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Abstract Fulton’s question about effective k-cycles on M0,n for 1 < k < n − 4 can
be answered negatively by appropriately lifting to M0,n the Keel–Vermeire divisors on
M0,k+1. In this paper we focus on the case of 2-cycles on M0,7, and we prove that the
2-dimensional boundary strata together with the lifts of the Keel–Vermeire divisors are
not enough to generate the cone of effective 2-cycles.Wedo this by providing examples
of effective 2-cycles on M0,7 that cannot be written as an effective combination of the
aforementioned 2-cycles. These examples are inspired by a blow up construction of
Castravet and Tevelev.
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1 Introduction

An open problem in the birational geometry of M0,n , the moduli space of stable
n-pointed rational curves, is the F-conjecture. This conjecture claims that the cone
Eff1(M0,n) of effective curves, is generated by the numerical equivalence classes of
1-dimensional boundary strata, which are obtained by intersecting boundary divisors.
This is known to be true if n ≤ 7 (see [17]).
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670 L. Schaffler

A similar question (which is known as Fulton’s question) was stated in [17] also
for the cone Effk(M0,n) of effective k-cycles with 1 < k < n − 3:

Is the coneEffk(M0,n) generated by the k-dimensional boundary strata?

Denote by Vk(M0,n) the cone generated by the numerical equivalence classes of the
k-dimensional boundary strata. Then the question is whether or not Effk(M0,n) is
equal to Vk(M0,n). As Keel and Vermeire pointed out in the case of divisors (see [11,
22]), the cone Vn−4(M0,n) is strictly contained in Effn−4(M0,n), and one can see that
Vk(M0,n) � Effk(M0,n) for all 1 < k < n − 4 by appropriately lifting to M0,n the
Keel–Vermeire divisors on M0,k+1 (see Sect. 4, in particular Corollary 4.3). So the
problem is to understand what lies in Effk(M0,n)\Vk(M0,n) (see [1,3,7,14,20] for the
codimension 1 case). Recently, a lot of work has been done in order to understand
the cones of effective and pseudoeffective cycles of higher codimension on projective
varieties (see [4,6,9,10,18,21]).

We work over an algebraically closed field K of any characteristic. The main result
of this paper (Theorem 6.8) can be synthesized in the following statement.

Theorem The 2-dimensional boundary strata on M0,7 together with the lifts of the
Keel–Vermeire divisors on M0,6 are not enough to generate the cone Eff2(M0,7).

The lifts of the Keel–Vermeire divisors are defined as the pushforwards with respect
to the natural inclusion Dab ↪→ M0,7 of the Keel–Vermeire divisors on the boundary
divisor Dab (which is isomorphic to M0,6) for any {a, b} ⊂ {1, . . . , 7}. In this way we
produce 315 extremal rays of Eff2(M0,7) which lie outside of V2(M0,7) (see Propo-
sition 5.4). Denote with VKV

2 (M0,7) the cone generated by V2(M0,7) and by these
lifts.

Examples of effective 2-cycles on M0,7 whose numerical equivalence classes do
not lie in the cone VKV

2 (M0,7) are produced using the following blow up construction
of Castravet and Tevelev (see [2, Theorem 3.1]): take seven labeled points in P2 which
do not lie on a (possibly reducible) conic. Then the blow up of P2 at these points can
be embedded in M0,7 as an effective 2-cycle. Using this construction and considering
particular arrangements of seven labeled points in P2, we define what we call special
hypertree surfaces on M0,7 (see Definition 6.6), which are related to Castravet and
Tevelev hypertrees (see [3]). In Theorem 6.8 we prove that the numerical equivalence
class of a special hypertree surface does not lie in the cone VKV

2 (M0,7). This implies
that VKV

2 (M0,7) � Eff2(M0,7), which is our main result. An example of 7-points
arrangement in P2 which gives rise to a special hypertree surface on M0,7 is the one
shown in Fig. 1.1

All the other special hypertree surfaces are obtained by permuting the labels of
the points arrangement in Fig. 1. In Sect. 6.3 we show that there are 210 (resp. 30)
distinct numerical equivalence classes of special hypertree surfaces on M0,7 if the
characteristic of the base field is different from 2 (resp. equal to 2).

1 All the figures in this paper were realized using the software GeoGebra, Copyright ©International
GeoGebra Institute, 2013.
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On the cone of effective 2-cycles on M0,7 671

Fig. 1 7-points arrangement in P
2 which gives a special hypertree surface on M0,7

Summing up, if we denote with VKV+CT
2 (M0,7) the cone generated by VKV

2 (M0,7)

and by the numerical equivalence classes of the embedded blow ups of P2 at seven
points, we have the following chain of containments:

V2(M0,7) � VKV
2 (M0,7) � VKV+CT

2 (M0,7) ⊆ Eff2(M0,7).

The second main result of this paper is an explicit description of the intersection
theory of the 2-dimensional boundary strata on M0,7. In Propositions 3.4 and 3.5 we
give formulas that compute the intersection number of two 2-dimensional boundary
strata on M0,7. Then we study the numerical equivalence classes of these 2-cycles
(see Propositions 3.7 and 3.8), and this, together with some recent results of Chen
and Coskun in [4], allows us to give a complete description of the cone V2(M0,7) (see
Corollary 3.10). We also fully describe the bilinear form N2(M0,7)× N2(M0,7) → R

given by the intersection product (see Propositions 3.11 and 3.12).
In Sect. 2 we recall some basic facts and notations about M0,n that are used in

this paper. Section 3 contains the formulas for the intersection of two 2-dimensional
boundary strata on M0,7, and the complete study of the cone V2(M0,7). In Sect. 4
there is a detailed description of the lifting technique, which is immediately applied in
Sect. 5 to describe the lifts to M0,7 of the Keel–Vermeire divisors on M0,6. Section 6
is where we discuss the embedded blow ups of P2 in M0,7 and where we prove our
main theorem. In Sect. 7 we generalize the construction of the two cones VKV

2 (M0,7)

and VKV+CT
2 (M0,7) to any M0,n for n > 7. We also state some questions that will be

the object of further investigation.

2 Preliminaries: boundary strata on M0,n

In this section we review some of the main definitions and facts about the boundary
strata on M0,n . For a more detailed discussion, see for example [17]. Equivalence
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672 L. Schaffler

between k-cycles on M0,n refers to numerical equivalence,which is the sameas rational
equivalence and algebraic equivalence by [16].

Definition 2.1 The irreducible components of the locus of points on M0,n parame-
trizing stable n-pointed rational curves with at least n − 3− k nodes, have dimension
k and are called boundary k-strata. Codimension 1 (resp. 1-dimensional) boundary
strata are also called boundary divisors (resp. F-curves).

Definition 2.2 Given n ≥ 3 and 0 ≤ k ≤ n − 3, define Vk(M0,n) to be the cone
generated by the equivalence classes of the boundary k-strata on M0,n (V stands for
“vital cycles”, as they were called in [17]).

Notation If n is a positive integer, then [n] denotes the set {1, . . . , n}.
Combinatorial description of boundary divisors There is a bijection between
boundary divisors and partitions I � I c = [n], with 2 ≤ |I | ≤ n − 2. DI = DI c

denotes the boundary divisor corresponding to the partition I � I c = [n]. δI = δI c

denotes the equivalence class of DI . For simplicity, the equivalence class of a boundary
divisor will be called just boundary divisor.

Combinatorial description of equivalence classes of F-curves There is a bijection
between equivalence classes of F-curves and partitions of [n] = {1, . . . , n} into four
nonempty subsets (see [17, Lemma 4.3]). Given a partition I1� I2� I3� I4 = [n],
we denote by FI1,I2,I3,I4 the equivalence class of the F-curves corresponding to that
partition.

Every boundary stratum on M0,n can be realized as the complete intersection of all
the boundary divisors containing it as follows. Let B be a boundary stratum and let
C(B) be the stable n-pointed rational curve corresponding to the generic point of B
(C(B) has as many nodes as the codimension of B). If Sing(C(B)) denotes the set of
singular points of C(B), given p ∈ Sing(C(B)) let Tp be the set of markings that are
over one of the two connected components of the normalization of C(B) at p. Then
we have that

B =
⋂

p∈Sing(C(B))

DTp .

