction Y of X/G such that K 2
Y � 5, by Corollary 3.6.

If H is trivial and G is not trivial then G ⊂ C4 contains a normal subgroup N
of order 2 and there exists a G/N -MMP-reduction Y of X/N such that K 2

Y � 5, by
Lemma 3.5.
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In case VII, if G is not trivial then G contains a normal subgroup N of order 2 and
there exists a G/N -MMP-reduction Y of X/N such that K 2

Y � 5, by Lemma 3.5.
In the other cases the group G is conjugate in PGL4(k) to a subgroup of S5. All

these possibilities were considered in case II.
In all cases one has Y (k) �= ∅ since X (k) �= ∅. Thus

Y/(G/N ) ≈ X/G

is k-rational, by Corollary 1.2. 	


4 Minimality conditions

Let X be a cubic surface in P
3
k
and let a group G ∼= C3 act on X as in type 5 of Table 2.

In this section we find some conditions for the action of the Galois group Gal(k/k)

on the set of (−1)-curves under which the surface X is k-rational and X/G is not
k-rational.

Throughout this section we use the notation of Remark 2.10. Let � be the image
of the Galois group Gal(k/k) in the Weyl group W(E6) acting on Pic(X) (see [5,
Section IV.3]). The group � effectively acts on the set of (−1)-curves on X . The
group W(E6) contains a subgroup S6 acting in the following way: for σ ∈ S6 one
has

σ Ei = Eσ(i), σ Li j = Lσ(i)σ ( j), σQi = Qσ(i).

Lemma 4.1 The image of the group G in the Weyl group W(E6) is conjugate
to 〈(123)(456)〉.
Proof The order of theWeyl groupW(E6) is equal to 51840 = 27·34·5. By the Sylow
theorem, all groups of order 81 are conjugate in W(E6). The group of order 81 acts
on the Fermat cubic (see Table 3)

x3 + y3 + z3 + t3 = 0.

Thus any element of order 3 in W(E6) is of type 3, 4 or 5 from Table 2.
For any element g of type 3 of Table 2 one has ρ(X)〈g〉 = 1, by Remark 3.7. In the

subgroup S6 ⊂ W(E6) there is an element (123)(456) which is of type 4 or 5 from
Table 2 since

ρ(X)〈(123)(456)〉 > 1.

But an element of type 4 has invariant (−1)-curves (see the proof of Lemma 3.5) and
the element (123)(456) does not have invariant (−1)-curves. Therefore the action of
the group G is conjugate to 〈(123)(456)〉 in the group W(E6). 	

Remark 4.2 An alternative proof of Lemma 4.1 is the following. One can look at Table
1 in [5, Chapter IV, Section 5] and see that conjugacy classes of elements of order 3 in
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the group W(E6) correspond to the rows 3, 18 and 22 of this table. But in the eighth
column of the table one can see that the element g corresponds to the 18-th row. In
the ninth column one can see that g is conjugate to (123)(456) in W(E6). Also one
can see that the order of the centralizer of G in W(E6) is 108.

From now on we can assume that the group G acts on the set of (−1)-curves on X
as 〈(123)(456)〉. The Galois group Gal(k/k) commutes with the group G. Therefore
to describe possibilities for the group � we should find the centralizer of G in W(E6).

Lemma 4.3 The centralizer of G = 〈(123)(456)〉 in S6 is a subgroup C2
3�C2 gen-

erated by a = (123), b = (456) and c = (14)(25)(36).

Proof Note that in the group S6 there are

6!
3! ·3! ·2 ·4 = 40

elements conjugate to (123)(456). Therefore the order of the centralizer of G =
〈(123)(456)〉 is equal to 18.

The elements a, b and c obviously commute with the element (123)(456) and the
group C2

3�C2 = 〈a, b, c〉 has order 18. Thus the centralizer of G = 〈(123)(456)〉 in
S6 is a subgroup C2

3�C2 = 〈a, b, c〉. 	

