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1 Introduction

The Bernoulli numbers, Bn , n ∈ Z, n � 0, defined by the generating function

t

et − 1
=

∞∑

n=0

Bn
tn

n! ,

play important roles in many applications in number theory, combinatorics, numerical
analysis and other branches of mathematics. The first few Bernoulli numbers are
B0 = 1, B1 = −1/2, B2 = 1/6, and Bn = 0 for all odd n � 3.

Bernoulli numbers have several relationswith combinatorial numbers. For example,
we have

Bn = (−1)n
n∑

m=0

S2(n,m)
(−1)mm!
m + 1

, (1)

where S2(n,m) denotes the Stirling numbers of the second kind which are defined as

(et − 1)m

m! =
∞∑

n=m

S2(n,m)
tn

n! . (2)

These numbers are also determined by

S2(n,m) = 1

m!
m∑

j=0

(−1) j
(
m

j

)
(m − j)n,

and S2(n,m) = 0 for n < m (see [13] for other relations and properties).
There are numerous generalizations of Bernoulli numbers, including the poly-

Bernoulli numbers defined by Kaneko [19] in 1997 as

Lik(1 − e−t )

1 − e−t
=

∞∑

n=0

B(k)
n

tn

n! ,

where

Lik(z) =
∞∑

n=1

zn

nk

is the kth polylogarithm function. When k = 1 we have B(1)
n = Bn , the classical

Bernoulli number, except that B(1)
1 = −B1 when n = 1. The generating function of

the poly-Bernoulli numbers may also be written in terms of iterated integrals as
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Generalizations of poly-Bernoulli and poly-Cauchy numbers 801

et
1

et − 1

t∫

0

1

eu − 1

t∫

0

1

eu − 1
· · ·

t∫

0

u

eu − 1
︸ ︷︷ ︸

(k−1)-times

dudu · · · du︸ ︷︷ ︸
(k−1)-times

=
∞∑

n=0

B(k)
n

tn

n! ,

and a combinatorial formula for B(k)
n is

B(k)
n = (−1)n

n∑

m=0

(−1)mm!S2(n,m)

(m + 1)k
. (3)

Thus putting k = 1 gives (1). The poly-Bernoulli numbers are related to multiple zeta
values (see [2,3]), and for comprehensive information we refer to [1, Chapter 14].

The Cauchy numbers are denoted by cn and defined as the definite integral of the
falling factorial

cn =
1∫

0

t (t − 1) · · · (t − n + 1) dt = n!
1∫

0

(
t

n

)
dt

(see [27]). The generating function of Cauchy numbers is given by

t

log(1 + t)
=

∞∑

n=0

cn
tn

n! .

Cauchy numbers share a particular relationship with Bernoulli numbers of the second
kind bn , in that cn = n!bn (for detailed information on bn we refer to [6,17,28]).
Cauchy numbers satisfy the combinatorial formula

cn = (−1)n
n∑

m=0

(−1)mS1(n,m)

m + 1
,

where S1(n,m) are the (unsigned) Stirling numbers of the first kind which are defined
by

[log(1 + t)]m
m! =

∞∑

n=m

(−1)n−mS1(n,m)
tn

n! .

These numbers also arise as the coefficients of the rising factorial

t (t + 1) · · · (t + n − 1) =
n∑

m=0

S1(n,m)tm,

and S1(n,m) = 0 if n < m.
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802 M. Cenkci, P.T. Young

The definite integral defining the Cauchy numbers and the iterated integral expres-
sion for poly-Bernoulli numbers motivate a definition of poly-Cauchy numbers as

c(k)
n = n!

1∫

0

· · ·
1∫

0︸ ︷︷ ︸
k-times

(
t1t2 · · · tk

n

)
dt1dt2 · · · dtk,

(see [22]). For k = 1, c(1)
n = cn are the Cauchy numbers. The poly-Cauchy numbers

and the Stirling numbers of the first kind share a particular relationship in that

c(k)
n = (−1)n

n∑

m=0

(−1)mS1(n,m)

(m + 1)k
. (4)

To give a generating function for poly-Cauchy numbers, let Lifk(z) be the polyloga-
rithm factorial function defined by

Lifk(z) =
∞∑

m=0

zm

m!(m + 1)k
.

Then we have

Lifk(log(1 + t)) =
∞∑

n=0

c(k)
n

tn

n! .