Moreover, since the boundary of M0,n has normal crossings, we have that the equiva-
lence class of B is the product of all δTp as p varies among the nodes of C(B).

The last thing we want to recall is [16, Fact 4]: given two boundary divisors DI , DJ

on M0,n , then DI ∩ DJ 
= ∅ ⇔ I∗∗ J , which by definition means

I ⊆ J or I ⊆ J c or I ⊇ J or I ⊇ J c.

3 The cone of boundary 2-strata on M0,7

The main object of our study is Eff2(M0,7), which is a subcone of the real vector
space N2(M0,7) (in Sect. 3.5 we show that dimR N2(M0,7) = 127). We start by
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On the cone of effective 2-cycles on M0,7 673

Fig. 2 Stable 7-pointed rational curve parametrized by the generic point of a boundary 2-stratum

analyzing the subcone V2(M0,7) ⊆ Eff2(M0,7). The first thing we want to do is to
give a combinatorial description of the boundary 2-strata on M0,7. After this, we study
their intersections and their equivalence classes.

3.1 Combinatorial description of the boundary 2-strata on M0,7

According to Definition 2.1, a boundary 2-stratum on M0,7 is the closure of the locus
of points parametrizing stable 7-pointed rational curves of the shape shown in Fig. 2,
where I � J � K is a given partition of [7]. Stability imposes that 2 ≤ |I | ≤ 4,
1 ≤ |J | ≤ 3 and 2 ≤ |K | ≤ 4. Therefore: there is a bijection between set-theoretically
distinct boundary 2-strata, and partitions I � J � K of [7], with 2 ≤ |I | ≤ 4, 1 ≤
|J | ≤ 3 and 2 ≤ |K | ≤ 4, modulo the equivalence relation I � J � K ∼ K � J � I .

With sI,J,K ⊂ M0,7 we denote the boundary 2-stratum corresponding to the partition
I � J � K of [7]. The equivalence class of sI,J,K is denoted by σI,J,K . Obviously, we
have that σI,J,K = δI ·δK . An easy combinatorial count tells us that there are 490
set-theoretically distinct boundary 2-strata sI,J,K . A similar description applies for
codimension 2 boundary strata on M0,n for n ≥ 8. For general results about boundary
strata of codimension 2 on M0,n , see [4, Section 6].

3.2 Intersection of two distinct boundary 2-strata

Given σI,J,K and σL ,M,N , our goal is to compute the intersection σI,J,K ·σL ,M,N =
δI ·δK ·δL ·δN . This intersection is clearly zero, unless we require that the condition
defined here below is satisfied.

Definition 3.1 Consider two boundary 2-strata sI,J,K and sL ,M,N . Assume that

I∗∗L and I∗∗N and K∗∗L and K∗∗N .

If this condition is satisfied, we write sI,J,K ∗∗sL ,M,N .

Lemma 3.2 Let DI1 , DI2 and DI3 be three distinct boundary divisors on M0,7 such
that Ia∗∗ Ib for all {a, b} ⊂ {1, 2, 3}. Then DI1 ∩ DI2 ∩ DI3 is an F-curve.

Proof Assume without loss of generality that I1 ∩ I2 = ∅. We know that I3∗∗ I1 and
I3∗∗ I2, therefore
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(
I3 ⊂ I1 or I3 ⊂ I c1 or I3 ⊃ I1 or I3 ⊃ I c1

)
and

(
I3 ⊂ I2 or I3 ⊂ I c2 or I3 ⊃ I2 or I3 ⊃ I c2

)
.

Among these 16 cases, the only possible are

(I3 ⊂ I1 and I3 ⊂ I c2 ) or (I3 ⊂ I c1 and I3 ⊂ I2) or

(I3 ⊂ I c1 and I3 ⊂ I c2 ) or (I3 ⊂ I c1 and I3 ⊃ I2) or

(I3 ⊃ I1 and I3 ⊂ I c2 ) or (I3 ⊃ I1 and I3 ⊃ I2) or

(I3 ⊃ I1 and I3 ⊃ I c2 ) or (I3 ⊃ I c1 and I3 ⊃ I2).

Up to changing I3 with I c3 , we just need to consider

(I3 ⊂ I1 and I3 ⊂ I c2 ) or (I3 ⊂ I c1 and I3 ⊂ I2) or

(I3 ⊂ I c1 and I3 ⊂ I c2 ) or (I3 ⊂ I c1 and I3 ⊃ I2).

Now, inspecting each one of these four cases, it is easy to see that the intersection
DI1 ∩ DI2 ∩ DI3 is an F-curve. ��
Lemma 3.3 Let sI,J,K and sL ,M,N be two distinct boundary 2-strata on M0,7 satisfy-
ing the condition sI,J,K ∗∗sL ,M,N . Then we can write σI,J,K ·σL ,M,N = δI1 ·δI2 ·δI3 ·δI4
where, either the four boundary divisors δI1 , δI2 , δI3 and δI4 are pairwise distinct, or
exactly two of them are equal. In the latter case, we assume that I3 = I4. In any case,
we assume that I1 ∩ I2 = ∅ and |I1| ≤ |I2|.
Proof Write σI,J,K ·σL ,M,N = δI ·δK ·δL ·δN . Obviously δI 
= δK and δL 
= δN . If
two boundary divisors among δI , δK , δL and δN are equal, assume without loss of
generality that δK = δL . Then we must have that δN 
= δI , or we would have sI,J,K =
sL ,M,N . Also, δN 
= δK = δL . This proves that there can be at most two boundary
divisors among δI , δK , δL and δN that are equal. So, let us write δI ·δK ·δL ·δN =
δA ·δB ·δI3 ·δI4 , where {I, K , L , N } = {A, B, I3, I4} and I3 = I4 in case two boundary
divisors among δI , δK , δL and δN coincide. Finally, we can obviously rewrite δA ·δB =
δI1 ·δI2 with I1 ∩ I2 = ∅ (here we use the hypothesis of lemma sI,J,K ∗∗sL ,M,N ) and
|I1| ≤ |I2|. ��
Proposition 3.4 Let sI,J,K and sL ,M,N be two distinct boundary 2-strata on M0,7 such
that sI,J,K ∗∗sL ,M,N (otherwise, the intersection number σI,J,K ·σL ,M,N is trivially
zero). Write σI,J,K ·σL ,M,N = δI1 ·δI2 ·δI3 ·δI4 as prescribed by Lemma 3.3 (recall that
in this lemma we assumed, among other things, that |I1| ≤ |I2|). Then

σI,J,K ·σL ,M,N =

⎧
⎪⎨

⎪⎩

−1 if δI3 = δI4 , |I1| = 2 and |I2| ∈ {2, 4},
1 if δI1 , δI2 , δI3 and δI4 are pairwise distinct,

0 otherwise.
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On the cone of effective 2-cycles on M0,7 675

Proof Let us make some preliminary observations. We have that

σI,J,K ·σL ,M,N = δI1 ·δI2 ·δI3 ·δI4

= σI1,(I1∪I2)c,I2 ·δI3 ·δI4 = [
sI1,(I1∪I2)c,I2

] · δI3 · δI4 .

Define S = sI1,(I1∪I2)c,I2 and let i : S ↪→ M0,7 be the inclusion morphism. Using the
projection formula, we obtain that

[S] · δI3 ·δI4 = i∗[S] · (δI3 ·δI4) = [S] · i∗(δI3 ·δI4)

= i∗(δI3 ·δI4) = (i∗δI3) · (i∗δI4).

Now, for j = 3, 4, i∗δI j = [DI1 ∩ DI2 ∩ DI j ], where DI1 ∩ DI2 ∩ DI j is an F-curve
by Lemma 3.2. So i∗δI3 and i∗δI4 are two equivalence classes of F-curves on the
boundary 2-stratum S. There are two possibilities for S up to isomorphism.