Note that the groupG has exactly three orbits that consist of (−1)-curvesmeeting each
other: {L14, L25, L36}, {L15, L26, L34} and {L16, L24, L35}. The other orbits consist
of disjoint (−1)-curves. Therefore the set of nine (−1)-curves Li j , i ∈ {1, 2, 3},
j ∈ {4, 5, 6}, is invariant under the action of centralizer of G in W(E6). The group

C2
3�C2 ∼= 〈a, b, c〉

can realize any permutation of this set of (−1)-curves that preserves the intersection
form. Therefore to find the centralizer of G in W(E6) we should find a subgroup in
W(E6) acting trivially on the set of nine (−1)-curves Li j , where i ∈ {1, 2, 3} and
j ∈ {4, 5, 6}.
Lemma 4.4 The subgroup of W(E6) fixing each of the nine (−1)-curves Li j , where
i ∈ {1, 2, 3} and j ∈ {4, 5, 6}, is a group S3 generated by elements r and s of order
3 and 2 respectively acting on the set of (−1)-curves in the following way:

s (Ei ) = Qi , s (Qi ) = Ei , s (Li j ) = Li j ,

r (Ei ) = Qi if i ∈ {1, 2, 3}, r2(Ei ) = Qi if i ∈ {4, 5, 6},
r (Ei ) = L jk if i ∈ {4, 5, 6} and j, k ∈ {4, 5, 6} differ from i,

r2(Ei ) = L jk if i ∈ {1, 2, 3} and j, k ∈ {1, 2, 3} differ from i.

Proof Let us consider the (−1)-curve E1. Since L14, L15 and L16 are invariant, the
image of E1 can be only E1, L23 or Q1. The action of the group on these three (−1)-
curves defines the whole action of the group 〈r, s〉 on the set of (−1)-curves. The group
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S3 = 〈r, s〉 fixes all the nine (−1)-curves Li j , where i ∈ {1, 2, 3} and j ∈ {4, 5, 6},
and permutes E1, L23 and Q1 in all possible ways. 	

Proposition 4.5 The centralizer of G = 〈(123)(456)〉 inW(E6) is a subgroup

H ∼= (C2
3�C2)×S3

where the first factor is generated by a, b and cs, and the second factor is generated
by r and s.

Proof By Lemmas 4.3 and 4.4, the centralizer of G in W(E6) is generated by the
subgroups C2

3�C2 = 〈a, b, c〉 and S3 = 〈r, s〉. Obviously, the elements a, b, cs,
r and s generate this group. One can easily check that a, b, cs and r, s pairwisely
commute. 	

By Remark 3.4, if the quotient of X is not k-rational then ρ(X)G = 1. Moreover, if
ρ(X) = 1 then X is not k-rational, by Theorem 2.8. Thus to construct non-k-rational
quotient of k-rational cubic surface we should find all possibilities of the Galois group
� such that ρ(X) > 1 and ρ(X)G = 1.

The group � is a subgroup of the group H ∼= (C2
3�C2)×S3 where the first factor

is generated by a, b and cs, and the second factor is generated by r and s. We denote
the projection on the first factor

H ∼= (C2
3�C2)×S3 � C2

3�C2

by π1, and the projection on the second factor

H ∼= (C2
3�C2)×S3 � S3

by π2.

Lemma 4.6 If π2(�) is trivial and π1(�) ⊂ C2
3 or π2(�) = 〈s〉 but s /∈ � then

ρ(X)G > 1.

Proof In these cases the group � is a subgroup of the group 〈a, b, c〉. Therefore the
groups � and G ∼= C3 preserve

∑6
i=1 Ei and ρ(X)G > 1. 	


Lemma 4.7 If π2(�) = 〈s〉 and π1(�) ⊂ C2
3 then ρ(X)G > 1.

Proof In this case the groups � and G preserve the divisor
∑3

i=1 Ei − ∑6
i=4 Ei .

Therefore one has ρ(X)G > 1. 	

Lemma 4.8 ρ(X)〈abcs〉 = ρ(X)〈a2b,cs〉 = 1.

Proof One has (abcs)4 = ab and (abcs)3 = cs. Note that the groups Pic(X)〈ab〉
and Pic(X)〈a2b〉 are generated by KX ,

∑3
i=1 Ei and

∑6
i=4 Ei . One can check that

cs-invariants in Pic(X)〈ab〉 and Pic(X)〈a2b〉 are generated by KX . 	
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Corollary 4.9 Suppose that π1(�) contains the element cs and at least one element
of order 3 and cs ∈ � then ρ(X) = 1.