Recently there have been extensive studies in generalizing poly-Bernoulli and poly-
Cauchy numbers. In [9], poly-Bernoulli numbers are generalized with a q parameter.
In [25], shifted poly-Cauchy and poly-Bernoulli numbers are defined and in [23] these
numbers are further generalized with a q parameter. In [12,16], poly-Bernoulli and
poly-Cauchy numbers and polynomials are considered by means of multiparameters.

The objective of this paper is to give further generalizations for poly-Bernoulli
and poly-Cauchy numbers. These generalizations, in particular, give some symme-
tries for Stirling number series, and lead to a unified investigation of arithmetic and
algebraic properties for poly-Bernoulli and poly-Cauchy numbers. Moreover since
the multiple zeta values and the Arakawa–Kaneko zeta functions are closely related
to poly-Bernoulli numbers and polynomials, inverse binomial series and Bernoulli
polynomial series (see [3,10,11,32,33]), the generalizations in this paper may lead
to further investigations related to various zeta functions. One of the generalizations
is inspired from the polylogarithm function. Since the polylogarithm function can be
derived from theHurwitz–Lerch zeta function, poly-Bernoulli numbers are generalized
by using this more general function. Similar modification leads to a generalization for
poly-Cauchy numbers. The other generalizations come from the combinatorial identi-
ties (3) and (4). These formulas, which involve Stirling numbers, are reconsidered by
employing weighted and degenerate weighted Stirling numbers. Numerous formulas
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Generalizations of poly-Bernoulli and poly-Cauchy numbers 803

such as a recurrence formula and a symmetry for generalizations of Stirling numbers,
and some divisibility properties including partial congruences are also presented.

2 Generalizations with Hurwitz–Lerch zeta function

A general Hurwitz–Lerch zeta function �(z, s, a) is defined for s ∈ C when |z| < 1,
Re s > 1 when |z| = 1 and a /∈ {0,−1,−2, . . .} by the series ([30])

�(z, s, a) =
∞∑

n=0

zn

(n + a)s
.

This function includes several special functions, one of which is the polylogarithm
function

Lis(z) =
∞∑

n=1

zn

ns
= z�(z, s, 1). (5)

Since

Lik(1 − e−t )

1 − e−t
=

∞∑

n=0

B(k)
n

tn

n! ,

equation (5) motivates the generalization

�(1 − e−t, s, a) =
∞∑

n=0

B(k)
n (a)

tn

n! , (6)

so that B(k)
n (1) = B(k)

n . We call B(k)
n (a) the Hurwitz type poly-Bernoulli numbers. An

explicit formula can be obtained by direct use of (2) and (6) as follows

Theorem 2.1 For the Hurwitz type poly-Bernoulli numbers B(k)
n (a) we have

B(k)
n (a) = (−1)n

n∑

m=0

(−1)mm!S2(n,m)

(m + a)k
. (7)

Proof We have

∞∑

n=0

B(k)
n (a)

tn

n! = �(1 − e−t, k, a) =
∞∑

m=0

(1 − e−t )m

(m + a)k

=
∞∑

m=0

(−1)m(e−t − 1)m

(m + a)k

=
∞∑

m=0

(−1)mm!
(m + a)k

∞∑

n=m

S2(n,m)
(−t)n

n!
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804 M. Cenkci, P.T. Young

=
∞∑

n=0

n∑

m=0

(−1)n+mm!S2(n,m)

(m + a)k

tn

n!

by means of standard operation on series (see, for instance [20, Equation (1.11)]).
Comparison of the coefficients of tn/n! in the first and last terms in this string of
equalities yields (7). ��

One of the remarkable properties of poly-Bernoulli numbers with combinatorial
interpretations is a closed formula in the case of negative upper index k (for combina-
torial interpretations of poly-Bernoulli numbers we refer to [5,26]). Such a formula
for Hurwitz type poly-Bernoulli numbers may be given in terms of weighted Stirling
numbers. Carlitz [8] has defined R1(n, k, x) and R(n, k, x) by means of

(1 − t)−x (− log(1 − t))k

k! =
∞∑

n=0

R1(n, k, x)
tn

n! ,

and

ext (et − 1)k

k! =
∞∑

n=0

R(n, k, x)
tn

n! .