(i) If |I1| = 2 and |I2| ∈ {2, 4}, then S ∼= M0,5. By Kapranov’s blow up construction
of M0,n (see [15]), we know that M0,5 is isomorphic to the blow up of P2 at four
points in general linear position. Moreover, the F-curves of M0,5 correspond to the
exceptional divisors of the blow up, and the strict transforms of the lines spanned
by the blown up points.

(ii) If |I2| = 3 and |I1| ∈ {2, 3}, then S ∼= M0,4× M0,4, which is isomorphic to
P1×P1. An F-curve on S corresponds to a line on P1×P1 in the form {p}×P1 or
P1×{p} for some point p ∈ P1.

Observe that in case (i) (resp. case (ii)) the self-intersection of an F-curve is −1 (resp.
0), and in both cases two distinct F-curves intersect at one point if and only if their
intersection number is 1.

Now, let us prove our intersection formula for σI,J,K ·σL ,M,N .

• |I1| = 2 and |I2| = 2. Up to permuting the labels, we have that

S ∼= M0,{1,2,x}× M0,{x,3,4,5,y}× M0,{y,6,7} ∼= M0,{x,3,4,5,y},

where x and y are the nodes of the stable 7-pointed rational curve corresponding
to the generic point of S. If δI3 = δI4 , then (i∗δI3) ·(i∗δI4) is equal to the self-
intersection of an F-curve on S ∼= M0,{x,3,4,5,y}, which gives σI,J,K ·σL ,M,N =
−1. So let us assume that δI1 , δI2 , δI3 and δI4 are pairwise distinct. Given j = 3, 4,
since I1∗∗ I j and I2∗∗ I j , then i∗δI j is equal to one of the following boundary
divisors on M0,{x,3,4,5,y}:

δ34, δ35, δ45 or δ345.

If i∗δI3 = δ34, δ35 or δ45, then i∗δI4 = δ345 because I3∗∗ I4 and δI3 
= δI4 . If
i∗δI3 = δ345, then i∗δI4 has to be equal to δ34, δ35 or δ45. In any case, σI,J,K ·
σL ,M,N = 1.
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• |I1| = 2 and |I2| = 4. We have isomorphisms

S ∼= M0,{1,2,x}× M0,{x,3,y}× M0,{y,4,5,6,7} ∼= M0,{y,4,5,6,7}.

If δI3 = δI4 , then again (i∗δI3) ·(i∗δI4) is equal to the self-intersection of an F-
curve on S ∼= M0,{y,4,5,6,7}, which gives σI,J,K ·σL ,M,N = −1. Let us assume that
δI3 
= δI4 . Given j = 3, 4, then i∗δI j is equal to one of the following boundary
divisors on M0,{y,4,5,6,7}:

δ45, δ46, δ47, δ56, δ57, δ67, δ456, δ457, δ467 or δ567.

If i∗δI3 = δ45, δ46, δ47, δ56, δ57 or δ67, then assume up to a change of labels that
i∗δI3 = δ45. In this case, i∗δI4 = δ67, δ456 or δ457. If i∗δI3 = δ456, δ457, δ467
or δ567, assume up to a change of labels that i∗δI3 = δ456. Then i∗δI4 has to
be equal to δ45, δ46 or δ56. Each one of these choices for i∗δI3 and i∗δI4 gives
σI,J,K · σL ,M,N = 1.

• |I1| = 2 and |I2| = 3. In this case we have

S ∼= M0,{1,2,x}× M0,{x,3,4,y}× M0,{y,5,6,7} ∼= M0,{x,3,4,y}× M0,{y,5,6,7}.

If δI3 = δI4 , then (i∗δI3) ·(i∗δI4) is equal to the self-intersection of an F-curve on
S ∼= M0,{x,3,4,y}× M0,{y,5,6,7}, which gives σI,J,K ·σL ,M,N = 0. Now consider the
case δI3 
= δI4 . For j = 3, 4, i∗δI j is equal to the equivalence class of one of the
following divisors on M0,{x,3,4,y}× M0,{y,5,6,7}:

D34× M0,{y,5,6,7}, M0,{x,3,4,y}× D56,

M0,{x,3,4,y}× D57 or M0,{x,3,4,y}× D67.

Since I3∗∗ I4, the only possibility for i∗δI3 and i∗δI4 is to belong to two different
rulings of S. It follows that σI,J,K ·σL ,M,N = 1.

• |I1| = 3 and |I2| = 3. Then

S ∼= M0,{1,2,3,x}× M0,{x,4,y}× M0,{y,5,6,7} ∼= M0,{1,2,3,x}× M0,{y,5,6,7}.

If δI3 = δI4 , then (i∗δI3) ·(i∗δI4) is equal to the self-intersection of an F-curve
on S ∼= M0,{1,2,3,x}× M0,{y,5,6,7}, which gives σI,J,K ·σL ,M,N = 0. For the case
δI3 
= δI4 , given j = 3, 4, i∗δI j is equal to the equivalence class of one of the
following divisors on M0,{1,2,3,x}× M0,{y,5,6,7}:

D12× M0,{y,5,6,7}, D13× M0,{y,5,6,7}, D23× M0,{y,5,6,7},
M0,{1,2,3,x}× D56, M0,{1,2,3,x}× D57 or M0,{1,2,3,x}× D67.

I3∗∗ I4 implies that i∗δI3 and i∗δI4 belong to twodifferent rulings of S. In particular,
σI,J,K ·σL ,M,N = 1.
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On the cone of effective 2-cycles on M0,7 677

At this point, the claimed intersection formula sums up all the considerations wemade
so far. ��

3.3 Self-intersection of a boundary 2-stratum

We want to compute σ 2
I,J,K = δI ·δK ·δI ·δK . The idea is to find an appropriate Keel

relation (see [16, p. 569, Theorem 1(2)]) that allows us to replace δI and reduce the
calculation to the previous case.

Proposition 3.5 Let σI,J,K be the equivalence class of a boundary 2-stratum with
|I | ≤ |K |. Then

σ 2
I,J,K =

⎧
⎪⎨

⎪⎩

0 if |I | = 2 and |J | = 1,

2 if |J | = 3,

1 otherwise.

Proof Up to relabeling the markings, it is enough to prove that σ 2
12,3,4567 = 0,

σ 2
123,4,567 = σ 2

12,34,567 = 1 and σ 2
12,345,67 = 2.

• σ 2
12,3,4567 = δ12 ·δ4567 ·δ12 ·δ4567. Let us use the boundary relation

∑

1,2∈S
3,4∈Sc

δS =
∑

1,3∈S
2,4∈Sc

δS �⇒

δ12 = δ13 + δ135 + δ136 + δ137 + δ1356 + δ1357

+ δ1367 + δ13567 − δ125 − δ126 − δ127

− δ1256 − δ1257 − δ1267 − δ12567.

But now, if δT is one of the boundary divisors that appear in the expression we
just found for δ12, then {1, 2}∗∗T is false or {4, 5, 6, 7}∗∗T is false. Hence,
σ 2
12,3,4567 = 0.

• σ 2
123,4,567 = δ123 ·δ567 ·δ123 ·δ567. Consider

∑

1,2∈S
4,5∈Sc

δS =
∑

1,4∈S
2,5∈Sc

δS �⇒

δ123 = δ14 + δ143 + δ146 + δ147 + δ1436 + δ1437

+ δ1467 + δ14367 − δ12 − δ126 − δ127

− δ1236 − δ1237 − δ1267 − δ12367.

After replacing δ123 with the new expression and distributing, we get σ 2
123,4,567 =

−δ123 ·δ567 ·δ12 ·δ567 = −δ12 ·δ4567 ·δ567 ·δ567 = −(−1) = 1.
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• σ 2
12,34,567 = δ12 ·δ567 ·δ12 ·δ567. We use the following boundary relation:

∑

1,2∈S
3,5∈Sc

δS =
∑

1,3∈S
2,5∈Sc

δS �⇒

δ12 = δ13 + δ134 + δ136 + δ137 + δ1346 + δ1347

+ δ1367 + δ13467 − δ124 − δ126 − δ127

− δ1246 − δ1247 − δ1267 − δ12467 �⇒
σ 2
12,34,567 = −δ12 ·δ567 ·δ124 ·δ567 = −δ12 ·δ3567 ·δ567 ·δ567 = 1.