Lemma 4.10 ρ(X)〈abr〉 = ρ(X)〈a2br〉 = 1.

Proof Note that any abr and a2br orbit of a (−1)-curve consists of three (−1)-curves
meeting each other. Therefore these elements are of type 3 from Table 2. Thus, by
Remark 3.7, one has ρ(X)〈abr〉 = ρ(X)〈a2br〉 = 1. 	

Corollary 4.11 If r ∈ π2(�) and π1(�) contains ab or a2b then ρ(X) = 1.

As a result of all previous lemmas we have the following proposition.

Proposition 4.12 Let X be a del Pezzo surface of degree 3 and G ∼= C3 a group acting
as in type 5 of Table 2. Let � be the image of the Galois group Gal(k/k) in the Weyl
group W(E6). If ρ(X) > 1 and ρ(X)G = 1 then we have the following possibilities
for � up to conjugation:

(i) � = 〈cs〉 ∼= C2;
(ii) � = 〈c, s〉 ∼= C2

2;
(iii) � = 〈r〉 ∼= C3;
(iv) � = 〈ar〉 ∼= C3;
(v) � = 〈a, r〉 ∼= C2

3;
(vi) � = 〈cs, r〉 ∼= C6;
(vii) � = 〈r, s〉 ∼= S3;
(viii) � = 〈a, r, s〉 ∼= C3×S3;
(ix) � = 〈r, c〉 ∼= S3;
(x) � = 〈r, c, s〉 ∼= S3×C2.

Proof At first we show that in all other cases one has either ρ(X) = 1 or ρ(X)G >

1. If r ∈ π2(�) then if π1(�) contains an element ab or a2b then ρ(X) = 1, by
Corollary 4.11. Therefore in this case π1(�) should be trivial or conjugate to 〈a〉 or
〈cs〉. These possibilities correspond to cases (iii)–(x) of the proposition.

Now we can assume that r /∈ π2(�). If π1(�) contains the element cs and at
least one element of order 3 then, by Corollary 4.9, one has ρ(X) = 1 in all cases
except � = 〈ab, c〉, � = 〈a2b, c〉 and � = 〈a, b, c〉. In the last three cases we
have ρ(X)G > 1, by Lemma 4.6. If cs /∈ π1(�) then ρ(X)G > 1, by Lemmas 4.6
and 4.7. Therefore π1(�) = 〈cs〉. This possibility corresponds to cases (i) and (ii) of
the proposition.

Now we show that in all these cases one has ρ(X) > 1 and ρ(X)G = 1. In cases
(i), (ii), (vi), (ix) and (x) the (−1)-curves L14, L25 and L36 are �-invariant. Therefore
X is not minimal and ρ(X) > 1. In cases (iii), (iv), (v), (vii) and (viii) the triple
of disjoint (−1)-curves L14, L24 and L34 is �-invariant. Therefore X is not minimal
and ρ(X) > 1. In cases (i) and (ii) one has ρ(X)G = 1, by Lemma 4.8. In the other
cases one has ρ(X)G = 1, by Lemma 4.10. 	

Note that if one can contract a (−1)-curve defined over k and ρ(X) = 2 or ρ(X) = 3
then the obtained del Pezzo surface either is not mininal or can be minimal del Pezzo
surface of degree 4. So for each case of Proposition 4.12 we should check whether the
surface X is k-rational.
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Lemma 4.13 If the Galois group � contains the element cs then X is not k-rational.

Proof Note that the (−1)-curves L14, L25 and L36 are cs-invariant and the other
(−1)-curves form cs-invariant pairs of (−1)-curves which are not disjoint. The curves
L14, L25 and L36 meet each other. Therefore we can contract no more than one (−1)-
curve and X is not k-rational, by Theorem 2.8. 	

Lemma 4.14 If the Galois group � contains the elements c and r then X is not
k-rational.

Proof Note that if a 〈c, r〉-orbit contains Ei then it contains Q j with i �= j . Therefore
we cannot contract any of these orbits. Also we cannot contract 〈c, r〉-invariant pairs
L15 and L24, L16 and L34, L26 and L35. The (−1)-curves L14, L25 and L36 are 〈c, r〉-
invariant andmeet each other. Therefore we cannot contract more than one (−1)-curve
and X is not k-rational, by Theorem 2.8. 	