For convenience we call R1(n, k, x) and R(n, k, x) the weighted Stirling numbers of
the first and second kind and denote them by S1(n, k, x) and S2(n, k, x), respectively,
although Carlitz used that terminology for slightly different numbers. When x = 0 we
have S1(n, k, 0) = (−1)n−k S1(n, k) and S2(n, k, 0) = S2(n, k), the ordinary Stirling
numbers.

Theorem 2.2 For the Hurwitz type poly-Bernoulli numbers B(−k)
n (a) we have

B(−k)
n (a) =

min(n,k)∑

j=0

( j !)2S2(n + 1, j + 1)S2(k, j, a). (8)

For the proof we need two relations regarding Stirling and weighted Stirling num-
bers of the second kind.

Lemma 2.3 We have

n∑

k=0

(
n

k

)
S2(k, j) = S2(n + 1, j + 1) = S2(n, j, 1) (9)

and
k∑

n=0

ak−n
(
k

n

)
S2(n, j) = S2(k, j, a). (10)
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Generalizations of poly-Bernoulli and poly-Cauchy numbers 805

Proof Although the first equality (9) can be found in standard texts such as [13] we
give the proof here in order to show the relation to the second equation. We start with
(2). Replacing m with j + 1,

(et − 1) j+1

( j + 1)! =
∞∑

n= j+1

S2(n, j + 1)
tn

n! =
∞∑

n= j

S2(n + 1, j + 1)
tn+1

(n + 1)! .

Differentiation with respect to t gives

∞∑

n= j

S2(n + 1, j + 1)
tn

n! = (et − 1) jet

j ! .

Now,

∞∑

n= j

S2(n + 1, j + 1)
tn

n! =
∞∑

n=0

S2(n + 1, j + 1)
tn

n! = (et − 1) jet

j !

=
∞∑

n=0

S2(n, j)
tn

n!
∞∑

n=0

tn

n! =
∞∑

n=0

n∑

k=0

(
n

k

)
S2(k, j)

tn

n! .

Comparing the coefficients of tn/n! on both sides gives the first part of (9). The second
part follows from

∞∑

n=0

S2(n + 1, j + 1)
tn

n! = (et − 1) jet

j ! =
∞∑

n=0

S2(n, j, 1)
tn

n!

in a somewhat more direct manner than (9). We have

∞∑

k=0

k∑

n=0

ak−n
(
k

n

)
S2(n, j)

tk

k! =
∞∑

k=0

k∑

n=0

ak−n tk−n

(k − n)!
S2(n, j)tn

n!

=
∞∑

k=0

(at)k

k!
∞∑

k=0

S2(k, j)
tk

k!

= (et − 1) jeat

j ! =
∞∑

k=0

S2(k, j, a)
tk

k! .

Comparison of the coefficients gives the result. ��
Proof of Theorem 2.2 In order to prove the theorem we calculate the generating func-
tion of B(−k)

n (a) in the following form:

∞∑

k=0

∞∑

n=0

B(−k)
n (a)

tn

n!
uk

k! =
∞∑

k=0

∞∑

m=0

(1 − e−t )m (m + a)k
uk

k!
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806 M. Cenkci, P.T. Young

=
∞∑

m=0

(1 − e−t )m e(m+a)u = eau
∞∑

m=0

(eu − eu−t )m

= eau

1 − eu + eu−t
= et+au

1 − (et − 1)(eu − 1)

=
∞∑

j=0

et (et − 1) jeau(eu − 1) j

=
∞∑

j=0

[
j !

∞∑

n=0

tn

n!
∞∑

n=0

S2(n, j)
tn

n!
][

j !
∞∑

k=0

akuk

k!
∞∑

k=0

S2(k, j)
uk

k!
]

=
∞∑

j=0

[
j !

∞∑

n=0

n∑

k=0

(
n

k

)
S2(k, j)

tn

n!
][

j !
∞∑

k=0

k∑

n=0

ak−n
(
k

n

)
S2(n, j)

uk

k!
]
.

From (9) and (10) we get

∞∑

k=0

∞∑

n=0

B(−k)
n (a)

tn

n!
uk

k!

=
∞∑

j=0

[
j !

∞∑

n=0

S2(n + 1, j + 1)
tn

n!
][

j !
∞∑

k=0

S2(k, j, a)
uk

k!
]

=
∞∑

k=0

∞∑

n=0

min(n,k)∑

j=0

( j !)2 S2(n + 1, j + 1)S2(k, j, a)
tn

n!
uk

k! .