• σ 2
12,345,67 = δ12 ·δ67 ·δ12 ·δ67.

∑

1,2∈S
3,6∈Sc

δS =
∑

1,3∈S
2,6∈Sc

δS �⇒

δ12 = δ13 + δ134 + δ135 + δ137 + δ1345 + δ1347

+ δ1357 + δ13457 − δ124 − δ125 − δ127

− δ1245 − δ1247 − δ1257 − δ12457 �⇒
σ 2
12,345,67 = −δ12 ·δ67 ·δ124 ·δ67 − δ12 ·δ67 ·δ125 ·δ67 − δ12 ·δ67 ·δ1245 ·δ67

= −δ12 ·δ3567 ·δ67 ·δ67 − δ12 ·δ3467 ·δ67 ·δ67 − δ12 ·δ367 ·δ67 ·δ67
= 1 + 1 − 0 = 2. ��

Remark 3.6 As one of the referees pointed out, Proposition 3.5 can also be proved
using [8, Lemma 3.5]. Say we want to compute σ 2

I,J,K . Then, adopting the same
notation used in [8, Lemma 3.5], one can take B = sI,J,K and let X → B be the
pullback of the universal family on M0,7 with respect to the inclusion sI,J,K ↪→ M0,7.
Then the intersection number σ 2

I,J,K can be computed using the formula provided at
the end of [8, Lemma 3.5].

3.4 Equivalence classes of boundary 2-strata

So far, we considered set theoretically distinct boundary 2-strata. However, we are
interested in studying distinct equivalence classes of boundary 2-strata.

Proposition 3.7 Consider σI,J,K and σL ,M,N with |I | ≤ |K |, |L| ≤ |N | and sI,J,K 
=
sL ,M,N . Then σI,J,K = σL ,M,N ⇔ I ∪ J = L ∪ M and |I ∪ J | = 3.

Proof (⇐) Assume {a, b, c, d, e, f, g} = [7] and let I ∪ J = {a, b, c}. Consider the
boundary divisor Dabc,de f g ∼= M0,4× M0,5 ∼= P1× M0,5. Let π : P1× M0,5 → P1 be
the usual projectionmorphism. IfC is the stable 7-pointed rational curve corresponding
to the generic point of Dabc, assume the node of C and the labels b, c fixed on the twig
which contains a, b and c. So we can think of a as parametrizing P1, and therefore
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π−1(b) = sab,c,de f g , π−1(c) = sac,b,de f g . In conclusion, sab,c,de f g and sac,b,de f g are
rationally equivalent.
(⇒) Let us prove the contrapositive.We proceed by enumerating all the possible cases.

(i) |J | = 3. Then 2 = σI,J,K ·σI,J,K 
= σL ,M,N ·σI,J,K ∈ {−1, 0, 1} ⇒ σI,J,K 
=
σL ,M,N .

(ii) |I | = |J | = 2. Up to relabeling, we can assume that σI,J,K = σ12,34,567. The
boundary 2-stratum σL ,M,N can be in one of the following forms:

σab,cd,e f g, σabc,d,e f g or σab,c,de f g

(σab,cde, f g is excluded because of what we just discussed in (i)). In any case,
we can write σL ,M,N = δS ·δT with |S| = 4. Therefore, σ12,34,567 ·σL ,M,N =
δ12 ·δ1234 ·δS ·δT can be equal to just 0 or −1 (more in detail, if S∗∗{1234}, then
S = {1, 2, 3, 4} and the intersection can be either 0 or −1). However σ12,34,567 ·
σ12,34,567 = 1, so σ12,34,567 
= σL ,M,N .

(iii) |J | = 1 and |I | = 3. This case uses the same strategy we adopted in (ii).
(iv) |J | = 1 and |I | = 2. We can assume σI,J,K = σ12,3,4567. Because of what we

proved so far, we can assume that sL ,M,N = sab,c,de f g . By our hypotheses, we
also have that sab,c,de f g has to be different from s13,2,4567 and s23,1,4567. But now,
up to permuting {4, 5, 6, 7} and {1, 2} (which leave σ12,3,4567 unchanged), there
are few possibilities for σab,c,de f g , which are

σ12,4,3567, σ13,4,2567, σ14,2,3567, σ14,3,2567, σ14,5,2367,

σ34,1,2567, σ34,5,1267, σ45,1,2367, σ45,3,1267, σ45,6,1237.

In each case, one can compute thatσab,c,de f g ·σ45,123,67 = 0usingProposition 3.4.
But σ12,3,4567 ·σ45,123,67 = 1 again by Proposition 3.4, and therefore σ12,3,4567 
=
σab,c,de f g . ��

Now, an easy count tells us that there are 420 distinct equivalence classes of boundary
2-strata on M0,7. In addition, these 420 equivalence classes generate distinct rays in
Eff2(M0,7) as we prove in the next proposition.

Proposition 3.8 Distinct equivalence classes of boundary 2-strata on M0,7 generate
distinct rays in the cone Eff2(M0,7).

Proof We say that a boundary 2-stratum σI,J,K is of type (a, b, c) if {a, b, c} =
{|I |, |J |, |K |}. Let α and β be two distinct boundary 2-strata on M0,7. Assume by
contradiction that we can find r ∈ R>0, r 
= 1, such that α = rβ.
There are three cases to discuss.

• α and β are not of type (2, 1, 4). Then α2 = r2β2 
= 0 by Proposition 3.5, so
that r = √

α2/β2. Considering all the possible cases for α2 and β2, we see that
r ∈ {

1/
√
2,

√
2
}
, which cannot be because r has to be rational.

• Exactly one among α and β is of type (2, 1, 4). This is impossible because one
side of the equality α2 = r2β2 would be zero and the other not.
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• Both α and β are of type (2, 1, 4). Since α 
= 0, we can find a boundary 2-stratum
γ such that α ·γ 
= 0. According to Propositions 3.4 and 3.5, we must have that
|α ·γ | = 1 and |β ·γ | ∈ {0, 1}. In any case, the equality |α ·γ | = r |β ·γ | gives a
contradiction. ��

Recent work of Chen and Coskun (see [4]) shows that the 420 equivalence classes of
boundary 2-strata on M0,7 generate extremal rays of Eff2(M0,7).

Theorem 3.9 ([4, Theorem 6.1]) Equivalence classes of boundary strata of codimen-
sion 2 on M0,n are extremal in Eff2(M0,n).

To conclude, the next corollary completely describes the cone V2(M0,7) and sums up
what we know about Eff2(M0,7) so far.

Corollary 3.10 The cone Eff2(M0,7) has at least 420 extremal rays, which are gener-
ated by the distinct equivalence classes of the boundary 2-strata on M0,7. In particular,
the closed cone V2(M0,7) has exactly 420 extremal rays.

3.5 The intersection form N2(M0,7)×N2(M0,7) → R

The real vector space N2(M0,7) is equipped with a symmetric bilinear form
Q : N2(M0,7)× N2(M0,7) → R given by the intersection between equivalence classes
of 2-cycles. Since Q is nondegenerate, then Q has rank equal to dimR N2(M0,7).

Proposition 3.11 dimR N2(M0,7) = 127.

Proof LetK be our base field.We know that the equivalence classes of the boundary 2-
strata span N2(M0,7) in any characteristic. Moreover, the linear dependence relations
between the equivalence classes of the boundary 2-strata on M0,7, only depend on
the combinatorics of the intersection between the boundary 2-strata (that we just
studied in Propositions 3.4 and 3.5), and all this does not depend on char(K). Hence,
dimR N2(M0,7) does not depend on the characteristic, and we can assume thatK = C.

As a complex variety, M0,7 is an HI scheme. An HI scheme X is a scheme of
characteristic zero such that the canonical map A∗(X) → H∗(X; Z) from the Chow
groups to the homology is an isomorphism (see [16, Appendix] for more details).
It follows that the Chow group CH2(M0,7) is isomorphic to the homology group
H4(M0,7; Z). Therefore, the dimension of N2(M0,7) ∼= CH2(M0,7)⊗ZR as a real
vector space is equal to b4, the 4-th Betti number of M0,7.