Lemma 4.15 If the Galois group � is contained in 〈a, r, s〉 then X is k-rational.

Proof We can contract (−1)-curves E4, L56 and Q4, and get a del Pezzo surface of
degree 6 which is k-rational, by Theorem 2.8. 	

Now we can prove the following theorem.

Theorem 4.16 Let X beak-rational delPezzo surface of degree3andG ∼= C3 agroup
acting as in type 5 of Table 2. Let � be the image of the Galois group Gal(k/k) in the
Weyl group W(E6). If X/G is not k-rational then we have the following possibilities
for � up to conjugation:

(i) � = 〈r〉 ∼= C3;
(ii) � = 〈ar〉 ∼= C3;
(iii) � = 〈a, r〉 ∼= C2

3;
(iv) � = 〈r, s〉 ∼= S3;
(v) � = 〈a, r, s〉 ∼= C3×S3.

Proof For cases (i), (ii), (vi), (x) of Proposition 4.12 the Galois group � contains the
element cs. Therefore X is not k-rational, by Lemma 4.13. For case (ix) of Proposi-
tion 4.12 the surface X is not k-rational, by Lemma 4.14.

For cases (iii), (iv), (v), (vii), (viii) of Proposition 4.12 the Galois group � is
contained in 〈a, r, s〉 ∼= C3×S3. Therefore X is k-rational, by Lemma 4.15. 	


5 Geometric interpretation

In this section we give a geometric interpretation of the actions of elements in the
Galois group � considered in Sect. 4. For convenience we assume that the field k

contains ω. Therefore we can choose homogeneous coordinates in P
3
k
such that the

group G acts as

(x : y : z : t) �→ (x : y :ωz :ω2t)
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on the cubic surface X given by the equation

P(x : y) + zt (ux + vy) + z3 + αt3 = 0 (1)

where P(x : y) is a homogeneous polynomial of degree 3, and u, v and α are parame-
ters.

Let us consider the line x = y = 0. This line intersects X in three points e1, e2 and
e3 given by the equation

z3 + αt3 = 0. (2)

Definition 5.1 A point p on a cubic surface is called an Eckardt point if there are
three (−1)-curves passing through p.

Lemma 5.2 The points e1, e2 and e3 are Eckardt points.

Proof The surface X is given by (1) in P
3
k
. In coordinates x, y, z, t the points e1, e2

and e3 are (0 : 0 : − 3
√

α : 1), (0 : 0 : −ω 3
√

α : 1) and (0 : 0 : −ω2 3
√

α : 1). Consider the
tangent plane at the point e1. Its equation is

u 3
√

α x + v 3
√

α y = 3
( 3
√

α2z + αt
)
.

We have

zt (ux + vy) + z3 + αt3 = 3zt
(

3
√

α z + 3
√

α2t
) + z3 + αt3

= (
z + 3

√
α t

)3 =
( 3

√
α−1ux + 3

√
α−1vy

3

)3

.

So that (1) can be rewritten as

P(x : y) + (ux + vy)3

27α
= 0. (3)

The last equation has three roots (λ1 : μ1), (λ2 : μ2) and (λ3 : μ3). The three (−1)-
curves passing through the point e1 are given by

u 3
√

α x + v 3
√

α y = 3
( 3
√

α2z + αt
)

and μi x = λi y. Similarly we can show that the three (−1)-curves passing through e2
are given by

u 3
√

α x + v 3
√

α y = 3
(
ω

3
√

α2z + ω2αt
)

and μi x = λi y, and the three (−1)-curves passing through e3 are given by

u 3
√

α x + v 3
√

α y = 3
(
ω2 3

√
α2z + ωαt

)

and μi x = λi y. 	
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Remark 5.3 Applying explicit equations given in the proof of Lemma 5.2, one can
see that the G-orbit of any (−1)-curve passing through a point ei consists of three
(−1)-curves meeting each other at a point. The image of G in the Weyl group W(E6)

is conjugate to 〈(123)(456)〉, by Lemma 4.1. Therefore nine curves passing through
the Eckardt points ei are Li j , where i ∈ {1, 2, 3} and j ∈ {4, 5, 6}. We can assume
that the curves L14, L26 and L35 pass through e1, the curves L16, L25 and L34 pass
through e2 and the curves L15, L24 and L36 pass through e3.