Comparing the coefficients gives the result. ��

We note that for a = 1, Theorem 2.2 reduces to the closed formula given by Arakawa
and Kaneko [2] and by Sánchez-Peregrino [29].

Recall that the poly-Cauchy numbers c(k)
n are defined by means of the generating

function

Lifk(log(1 + t)) =
∞∑

n=0

c(k)
n

tn

n! ,

where Lifk(z) is the polylogarithm factorial function given by

Lifk(z) =
∞∑

m=0

zm

m!(m + 1)k
.

In order to give a Hurwitz type extension of poly-Cauchy numbers we define the
Hurwitz–Lerch factorial zeta function �f (z, s, a) by
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Generalizations of poly-Bernoulli and poly-Cauchy numbers 807

�f (z, s, a) =
∞∑

n=0

zn

n!(n + a)s
.

For a = 1 and s = k, a natural number, we obviously have �f (z, k, 1) = Lifk(z).
Thus the Hurwitz type poly-Cauchy numbers which are denoted by c(k)

n (a) may be
defined by

�f (log(1 + t), k, a) =
∞∑

n=0

c(k)
n (a)

tn

n! .

As in theBernoulli case an explicit formula for theHurwitz type poly-Cauchy numbers
can be obtained involving Stirling numbers of the first kind.

Theorem 2.4 For the Hurwitz type poly-Cauchy numbers c(k)
n (a) we have

c(k)
n (a) = (−1)n

n∑

m=0

(−1)m S1(n,m)

(m + a)k
. (11)

Proof We have

∞∑

n=0

c(k)
n (a)

tn

n! = �f (log(1 + t), k, a) =
∞∑

m=0

(log(1 + t))m

m!(m + a)k

=
∞∑

m=0

1

(m + a)k

∞∑

n=m

(−1)n−m S1(n,m)
tn

n!

=
∞∑

n=0

n∑

m=0

(−1)n−m S1(n,m)

(m + a)k

tn

n! .

Equating the coefficients gives (11). ��
We remark that the Hurwitz type poly-Cauchy numbers are defined as shifted poly-
Cauchy numbers in [25] and a generalization is given in [23].

Komatsu [22] defined the poly-Cauchy numbers of the second kind ĉ (k)
n by

Lifk(− log(1 + t)) =
∞∑

n=0

ĉ (k)
n

tn

n! .

Following Komatsu we define the Hurwitz type poly-Cauchy numbers of the second
kind as

�f (− log(1 + t), k, a) =
∞∑

n=0

ĉ (k)
n (a)

tn

n! .
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808 M. Cenkci, P.T. Young

An explicit formula for ĉ (k)
n (a) is

ĉ (k)
n (a) = (−1)n

n∑

m=0

S1(n,m)

(m + a)k
, (12)

which can be shown along the lines of the proof of Theorem 2.4.
Orthogonality and inverse relations for Stirling numbers allow us to present some

relations for Hurwitz type poly-Bernoulli and poly-Cauchy numbers. From the orthog-
onality relations ([13, p. 264])

n∑

r=m

(−1)n−r S1(n, r)S2(r,m) =
n∑

r=m

(−1)n−r S2(n, r)S1(r,m) = δmn,

δmn being the Kronecker symbol (that is, δmn = 1 for m = n and δmn = 0 otherwise),
inverse relations

fn =
n∑

m=0

(−1)n+mS1(n,m)gm ⇐⇒ gn =
n∑

m=0

S2(n,m) fm (13)

follow directly. Using (13) we get the following results.

Theorem 2.5 For the Hurwitz type poly-Bernoulli numbers B(k)
n (a) we have

n∑

m=0

S1(n,m)B(k)
m (a) = n!