We can find b4 by computing PM0,7
(q) = ∑

j≥0 b j q j , the Poincaré polynomial of

M0,7.We compute this polynomial by using a recursive formula in [5, Section 5],which
gives the Poincaré polynomial of the space Td,n , the compact moduli space of stable
n-pointed rooted trees of d-dimensional projective spaces. In our case, M0,7 = T1,6
(see [5, Proposition 3.4.3]), and one can compute that PM0,7

(q) = 1+42q2+127q4+
42q6 + q8. ��
Proposition 3.12 The bilinear form Q has signature (86, 41).
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Proof The 420 equivalence classes of the boundary 2-strata span N2(M0,7). Therefore,
we can choose 127 of these 2-cycles to form a basis for N2(M0,7), and a matrix
representation for Q is given by the intersection matrix of these 127 equivalence
classes of boundary 2-strata. Since this matrix just depends on the combinatorics of
the intersection between the boundary 2-strata, we have that the signature of Q is
independent of the characteristic of the base field. So let C be our base field.

With this assumption, we have that M0,7 is an HI scheme and a smooth manifold,
implying that N2(M0,7) ∼= H4(M0,7; R). Using theHodge–Riemann bilinear relations
(see [12, Chapter 0]), one has that

I (M0,7) =
∑

p+q is even

(−1)ph p,q,

where I (M0,7) is the index of M0,7 (i.e. the number of positive eigenvalues minus the
number of negative eigenvalues in a matrix representation of Q), and h p,q the Hodge
numbers of M0,7.

Now, knowing that the Poincaré polynomial of M0,7 is PM0,7
(q) = 1 + 42q2 +

127q4 + 42q6 + q8 (see the proof of Proposition 3.11), and using the Hodge decom-
position, we can compute that

I (M0,7) = 2h0,0 + 4h2,0 − 2h1,1 + 2h4,0 − 2h3,1 + h2,2

= 2 + 0 − 84 + 0 − 0 + 127 = 45,

implying that the signature of Q is (86, 41). ��

Under amore arithmetic perspective, we can view Q as a bilinear form on H4(M0,7; Z)

(which is torsion-free). In this case, Q is unimodular by Poincaré duality and odd by
Proposition 3.5.

4 Lift of effective cycles

The technique we are about to describe allows to construct an effective k-cycle on
M0,n+1 given an effective k-cycle on M0,n .

4.1 The lift construction

Let π : M0,n+1 → M0,n be the map forgetting the (n+1)-th label. Consider the
boundary divisor Dn,n+1 and let i : Dn,n+1 ↪→ M0,n+1 be the inclusion morphism.
The following varieties can be naturally identified:

M0,n ≡ M0,[n−1]∪{x}× M0,{n,n+1,x} ≡ Dn,n+1,
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and therefore we have a commutative diagram

M0,n
i ��

id ����
��

��
��

�
M0,n+1

π

��
M0,n .

Definition 4.1 If α ∈ Effk(M0,n), then i∗α ∈ Effk(M0,n+1) will be called the lift of
α to M0,n+1.

Observe that, instead of just considering Dn,n+1, one can do a similar constructionwith
any Dab, {a, b} ⊂ [n + 1]. As the following lemma explains, some of the properties
of α are preserved after we lift it.

Lifting Lemma Let k and n be integers such that 0 < k < n − 3. Let α be the
equivalence class of an effective k-cycle on M0,n. Consider the maps i : M0,n →
M0,n+1 and π : M0,n+1 → M0,n as above. Then

(i) if α ∈ Effk(M0,n)\Vk(M0,n), then i∗α ∈ Effk(M0,n+1)\Vk(M0,n+1);
(ii) if α is extremal in Effk(M0,n), then i∗α is extremal in Effk(M0,n+1).

Proof (i) Assume by contradiction that i∗α ∈ Vk(M0,n+1). Therefore we can write
i∗α = ∑m

j=1 r j [Z j ], where r j ∈ R>0 and Z j ⊂ M0,n+1 are boundary k-strata. But

then α = id∗α = π∗i∗α = ∑m
j=1 r jπ∗[Z j ] ∈ Vk(M0,n), because π∗[Z j ] is either

zero or the equivalence class of a boundary k-stratum on M0,n for all j . This is a
contradiction.

(ii) Assume that i∗α = ∑m
j=1 r j [Z j ], where r j ∈ R>0 and Z j ⊂ M0,n+1 are

irreducible and effective k-cycles. We prove that [Z j ] is proportional to i∗α for all
j = 1, . . . , m.
Consider the reductionmorphism fA : M0,n+1 → M0,AwhereA is theweight data

(1/(n − 1), . . . , 1/(n − 1), 1, 1) (see [13]). The exceptional locus of fA is exactly
Dn,n+1 = i(M0,n) and fA(Dn,n+1) is a point. In particular fA∗i∗α = 0, implying
that

m∑

j=1

r j fA∗[Z j ] = 0.

Since M0,A is projective, we have that fA∗[Z j ] = 0 for all j , which is equivalent
to dim fA(Z j ) < k for all j . This implies that, given any j , Z j ⊂ Dn,n+1. Define
Z ′

j = i−1Z j , so that i∗[Z ′
j ] = Z j , and therefore

∑m
j=1 r j [Z ′

j ] is an effective k-cycle

on M0,n such that

i∗
m∑

j=1

r j [Z ′
j ] =

m∑

j=1

r j [Z j ] = i∗α.
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The pushforward morphism i∗ is injective on k-cycles, because π∗◦ i∗ is the identity.
It follows that α = ∑m

j=1 r j [Z ′
j ], and hence each [Z ′

j ] is proportional to α by the

extremality of α in Effk(M0,n). In particular, each [Z j ] has to be proportional to i∗α
for all j . ��
Alternatively, the following proposition can be used to prove the second part of the
lifting lemma.

Proposition 4.2 ([4, Proposition 2.5]) Let γ : Y → X be a morphism between two
projective varieties. Assume that Ak(Y ) → Nk(Y ) is an isomorphism and that the
composite γ∗ : Ak(Y ) → Ak(X) → Nk(X) is injective. Moreover, assume that
f : X → W is a morphism to a projective variety W whose exceptional locus is
contained in γ (Y ). If a k-dimensional subvariety Z ⊂ Y is an extremal cycle in
Effk(Y ) and if dim γ (Z) − dim f (γ (Z)) > 0, then γ (Z) is also extremal in Effk(X).

Given this result, one can prove that i∗α is extremal by taking Y = M0,n , X = M0,n+1,
γ = i , W = M0,AwithA = (1/(n − 1), . . . , 1/(n − 1), 1, 1), f = fA and [Z ] = α.

4.2 Fulton’s question

The following question is attributed to Fulton.

Question ([17, Question 1.1]) Let 0<k <n−3. Is it true that Vk(M0,n)=Effk(M0,n)?

Following [11,22] notation, denote the previous question with Fk(0, n) (observe that
the analogue question for k = 0 or k = n−3 is trivial). F1(0, 5) is answered positively
because M0,5 is a del Pezzo of degree 5. The answer to F1(0, 6) and F1(0, 7) is also
yes, but this is a deep result of Keel and McKernan (see [17]). F1(0, n) for n > 7 is an
open question, and the conjecture that says F1(0, n) has a positive answer for n > 7
is called the F-conjecture.

Keel and Vermeire showed that Fn−4(0, n) has a negative answer for all n ≥ 6
(see [11,22]). This result, combined with the lifting lemma, clearly shows what is the
answer to Fk(0, n) for 1 < k < n − 4.

Corollary 4.3 If 1 < k < n − 4, then Fk(0, n) has a negative answer, or in other
words Vk(M0,n) � Effk(M0,n).

Proof We know that Vk(M0,k+1) � Effk(M0,k+1) from [11,22]. Therefore, using
the lifting lemma, we see that Vk(M0,k+2) � Effk(M0,k+2). Now, by iterating this
argument, we obtain that Vk(M0,n) � Effk(M0,n). ��

5 Lifts to M0,7 of the Keel–Vermeire divisors on M0,6

The following description of the Keel–Vermeire divisors on M0,6 is convenient for us.