Now we give explicit geometric interpretation of the action of the group π1(�).

Lemma 5.4 Let X be a cubic surface given by (1) and � be the image of the Galois
group Gal(k/k) in the Weyl groupW(E6). Let �1 and �2 be the Galois groups of (2)
and (3) respectively. Then in the notation of Sect. 4 one has the following:

• if π1(�) is trivial then �1 and �2 are trivial;
• if π1(�) = 〈cs〉 ∼= C2 then �1 is trivial and �2 ∼= C2;
• if π1(�) = 〈a2b〉 ∼= C3 then �1 is trivial and �2 ∼= C3;
• if π1(�) = 〈ab〉 ∼= C3 then �1 ∼= C3 and �2 is trivial;
• if π1(�) = 〈a〉 ∼= C3 then �1 ∼= C3, �2 ∼= C3 and (2) and (3) have the same
splitting field;

• if π1(�) = 〈a2b, cs〉 ∼= S3 then �1 is trivial and �2 ∼= S3;
• if π1(�) = 〈ab, cs〉 ∼= C6 then �1 ∼= C3 and �2 ∼= C2;
• if π1(�) = 〈a, b〉 ∼= C2

3 then �1 ∼= C3, �2 ∼= C3 and (2) and (3) have different
splitting fields;

• if π1(�) = 〈a, b, cs〉 ∼= C2
3�C2 then �1 ∼= C3 and �2 ∼= S3.

Proof Note that the group �1 permutes the Eckardt points e1, e2 and e3, and the group
�2 permutes three (−1)-curves passing through an Eckardt point. In the notation of
Remark 5.3 one can see that the elements a2b and cs of W(E6) preserve the Eckardt
points e1, e2 and e3, and permute the (−1)-curves passing through each of them. Thus
the availability of elements conjugate to a2b and cs in π1(�) is equivalent to the
availability of elements of order 3 and 2 in �2 respectively.

The element ab permutes three (−1)-curves E14, E25 and E36. These curves lie in
a plane given by μi x = λi y, where (λi : μi ) is a root of (3). Similarly, the element
ab preserves the other roots of (3). Thus the availability of the element ab in π1(�)

is equivalent to the availability of an element of order 3 in �1.
The group 〈a, b, cs〉 ∼= C2

3�C2 is generated by the elements ab, a2b and cs. So for
any subgroup of 〈a, b, cs〉 one can obtain the result of this lemma. 	


Now we want to find a geometric interpretation of actions of elements r and s.
Consider the class L in Pic(X). We have

r L = 4L −
3∑

i=1

Ei − 2
6∑

i=4

Ei , r2L = 4L − 2
3∑

i=1

Ei −
6∑

i=4

Ei ,

sL = 5L − 2
6∑

i=1

Ei , sr L = 2L −
6∑

i=4

Ei , sr2L = 2L −
3∑

i=1

Ei .
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The three fixed points of G on X lie on the line z = t = 0. We denote these points by
q1, q2 and q3 given by the equation

P(x : y) = 0. (4)

There are two G-invariant hyperplane sections z = 0 and t = 0 passing through the
fixed points of G. We denote these sections by C1 and C2.

Let h : X → P
2
k
be a G-equivariant blowup of P

2
k
at six points p1, p2, p3, p4, p5

and p6 and l be a class of line on P
2
k
. Then G has three fixed points on P

2
k
. For

each two of these fixed points there is exactly one G-invariant curve passing through
these two points that belongs to one of the following six classes: a line, a quadric
passing through p1, p2 and p3, a quadric passing through p4, p5 and p6, a quartic
passing through p4, p5 and p6 and having nodes at p1, p2 and p3, a quartic passing
through p1, p2 and p3 and having nodes at p4, p5 and p6 or a quintic having nodes
at p1, p2, p3, p4, p5 and p6. Proper transforms of these curves on X are G-invariant
and can be permuted by the group �. Denote these curves by RK

i j , where K is a class

of curve in Pic(X) and i and j are indices of points qi and q j , which RK
i j is passing

through.