(n + a)k
. (14)

Proof This follows from (13) by taking fm = (−1)mm!/(m + a)k and gn =
(−1)n B(k)

n (a). ��

Theorem 2.6 For the Hurwitz type poly-Cauchy numbers we have

n∑

m=0

S2(n,m)c(k)
m (a) = 1

(n + a)k
(15)

and
n∑

m=0

S2(n,m) ĉ (k)
m (a) = (−1)n

(n + a)k
. (16)

Proof From the definitions, (15) follows from the duality relation (13) by taking
gm = 1/(m + a)k and fn = c(k)

n (a), and (16) by taking gm = (−1)m/(m + a)k and
fn = ĉ (k)

n (a). ��
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Generalizations of poly-Bernoulli and poly-Cauchy numbers 809

Theorem 2.7 For nonnegative integer n we have

B(k)
n (a) =

n∑

l=0

n∑

m=0

(−1)m+nm!S2(n,m)S2(m, l)c(k)
l (a), (17)

B(k)
n (a) =

n∑

l=0

n∑

m=0

(−1)mm!S2(n,m)S2(m, l) ĉ (k)
l (a), (18)

c(k)
n (a) =

n∑

l=0

n∑

m=0

(−1)m+n

m! S1(n,m)S1(m, l)B(k)
l (a), (19)

ĉ (k)
n (a) =

n∑

l=0

n∑

m=0

(−1)n

m! S1(n,m)S1(m, l)B(k)
l (a). (20)

Proof Using (15) we compute

n∑

l=0

n∑

m=0

(−1)m+nm!S2(n,m)S2(m, l)c(k)
l (a)

=
n∑

l=0

n∑

m=l

(−1)m+nm!S2(n,m)S2(m, l)c(k)
l (a)

=
n∑

m=0

(−1)m+nm!S2(n,m)

m∑

l=0

S2(m, l)c(k)
l (a)

=
n∑

m=0

(−1)m+nm!S2(n,m)

(m + a)k
= B(k)

n (a)

giving (17). Similarly, use of (16) gives (18). On the other hand, by (14) we get (19)
and (20). ��

There are no closed formulas for the poly-Cauchy numbers like those for the poly-
Bernoulli numbers in (8). Instead we have

∞∑

k=0

∞∑

n=0

c(−k)
n (a)

tn

n!
uk

k! = eay(1 + t)e
u

and

∞∑

k=0

∞∑

n=0

ĉ (−k)
n (a)

tn

n!
uk

k! = eau

(1 + t)eu
.
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810 M. Cenkci, P.T. Young

3 Generalizations with weighted Stirling numbers

In this section we consider generalizations of poly-Bernoulli and poly-Cauchy num-
bers motivated by (3) and (4). We first review some facts about weighted Stirling
numbers. As mentioned in the previous section the weighted Stirling numbers of the
second kind S2(n,m, x) are defined by

et x (et − 1)m

m! =
∞∑

n=0

S2(n,m, x)
tn

n! .

Thus the weighted Stirling numbers of the second kind are in fact ordinary Stirling
numbers of the second kind with an exponential factor. So the weighted and ordinary
Stirling numbers of the second kind are related by

S2(n,m, x) =
n∑

r=0

(
n

r

)
xr S2(n − r,m). (21)

From (21) we have S2(n,m, x) = 0 for n < m. Since

S2(n,m) = 1

m!
m∑

j=0

(−1)m− j
(
m

j

)
jn,

we have

S2(n,m, x) = 1

m!
m∑

j=0

(−1)m− j
(
m

j

)
(x + j)n. (22)

Multiplying (21) by m!( ym
)
and summing over m gives

n∑

m=0

m!
(
y

m

)
S2(n,m, x) = (y + x)n. (23)

Equation (23) gives the recurrence formula

S2(n + 1,m, x) = (x + m)S2(n,m, x) + S2(n,m − 1, x). (24)

From (22) or (24) with S2(0, 0, x) = 1 we have

S2(n, 0, x) = xn, S2(n, n, x) = 1.

For the weighted Stirling numbers of the first kind S1(n,m, x) defined in Sect. 2 by

(1 + t)−x (log(1 + t))m

m! =
∞∑

n=0

(−1)n+m S1(n,m, x)
tn

n! ,
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we have

S1(n,m, x) =
n∑

r=0

(
n

r

)
〈x〉r S1(n − r,m), (25)

where 〈x〉r is the rising factorial

〈x〉r = x(x + 1) · · · (x + r − 1)

with 〈x〉0 = 1,

S1(n,m, x) =
n∑

r=0

(
m + r

r

)
xr S1(n,m + r),

S1(n + 1,m, x) = S1(n,m − 1, x) + (x + n)S1(n,m, x),

(26)

and

S1(n, 0, x) = 〈x〉n, S1(n, n, x) = 1.