Definition 5.1 Assume [6] = {i, j, k, 	, m, q}. A divisor on M0,6 in the from

δKVmq,i j = δim + δ jm + δkq + δ	q + 2δi jm − δmq ,

is called a Keel–Vermeire divisor on M0,6.
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Properties of the Keel–Vermeire divisors on M0,6 A Keel–Vermeire divisor δKVmq,i j

on M0,6 is effective and cannot be written as an effective sum of boundary divisors.
This is proved in [22] in characteristic zero, and one can see that it actually holds in
any characteristic. It is also important for us to know that the Keel–Vermeire divisors
on M0,6 are extremal in the cone Eff2(M0,6) in any characteristic. A proof of this can
be found in [3]. Observe that δKVmq,i j = δKVi j,mq = δKVqm,i j = δKVmq, j i = δKVmq,k	, therefore

there are 15 Keel–Vermeire divisors on M0,6.
One more property (but we do not use it in this paper) is that the Keel–Vermeire

divisors together with the boundary divisors on M0,6 generate the cone Eff2(M0,6).
This was first proved by Hassett and Tschinkel in [14]. An alternative proof of this fact
can be found in [1] (actually, in [1] it is proved that the Cox ring of M0,6 is generated
by the sections of these divisors, which is a stronger condition).

Now we want to lift the Keel–Vermeire divisors to M0,7 and give a combinatorial
description of these lifts.

Proposition 5.2 Let [7] = {a, b, i, j, k, 	, m}. Then any lift to M0,7 of a Keel–
Vermeire divisor on M0,6 can be written as the following linear combination of
boundary 2-strata:

σim, jk	,ab + σ jm,ik	,ab + σi j	m,k,ab + σi jkm,	,ab + 2σi jm,k	,ab − σi jk	,m,ab.

Proof Let us choose a boundary divisor Dab on M0,7. This can be identified with
M0,([7]∪{x})\{a,b}, where x is an extra label. So, if we write ([7] ∪ {x})\{a, b} =
{i, j, k, l, m, x}, a Keel–Vermeire divisor on M0,([7]∪{x})\{a,b} is in the form

δKVmx,i j = δim + δ jm + δkx + δ	x + 2δi jm − δmx .

If ι : Dab ↪→ M0,7 is the natural inclusion, then the lift to M0,7 of δKVmx,i j is by definition

ι∗δKVmx,i j = ι∗δim + ι∗δ jm + ι∗δkx + ι∗δ	x + 2ι∗δi jm − ι∗δmx .

Now, each one of the pushforwards appearing in the right hand side of the previous
identity, can be computed by attaching along x a rational tail with the labels {x, a, b}.
By doing so, we obtain the claimed 2-cycle on M0,7. ��

Notation We use σKV
ab,m,i j to denote the following lift to M0,7 of a Keel–Vermeire

divisor on M0,6:

σKV
ab,m,i j = σim, jk	,ab+σ jm,ik	,ab+σi j	m,k,ab + σi jkm,	,ab + 2σi jm,k	,ab − σi jk	,m,ab.

The next lemma will be used several times.
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Lemma 5.3 Let πy : M0,7 → M0,[7]\{y} be the map forgetting the label y ∈ [7], and
let σKV

ab,m,i j be a lift to M0,7 of a Keel–Vermeire divisor on M0,6. Then

πy∗σKV
ab,m,i j =

⎧
⎪⎨

⎪⎩

δKVmb,i j if y = a,

δKVma,i j if y = b,

δab otherwise.

Proof First observe that

πa∗σKV
ab,m,i j = πa∗

(
σim, jk	,ab + σ jm,ik	,ab + σi j	m,k,ab

+ σi jkm,	,ab + 2σi jm,k	,ab − σi jk	,m,ab
)

= δim + δ jm + δkb + δ	b + 2δi jm − δmb = δKVmb,i j .

In the same way, one can prove that πb∗σKV
ab,m,i j = δKVma,i j .

Let y ∈ [7]\{a, b}. Up to relabeling, we can assume that σKV
ab,m,i j = σKV

67,5,12.
Moreover, by the symmetries of the Keel–Vermeire divisors, we just have to prove our
claim when y = 5 or y = 1. In the former case,

π5∗σKV
67,5,12 = π5∗

(
σ15,234,67 + σ25,134,67 + σ1245,3,67

+ σ1235,4,67 + 2σ125,34,67 − σ1234,5,67
)

= δ67 + δ67 + 0 + 0 + 0 − δ67 = δ67.

Finally, if y = 1, we have that

π1∗σKV
67,5,12 = δ67 + 0 + 0 + 0 + 0 − 0 = δ67. ��

Since we have
(7
2

)
choices for Dab and 15 choices for a Keel–Vermeire divisor inside

Dab, in total we have 315 lifts of Keel–Vermeire divisors to M0,7. The question now is
whether these 315 equivalence classes generate different extremal rays of Eff2(M0,7).
This is what we are about to prove.

Proposition 5.4 The 315 lifts to M0,7 of the Keel–Vermeire divisors on M0,6 generate
distinct extremal rays of Eff2(M0,7) that lie outside of V2(M0,7).

Proof The extremality of these rays and the fact that they lie outside of the cone
V2(M0,7) follow from our lifting lemma in Sect. 4. Let us prove that these rays are all
distinct.

Consider two lifts of Keel–Vermeire divisors in the form σKV
ab,m,i j , σKV

ab,m′,i ′ j ′ .

Assume that σKV
ab,m,i j = rσKV

ab,m′,i ′ j ′ for some r ∈ R>0. Then we must have δKVmb,i j =
πa∗σKV

ab,m,i j = πa∗rσKV
ab,m′,i ′ j ′ = rδKVm′b,i ′ j ′ which implies that δKVmb,i j = δKVm′b,i ′ j ′

because different Keel–Vermeire divisors generate different rays. In particular,
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σKV
ab,m,i j = σKV

ab,m′,i ′ j ′ . From this we conclude that lifts of different Keel–Vermeire
divisors which are contained in the same boundary divisor give rise to distinct rays of
Eff2(M0,7).

Let us consider two distinct boundary divisors Dab and Dcd . Consider two lifts
σKV

ab,m,i j and σKV
cd,m′,i ′ j ′ . Assume by contradiction that σKV

ab,m,i j = rσKV
cd,m′,i ′ j ′ for some

r ∈ R>0. Since Dab and Dcd are distinct, we can assume without loss of generality
that a /∈ {c, d}. It follows that

δKVmb,i j = πa∗σKV
ab,m,i j = πa∗rσKV

cd,m′,i ′ j ′ = rδcd ,

which is a contradiction because a Keel–Vermeire divisor cannot be proportional to a
boundary divisor. ��
Definition 5.5 Define VKV

2 (M0,7) ⊆ Eff2(M0,7) to be the cone generated by the
boundary 2-strata on M0,7 and the lifts to M0,7 of the Keel-Vermeire divisors on M0,6.

Corollary 5.6 The cone Eff2(M0,7) has at least 735 extremal rays: 420 are generated
by the boundary 2-strata and 315 are generated by the lifts of Keel–Vermeire divisors.
In particular, the closed cone VKV

2 (M0,7) has exactly 735 extremal rays.

Now our goal is to describe Eff2(M0,7) outside of the cone VKV
2 (M0,7). The first

question that one may ask is whether or not VKV
2 (M0,7) is equal to Eff2(M0,7). In

what follows, we establish that these two cones are not equal.

6 Embedded blow ups of P2 in M0,n

6.1 The blow up construction

In [2],Castravet andTevelev give away to embedBl(P2) in M0,n , where the embedding
and the blow up depend on the choice of n points in P2. Moreover, they tell us how
the boundary divisors pullback under this embedding. Here is their construction.

Theorem 6.1 ([2, Theorem 3.1]) Suppose p1, . . . , pn ∈ P2 are distinct points, and let
U ⊂ P2 be the complement of the union of the lines spanned by these points. Consider
the morphism

F : U → M0,n

defined as follows: given p ∈ U, let F(p) = [
(P1;ϕp(p1), . . . , ϕp(pn))

]
, where

ϕp : P2 ��� P1 is the projection from p. Then F extends to a morphism

F : Blp1,...,pn P2 → M0,n .