Lemma 5.5 We can choose notation in such way that the following conditions hold:

• the curve C1 is tangent to the curves RL
12, R

rL
12 , Rr2L

12 , RsL
13 , RsrL

13 , Rsr2L
13 at the

point q1, tangent to the curves RL
23, R

rL
23 , Rr2L

23 , RsL
12 , RsrL

12 , Rsr2L
12 at the point q2

and tangent to the curves RL
13, R

rL
13 , Rr2L

13 , RsL
23 , RsrL

23 , Rsr2L
23 at the point q3;

• the curve C2 is tangent to the curves RL
13, R

rL
13 , Rr2L

13 , RsL
12 , RsrL

12 , Rsr2L
12 at the

point q1, tangent to the curves RL
12, R

rL
12 , Rr2L

12 , RsL
23 , RsrL

23 , Rsr2L
23 at the point q2

and tangent to the curves RL
23, R

rL
23 , Rr2L

23 , RsL
13 , RsrL

13 , Rsr2L
13 at the point q3.

Proof One has C1·RL
12 = C2·RL

12 = 3. Note that the curves C1,C2 and RK
12 pass

through the G-fixed points q1 and q2, therefore RL
12 cannot meet C1 and C2 at any

other point since that point should be G-invariant. Therefore RL
12 is tangent to C1 and

C2. The curvesC1 andC2 have different tangents at the points qi . Thus we can assume
that RL

12 is tangent to C1 at q1 and tangent to C2 at q2.
In the same way we can show that for any class

K ∈ {
L , r L , r2L , sL , sr L , sr2L

}

the curve RK
i j is tangent to C1 and C2 at points qi and q j . One has RK

i j ·RcsrK
i j = 2

therefore these curves meet each other transversally and have different tangents at
points qi and q j . Moreover, one has RK

i j ·RK
jk = 1 therefore these curves meet each

other transversally and have different tangents at point q j . The lemma follows from
these two facts. 	

Now we give explicit geometric interpretation of the action of the group π2(�).

Lemma 5.6 In the notation of Sect. 4 the group π2(�) contains an element conjugate
to s if and only if the Galois group �3 of (4) is of even order.
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Proof Let the group�3 contain an element h such that h(q2) = q3 and h(q3) = q2. By
Lemma 5.5, the curve RL

12 is tangent to C2 at q2. Thus the curve h(RL
12) is tangent to

h(C2) = C2 at q3 and passes through q1. Therefore, by Lemma 5.5, the curve h(RL
12)

is RsL
13 , RsrL

13 or Rsr2L
13 . Hence the group π2(�) contains an element conjugate to s.

Now assume that the group π2(�) contains an element conjugate to s. If the Galois
group �3 is of odd order then this element fixes the points q1, q2 and q3. Therefore the
curve RL

12 is mapped by s to RsL
12 . But R

L
12 is tangent to C1 at q1 and RsL

12 is tangent to
C2 at q2. This contradiction finishes the proof. 	


Lemma 5.7 Let X be a G-minimal cubic surface given by (1) and the Galois group
�3 of (4) is isomorphic to C2. Then the quotient X/G is birationally equivalent to a
minimal del Pezzo surface Z of degree 4. In particular, X/G is not k-rational.

Proof The Galois group �3 of (4) is isomorphic to C2. Therefore we can assume that
the G-fixed point q1 is defined over k and two other G-fixed points q2 and q3 are
permuted by �3.

Let f : X → X/G be the quotient morphism and π : X̃/G → X/G the minimal
resolution of singularities. There are three singular points of type A2 on X/G, namely
f (q1), f (q2) and f (q3). The curves C1,C2 and the point q1 are defined over k. Thus
the irreducible components of π−1 f (q1) are defined over k. The group �3 ∼= C2 maps
the irreducible components of π−1 f (q2) to the irreducible components of π−1 f (q3).
Therefore, one has

ρ(X̃/G) = ρ(X/G) + 4 = ρ(X)G + 4 = 5.

As in the proof of Lemma 3.2, two curves π−1∗ f (Ci ) are (−1)-curves defined over
k. We can contract this pair and get a del Pezzo surface Y such that K 2

Y = 3 and
ρ(Y ) = 3.