We note from (25) that S1(n,m, x) = 0 for n < m.
Recall from (3) that

B(k)
n = (−1)n

n∑

m=0

(−1)mm!S2(n,m)

(m + 1)k
.

In this equation we replace S2(n,m) by weighted Stirling number of the second kind
S2(n,m, x). We then define weighed type poly-Bernoulli numbers by

B(k)
n (x) = (−1)n

n∑

m=0

(−1)mm!S2(n,m, x)

(m + 1)k
. (27)

From (27) we have

∞∑

n=0

B(k)
n (x)

tn

n! =
∞∑

n=0

n∑

m=0

(−1)n+mm!S2(n,m, x)

(m + 1)k
tn

n!

=
∞∑

m=0

(−1)mm!
(m + 1)k

∞∑

n=0

S2(n,m, x)
(−t)n

n!

=
∞∑

m=0

(−1)mm!
(m + 1)k

e−t x (e−t − 1)m

m!

= e−t x
∞∑

m=0

(1 − e−t )m

(m + 1)k
= e−t x

∞∑

m=1

(1 − e−t )m−1

mk
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812 M. Cenkci, P.T. Young

= e−t x

1 − e−t

∞∑

m=1

(1 − e−t )m

mk
= e−t x Lik(1 − e−t )

1 − e−t
.

We remark that this kind of generalization for poly-Bernoulli numbers has recently
been studiedbyCoppoandCandelpergher [10],Bayad andHamahata [4], andKomatsu
andLuca [24]. They called B(k)

n (x) the poly-Bernoulli polynomials. To bemore precise
Coppo and Candelpergher defined these polynomials as

Lik(1 − e−t )

1 − e−t
e−xt =

∞∑

n=0

B(k)
n (x)

tn

n! ,

while Bayad and Hamahata defined them by

Lik(1 − e−t )

1 − e−t
ext =

∞∑

n=0

B(k)
n (x)

tn

n! ,

and Komatsu and Luca defined them by

B(k)
n (x) = (−1)n

n∑

m=0

(−1)mS2(n,m)

m∑

i=0

(
m

i

)
(−x)i

(m − i + 1)k
.

The numbers B(−k)
n (x) satisfy a closed formula like (8).

Theorem 3.1 For nonnegative integers n and k we have

B(−k)
n (x) =

min(n,k)∑

j=0

( j !)2S2(n, j, 1 − x)S2(k + 1, j + 1).

Proof We have

∞∑

k=0

∞∑

n=0

B(−k)
n (x)

tn

n!
uk

k! =
∞∑

k=0

∞∑

m=0

e−xt (1 − e−t )m(m + 1)k
uk

k!

= eu−xt
∞∑

m=0

(eu − eu−t )m

= eu−xt 1

1 − eu + eu−t
= eu+(1−x)t 1

1 − (et − 1)(eu − 1)

=
∞∑

j=0

e(1−x)t (et − 1) jeu(eu − 1) j

=
∞∑

j=0

[
j !

∞∑

n=0

S2(n, j, 1 − x)
tn

n!
][

j !
∞∑

k=0

S2(k, j, 1)
uk

k!
]
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=
∞∑

k=0

∞∑

n=0

min(n,k)∑

j=0

( j !)2S2(n, j, 1 − x)S2(k + 1, j + 1)
tn

n!
uk

k! ,

since S2(n,m, x) = 0 for n < m and S2(k, j, 1) = S2(k + 1, j + 1). The result now
follows by comparing the coefficients. ��
Recall from (4) that

c(k)
n = (−1)n

n∑

m=0

(−1)mS1(n,m)

(m + 1)k
, ĉ (k)

n = (−1)n
n∑

m=0

S1(n,m)

(m + 1)k
.

This last equation was given by Komatsu [22] and can be derived from (12) with
a = 1.Writing S1(n,m, x) instead of S1(n,m), we define weighted type poly-Cauchy
numbers of the first kind and of the second kind by

c(k)
n (x) = (−1)n

n∑

m=0

(−1)mS1(n,m, x)

(m + 1)k
(28)

and

ĉ (k)
n (x) = (−1)n

n∑

m=0

S1(n,m, x)

(m + 1)k
.