If the points p1, . . . , pn do not lie on a (possibly reducible) conic, then F is a closed
embedding. In this case the boundary divisors δI of M0,n pullback as follows: for

123



On the cone of effective 2-cycles on M0,7 687

each line L in our line arrangement, if I ⊆ [n] is such that pi ∈ L ⇔ i ∈ I , then
F∗δI = L̂ I (the strict transform of L I ) and (assuming |I | ≥ 3) F∗δI\{k} = Ek, where
k ∈ I and Ek is the exceptional divisor over pk. Other boundary divisors pullback
trivially.

In [2], this theorem is used to embed curves in M0,n that are possible candidate to be
counterexamples to the F-conjecture (later on in the paper, they show that these curves
actually are not counterexamples by means of the “arithmetic break” technique).

From now on, our attention is focused on this kind of embedded surfaces. Let us
give a name to them.

Definition 6.2 Consider n points p1, . . . , pn ∈ P2 that do not lie on a (possibly redu-
cible) conic. Then, using Theorem 6.1, the embedded surface F : Blp1,...,pn (P

2) ↪→
M0,n will be called an embedded blow up of P2 in M0,n . The points p1, . . . , pn will
be called the points associated to the embedded blow up.

Remark 6.3 If σ is the equivalence class of an embedded blow up of P2 in M0,n ,
observe that the intersection properties of σ can be studied using the projection for-
mula. Let σI,J,K be a codimension 2 boundary stratum on M0,n . Then

σ ·σI,J,K = F∗
[
Blp1,...,pn (P

2)
] · (δI ·δK )

= [
Blp1,...,pn (P

2)
] · F∗(δI ·δK ) = (F∗δI ) · (F∗δK ).

Now, the intersection (F∗δI ) ·(F∗δK ) is easy to compute because the two divisors
F∗δI and F∗δK can be either zero, an exceptional divisor, or the strict transform of a
line that is spanned by the n points in P2.

It will be crucial to know that the Keel–Vermeire divisors on M0,6 can be realized as
particular embedded blow ups of P2. This is proved by Castravet and Tevelev in [3,
Section 9] using irreducible hypertrees.

Definition 6.4 Let n ≥ 3 and d ≥ 1. A hypertree � = {�1, . . . , �d} on the set [n] is
a collection of subsets of [n] such that the following conditions are satisfied:

• any subset � j has at least three elements;
• any i ∈ [n] is contained in at least two subsets � j ;
• (convexity axiom)

∣∣∣∣
⋃

j∈S

� j

∣∣∣∣ ≥
∑

j∈S

(|� j | − 2) for any S � [d], |S| > 1;

• (normalization)

n − 2 =
∑

j∈[d]
(|� j | − 2).
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A hypertree is irreducible if all the inequalities in the convexity axiom are strict. A
planar realization for a hypertree � on the set [n] is a configuration of different points
p1, . . . , pn ∈ P2 such that, for any subset S � [n] with at least three points, {pi }i∈S

are collinear if and only if S ⊆ � j for some j .

Remark 6.5 It turns out that, up to a change of labels, there is a unique irreducible
hypertree on the set [6], and a planar realization for this is given by the intersection
points of four lines in P2 in general linear position. In [3, Section 9] is proved that the
embedding in M0,6 of the blow up of P2 at the six points of this planar realization gives
a Keel–Vermeire divisor. Moreover, we can actually obtain all the 15 Keel–Vermeire
divisors by labeling the six points appropriately.

The reason whywe are interested in these embedded blow ups of P2 in M0,7 is because
they allow us to provide examples of effective 2-cycles whose equivalence classes do
not lie in the cone VKV

2 (M0,7). The examples we discuss are given by what we call
special hypertree surfaces, which are related to Castravet and Tevelev irreducible
hypertrees.

6.2 Special hypertree surfaces on M0,7

Definition 6.6 An embedded blow up ofP2 in M0,7 with associated points p1, . . . , p7
will be called a hypertree surface on M0,7 if there exists y ∈ [7] such that p1, . . . , p̂y,

. . . , p7 is a planar realization for an irreducible hypertree on the set [7]\{y}. A hyper-
tree surface will be called special if we can find three distinct such y ∈ [7].
Lemma 6.7 Let h ∈ Eff2(M0,7) be the equivalence class of a hypertree surface on
M0,7. Then h /∈ V2(M0,7).

Proof Let p1, . . . , p7 ∈ P2 be the points associated to h and assume without loss
of generality that the points p1, . . . , p6 form a planar realization for an irreducible
hypertree on the set [6]. Arguing by contradiction, let h = ∑

αI,J,K σI,J,K for some
coefficients αI,J,K ∈ R≥0. If π7 : M0,7 → M0,6 is the morphism forgetting the
7-th label, we have that π7∗h = ∑

αI,J,K π7∗σI,J,K . Now, π7∗σI,J,K can be either
zero (for example π7∗σ12,34,567), or a boundary divisor (for example π7∗σ12,345,67).
Therefore π7∗h is an effective sum of boundary divisors on M0,6. However, π7∗h can
be thought of as the equivalence class of the surface in M0,6 obtained by embedding
the blow up of P2 at p1, . . . , p6. But then π7∗h has to be a Keel–Vermeire divisor (see
Remark 6.5), implying that π7∗h cannot be written as an effective sum of boundary
2-strata. This gives a contradiction. ��
Theorem 6.8 Let h ∈ Eff2(M0,7) be the equivalence class of a special hypertree
surface on M0,7. Then h /∈ VKV

2 (M0,7).

Proof Let p1, . . . , p7 ∈ P2 be the points associated to h. Up to relabeling, we can
assume that y = 5, 6, 7 are such that p1, . . . , p̂y, . . . , p7 is a planar realization for
an irreducible hypertree on the set [7]\{y}. Assume by contradiction that we can find
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nonnegative coefficients αI,J,K , βab,m,i j such that

h =
∑

αI,J,K σI,J,K +
∑

{a,b}⊂[7]

15∑
βab,m,i j σ

KV
ab,m,i j ,

where
15∑

βab,m,i j σ
KV
ab,m,i j runs over the 15 lifts of the Keel–Vermeire divisors on Dab.

Fix any coefficient βa′b′,m′,i ′ j ′ (so that a′, b′, m′, i ′ and j ′ are fixed indices). At least
one number among 5, 6 and 7 is not contained in {a′, b′}. Assume without loss of
generality that 7 /∈ {a′, b′}. If we consider the morphism π7 : M0,7 → M0,6 forgetting
the 7-th label, using Lemma 5.3 we obtain that

π7∗ h =
∑

αI,J,K π7∗σI,J,K +
∑

{a,b}⊂[7]

15∑
βab,m,i j π7∗σKV

ab,m,i j

=
∑

αI,J,K π7∗σI,J,K +
∑

b∈[6]

15∑
β7b,m,i j π7∗σKV

7b,m,i j

+
∑

{a,b}⊂[6]

15∑
βab,m,i j π7∗σKV

ab,m,i j

=
∑

αI,J,K π7∗σI,J,K +
∑

b∈[6]

15∑
β7b,m,i j δ

KV
bm,i j

+
∑

{a,b}⊂[6]

15∑
βab,m,i j δab,

(1)

where π7∗h is a Keel–Vermeire divisor. The total coefficient of the boundary divisor
δa′b′ in (1) is equal to a sum (· · · + βa′b′,m′,i ′ j ′ + · · · ), where the terms of the sum
are equal to some of the coefficients αI,J,K , βab,m,i j . The Keel–Vermeire divisors are
extremal in Eff2(M0,6), therefore the coefficient of δa′b′ has to be zero. Since the terms
in the sum (· · ·+βa′b′,m′,i ′ j ′ +· · · ) = 0 are nonnegative, it follows thatβa′b′,m′,i ′ j ′ = 0.
But βa′b′,m′,i ′ j ′ is arbitrary, so any coefficient βab,m,i j is equal to zero. This implies
that h = ∑

αI,J,K σI,J,K ∈ VKV
2 (M0,7), which contradicts Lemma 6.7. ��

6.3 Classification of the special hypertree surfaces on M0,7

Let us find all the possible special hypertree surfaces on M0,7. We start by fixing a
planar realization p1, . . . , p6 ∈ P2 for the irreducible hypertree given by

� = {{1, 4, 5}, {1, 3, 6}, {2, 3, 5}, {2, 4, 6}}.
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Fig. 3 Line arrangement spanned by a planar realization for � if char(K) 
= 2

We consider permutations of these labels later on. Observe that the points p1, . . . , p6
span seven lines: three of them contain exactly two labeled points, and the remaining
four contain exactly three labeled points. Let X be the union of these seven lines. If
char(K) 
= 2, this points and lines arrangement is shown below in Fig. 3 (K is our
base field).