The Galois group �3 acts on the set of 27 (−1)-curves on Y . One cannot contract
more than four (−1)-curves on Y since ρ(Y ) = 3. But in Table 1 in [5, Chap-
ter IV,Section 5] there is only one class of elements of order 2 satisfying this property.
This class corresponds to the 11-th row of the table. For this class one cannot con-
tract more than one (−1)-curve on Y (see the second column of the table). Therefore
one can contract this curve on Y and get a minimal del Pezzo surface Z of degree 4
with ρ(Z) = 2 admitting a structure of conic bundle. The surface Z ≈ X/G is not
k-rational, by Theorem 2.8. 	


Assume that the G-fixed point q1 on the cubic surface X is defined over k. Then after
the change of coordinates this cubic is given by the equation

βx (x2 − λy2) + zt (ux + vy) + z3 + αt3 = 0,

where u, v, α, β and λ are parameters. For this cubic surface the following lemma
holds.
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Lemma 5.8 In the notation of Sect. 4 the group π2(�) contains r if and only if there
is an element of order 3 in the Galois group �4 of the equation

4αθ3 −
(
u2 − v2

λ

)
θ2 − 2uβθ − β2 = 0 (5)

considered as a cubic equation in θ .

Proof Note that the divisors RL
23 + RsL

23 , R
rL
23 + Rsr2L

23 and Rr2L
23 + RsrL

23 are linearly
equivalent to −2KX . Therefore these G-invariant pairs of curves passing through q2
and q3 are cut from X by the quadric surfaces of the following form:

θ(x2 − λy2) = zt.

Let us find reducible members in these family of curves. One has

βx (x2 − λy2)t3 + θ (ux + vy)(x2 − λy2)t3 + θ3(x2 − λy2)3 + αt6 = 0.

If the polynomial in the left hand side for the latter equation is reducible over k(x, y, t)
then it factorizes in the following way:

(
A
(
x − y

√
λ
)
(x2 − λy2) + √

α t3
)(
B

(
x + y

√
λ
)
(x2 − λy2) + √

α t3
) = 0

and therefore we have AB = θ3 and

A
(
x − y

√
λ
)√

α + B
(
x + y

√
λ
)√

α = θ(ux + vy) + βx .

Therefore the following system of equations holds:

{
(A + B)

√
α = θu + β,

(B − A)
√

λα = θv.

Solving this system one has

A = (θu + β)
√

λ − θv

2
√

λα
, B = (θu + β)

√
λ + θv

2
√

λα
.

Since AB = θ3, the reducible members of the linear system |−2KX | passing through
q2 and q3 are given by (5).

The roots of this equation correspond to the pairs of curves RL
23 and RsL

23 , R
rL
23 and

Rsr2L
23 , Rr2L

23 and RsrL
23 which are cyclically permuted by � if and only if the group

π2(�) contains r . 	
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Remark 5.9 At the beginning of this section we assumed that the field k contains ω.
For any field k the action of a generator of G can be written as

(x : y : z : t) �→ (y : z : x : t).

One can remake the computations (which is much more complicated) for this action.
Then Lemmas 5.2, 5.4, 5.5 and 5.8 hold. But Lemma 5.6 does not hold since the curves
C1 and C2 are not defined over k.

Remark 5.10 Note that in Sects. 4 and 5 we can omit the condition char k = 0.
Therefore the obtained results can be useful to study cubic surfaces over fields such
that char k � 5.

6 Examples

In this section we construct explicit examples of quotients of del Pezzo surfaces of
degree 3 by a group G ∼= C3 acting as in type 5 of Table 2. We use the notation of
Sect. 5.

Lemma 6.1 Let X be a cubic surface given by (1). Suppose that the Galois groups
�1, �2, �3 of (2), (3), (4) are trivial and the Galois group �4 of (5) contains an
element of order 3. Then the surface X is G-minimal and k-rational, and the quotient
X/G is also k-rational.

Proof The group �1 is trivial. Therefore X (k) contains the points e1, e2 and e3. By
Lemmas 5.4, 5.6 and 5.8, the group � is conjugate to 〈r〉. Therefore one can Galois
equivariantly contract the curves E1, L23 and Q1 and get a del Pezzo surface of degree
6 which is k-rational, by Theorem 2.8.