The characteristic 2 case is discussed separately at the end of this section. Therefore,
for now assume that char(K) 
= 2.

Let us add a seventh point p7 to the configuration in Fig. 3. Take p7 ∈ P2\ X .
Then we cannot have a special hypertree surface, because if we drop a label y ∈ [6],
the points p1, . . . , p̂y, . . . , p7 span at least five lines containing exactly two labeled
points. Therefore we must have p7 ∈ X .

Doing similar considerations, one can easily prove that p7 must lie in the intersec-
tion of at least two lines in X . Since p7 is distinct from p1, . . . , p6, we have three
possibilities for p7 (the lines in X intersect in 9 points). All three of these cases give a
special hypertree surface, as shown in Fig. 4. The arrows show the three points py that
can be dropped in order to get an irreducible hypertree on the set [7]\{y}. Consider the
action S7�Eff2(M0,7) induced by the natural action S7� M0,7. When a permutation
τ ∈ S7 acts on σ ∈ Eff2(M0,7), we write τ �σ . Let h1 be the equivalence class of
the special hypertree surface obtained by using the top left points configuration in
Fig. 4. Similarly, define h2 to be the equivalence class of the special hypertree surface
obtained by using the top right configuration, and h3 the one obtained by using the
bottom configuration in the same figure.

First, observe that h2 belongs to the orbit of h1 under the S7-action because
h2 = ((36)(45))�h1. Also h3 belongs to the orbit of h1, because h3 =
((35)(56)(26)(24)(15)(67))�h2. Therefore, it is enough to consider the S7-action on
h1.

Let us find the stabilizer of h1 under the S7-action. It is easy to find the following
subgroup of StabS7(h1):

G1 = {
id, (34)(65), (47)(16), (37)(15), (156)(473), (165)(374)

}
,
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Fig. 4 Points arrangements in P2 which give special hypertree surfaces on M0,7

which is isomorphic to the dihedral group D3. It is less obvious to notice this other
subgroup of the stabilizer

G2 = {
id, (12)(56), (25)(16), (26)(15)

}
,

which is isomorphic to the Klein group (Z/2Z)×(Z/2Z). To see why G1, G2 ⊆
StabS7(h1), just take any τ ∈ G1 ∪ G2 and observe that τ �h1 and h1 have the same
intersection number with every boundary 2-stratum on M0,7.

To show that StabS7(h1) is actually generated by G1 and G2, take any τ ∈
StabS7(h1). Thinking of τ as a bijection τ : [7] → [7], then τ({3, 4, 7}) = {3, 4, 7}.
This is true because, in order to preserve the intersection numbers with the boundary
2-strata, we need to send a labeled point that lies on a line containing exactly two
labeled points to a labeled point having the same property. In particular, we must have
that τ({1, 2, 5, 6}) = {1, 2, 5, 6}. Therefore τ acts by permuting the two sets {3, 4, 7}
and {1, 2, 5, 6} separately. Now there are two cases: τ fixes 2 or not. In the first case,
the only possibility for τ is to be an element of G1. If τ does not fix 2, then assume that
τ is the identity on {3, 4, 7} (we can assume this up to composing with an element of
G1). In this case, one can check that τ must be an element of G2 in order to preserve the
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intersection numbers with the boundary 2-strata on M0,7. Therefore, we just deduced
that StabS7(h1) = 〈G1, G2〉.

An easy count tells us that 〈G1, G2〉 = 24, and therefore the orbit of h1 has
7!/24 = 210 distinct equivalence classes. As one can easily check, these classes
generate distinct rays in Eff2(M0,7). The next proposition summarizes what we proved
so far.

Proposition 6.9 In characteristic different from 2, there are 210 distinct equivalence
classes of special hypertree surfaces on M0,7. These classes generate 210 distinct rays
of Eff2(M0,7) which lie outside of the cone VKV

2 (M0,7).

Classification in characteristic 2 The discussion in characteristic 2 is essentially the
same, but with the following exceptions. First of all, in Fig. 3, the seven lines intersect
in seven points (one of which is unlabeled), giving the well known Fano configuration.
Also in this case, p7 has to be the unlabeled point at the intersection of three lines,
and therefore we produced only one special hypertree surface. Now, if we consider the
S7-action, it is straightforward to see that the stabilizer of the special hypertree surface
we found is PGL(3, F2), which has 168 elements. So, the analogue of Proposition 6.9
in characteristic 2 is the following.

Proposition 6.10 In characteristic 2, there are 30 distinct equivalence classes of spe-
cial hypertree surfaces on M0,7. These classes generate 30 distinct rays of Eff2(M0,7)

which lie outside of the cone VKV
2 (M0,7).

Remark 6.11 We do not know yet if the rays generated by the equivalence classes
of the special hypertree surfaces are extremal in Eff2(M0,7), and certainly a proof
or a disproof of the extremality of these rays would be a further step toward the
understanding of the cone Eff2(M0,7).

Remark 6.12 We observed that the equivalence classes of the special hypertree sur-
faces are invariant with respect to a certain subgroup of S7. Given a subgroup G of
Sn , the idea of considering G-invariant sub-loci of M0,n intersecting the interior M0,n
recently appeared in [19]. Also, the same idea was previously used to describe the
Keel–Vermeire divisors (see [22, Section 3]).

Remark 6.13 Consider the moduli space M
Sn
0,n , which is the quotient of M0,n by the

natural action Sn � M0,n . Aswe studied Eff2(M0,7), one can also consider Eff2(M
S7
0,7).

For a study of the pseudoeffective cone Eff2(M
S7
0,7) see [10, Section 7.3].

Let us define the following subcone of Eff2(M0,7).

Definition 6.14 Define VKV+CT
2 (M0,7) ⊆ Eff2(M0,7) to be the cone generated by the

equivalence classes of the boundary 2-strata, the lifts of the Keel–Vermeire divisors
on M0,6 and the embedded blow ups of P2 in M0,7.

It follows from what we proved that we have strict inclusions

V2(M0,7) � VKV
2 (M0,7) � VKV+CT

2 (M0,7).
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7 Generalization to M0,n for any n > 7 and further questions

Wecan generalize our constructions for 2-cycles on M0,7 to any M0,n with n > 7. First,
define VKV

2 (M0,n) inductively to be the subcone of Eff2(M0,n) generated by V2(M0,n)

and by the lifts of the effective 2-cycles in VKV
2 (M0,n−1). Similarly, we can define

VKV+CT
2 (M0,n) inductively to be the subcone of Eff2(M0,n) generated byV2(M0,n), by

the lifts of the effective 2-cycles in VKV+CT
2 (M0,n−1) and by the embedded blow up of

P2 in M0,n . Since we already know that V2(M0,7) � VKV
2 (M0,7) � VKV+CT

2 (M0,7),
it is not hard to see that we have the following strict inclusions:

V2(M0,n) � VKV
2 (M0,n) � VKV+CT

2 (M0,n).

At this point, one can ask the following questions.

Question 7.1 Is VKV+CT
2 (M0,7) equal to Eff2(M0,7)?

Question 7.2 Is it possible to give examples of embedded blow ups of P2 in M0,7 that
generate extremal rays of Eff2(M0,7)?

Question 7.3 Is Eff2(M0,7) equal to Eff2(M0,7)?
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