The image of the groupG in theWeyl groupW(E6) is 〈ab〉 thus X isG-minimal, by
Corollary 4.11. Let f : X → X/G be the quotient morphism and π : X̃/G → X/G
the minimal resolution of singularities. The group �3 is trivial. Therefore the points
q1, q2 and q3 are defined over k. Hence all six irreducible components of the curves
π−1 f (q1), π−1 f (q2) and π−1 f (q3) are defined over k. Thus ρ(X̃/G) = 7, and X̃/G
and X/G are k-rational, by Corollary 2.9. 	

Example 6.2 If the field k contains ω and an element ν such that 3

√
ν /∈ k then the

cubic surface given by the equation

2νx(x2 − y2) + z3 + t3 = 0

satisfies the conditions of Lemma 6.1.

Lemma 6.3 Let X be a cubic surface given by (1). Suppose that the Galois groups
�1, �2 of (2), (3) are trivial, the Galois group �3 of (4) is isomorphic to C2 and
the Galois group �4 of (5) contains an element of order 3. Then the surface X is
G-minimal and k-rational, and the quotient X/G is not k-rational.
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Proof The group �1 is trivial. Therefore X (k) contains the points e1, e2 and e3. By
Lemmas 5.4, 5.6 and 5.8, the group � is conjugate to 〈r, s〉. Therefore one can Galois
equivariantly contract the curves E1, L23 and Q1 and get a del Pezzo surface of degree
6 which is k-rational, by Theorem 2.8. The image of the group G in the Weyl group
W(E6) is 〈ab〉 thus X is G-minimal, by Corollary 4.11. The quotient X/G is not
k-rational by Lemma 5.7. 	

Example 6.4 Suppose that the field k contains ω and does not contain

√
2 and any

root of the equation

4θ3 − 9θ2 − 6θ − 1 = 0.

Then the cubic surface given by the equation

x(x2 − 2y2) + 3xzt + z3 + t3 = 0

satisfies the conditions of Lemma 6.3.

Lemma 6.5 Let X be a cubic surface given by (1). Suppose that the Galois groups
�1 and �3 of (2) and (4) are trivial, the Galois group �2 of (3) is isomorphic to C2
and the Galois group �4 of (5) contains an element of order 3. Then the surface X is
G-minimal and not k-rational, and the quotient X/G is k-rational.

Proof The group �1 is trivial. Therefore X (k) contains the points e1, e2 and e3. By
Lemmas 5.4, 5.6 and 5.8, the group � is conjugate to 〈c, r〉. Therefore X is not k-
rational, by Lemma 4.14.

The image of the groupG in theWeyl groupW(E6) is 〈ab〉 thus X isG-minimal, by
Corollary 4.11. Let f : X → X/G be the quotient morphism and π : X̃/G → X/G
the minimal resolution of singularities. The group �3 is trivial. Therefore the points
q1, q2 and q3 are defined over k. Hence all six irreducible components of the curves
π−1 f (q1), π−1 f (q2) and π−1 f (q3) are defined over k. Thus ρ(X̃/G) = 7, and X̃/G
and X/G are k-rational, by Corollary 2.9. 	

Example 6.6 In the assumptions of Example 6.4 the cubic surface given by the equa-
tion

x(x2 − y2) + 3xzt + z3 + t3 = 0

satisfies the conditions of Lemma 6.5.

Lemma 6.7 Let X be a cubic surface given by (1). Suppose that the Galois group �1
of (2) is trivial, the Galois group �2 of (3) is isomorphic to C2 and the Galois group
�3 of (4) is isomorphic to C2. Then the surface X is G-minimal and not k-rational,
and the quotient X/G is also not k-rational.

Proof The group �1 is trivial. Therefore X (k) contains the points e1, e2 and e3. By
Lemmas 5.4 and 5.6, the group � contains a subgroup 〈cs〉 ∼= C2. Therefore X is not
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k-rational, by Lemma 4.14. The image of the group G in the Weyl group W(E6) is
〈ab〉 thus X is G-minimal, by Corollary 4.9. The quotient X/G is not k-rational, by
Lemma 5.7. 	

Example 6.8 If the field k contains ω and an element λ such that

√
λ /∈ k then the

cubic surface given by the equation

x(x2 − λy2) + z3 + t3 = 0

satisfies the conditions of Lemma 6.7.

Remark 6.9 Note that the conditions of Examples 6.2, 6.4, 6.6, 6.8 hold for k = Q(ω).
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