From (28) and (26) we have

c(k)
n (x) = (−1)n

n∑

m=0

(−1)m

(m + 1)k

n∑

r=0

(
m + r

r

)
xr S1(n,m + r)

= (−1)n
n+r∑

m=r

(−1)m−r

(m − r + 1)k

n∑

r=0

(
m

r

)
xr S1(n,m)

= (−1)n
n∑

r=0

n∑

m=r

(−1)m−r

(m − r + 1)k

(
m

r

)
xr S1(n,m)

=
n∑

m=0

S1(n,m)(−1)n+m
m∑

r=0

(
m

r

)
(−x)r

(m − r + 1)k
.

We also have

∞∑

n=0

c(k)
n (x)

tn

n! =
∞∑

n=0

n∑

m=0

(−1)n+mS1(n,m, x)

(m + 1)k
tn

n!

=
∞∑

m=0

1

(m + 1)k

∞∑

n=0

(−1)n+mS2(n,m, x)
tn

n!
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=
∞∑

m=0

(1 + t)−x (log(1 + t))m

(m + 1)km!
= (1 + t)−xLifk(log(1 + t)).

In the view of above equations we note that Komatsu [21,22], Kamano and
Komatsu [18], and Komatsu and Luca [24] have given these definitions and called
them poly-Cauchy polynomials.

For the weighted type poly-Cauchy numbers of the second kind we similarly have

ĉ (k)
n (x) = (−1)n

n∑

m=0

S1(n,m)

m∑

r=0

(
m

r

)
(−x)r

(m − r + 1)k

and

∞∑

n=0

ĉ (k)
n (x)

tn

n! = (1 + t)−xLifk(− log(1 + t)).

In order to obtain combinatorial formulas for the weighted type poly-Bernoulli and
poly-Cauchy numbers, we use the orthogonality and inverse relations for weighted
Stirling numbers.

Orthogonality relations forweightedStirling numbers havebeengivenbyCarlitz [8]
as

n∑

r=m

(−1)n−r S2(n, r, x)S1(r,m, x) =
n∑

r=m

(−1)r−mS1(n, r, x)S2(r,m, x) = δmn .

We thus obtain the inverse relation

fn =
n∑

m=0

(−1)n+mS1(n,m, x)gm ⇐⇒ gn =
n∑

m=0

S2(n,m, x) fm . (29)

Theorem 3.2 For the weighted type poly-Bernoulli numbers B(k)
n (x) we have

n∑

m=0

S1(n,m, x)B(k)
m (x) = n!

(n + 1)k
.

Proof This follows from relation (29) by taking fm = (−1)mm!/(m + 1)k and gn =
(−1)n B(k)

n (x). ��
Theorem 3.3 For the weighted type poly-Cauchy numbers of the first and second kind
we have

n∑

m=0

S2(n,m, x)c(k)
m (x) = 1

(n + 1)k
(30)
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and
n∑

m=0

S1(n,m, x) ĉ (k)
m (x) = (−1)n

(n + 1)k
. (31)

Proof From the definitions, (30) follows from (29) by taking gm = 1/(m + 1)k and
fn = c(k)

n (x), and (31) by taking gm = (−1)m/(m + 1)k and fn = ĉ (k)
n (x). ��

Theorem 3.4 For nonnegative integer n and any x, y we have

B(k)
n (x) =

n∑

l=0

n∑

m=0

(−1)m+nm!S2(n,m, x)S2(m, l, y)c(k)
l (y),

B(k)
n (x) =

n∑

l=0

n∑

m=0

(−1)mm!S2(n,m, x)S2(m, l, y) ĉ (k)
l (y),

c(k)
n (x) =

n∑

l=0

n∑

m=0

(−1)m+n

m! S1(n,m, x)S1(m, l, y)B(k)
l (y),

ĉ (k)
n (x) =

n∑

l=0

n∑

m=0

(−1)n

m! S1(n,m, x)S1(m, l, y)B(k)
l (y).

Proof The definitions of B(k)
n (x), c (k)

n (x) and ĉ (k)
n (x), together with Theorems 3.2

and 3.3 give the results. ��

4 Hurwitz type weighted poly-Bernoulli and poly-Cauchy numbers

As the title indicates, we may combine the definitions of Hurwitz type and weighted
type poly-Bernoulli and poly-Cauchy numbers. We define

B(k)
n (a, x) = (−1)n

n∑

m=0

(−1)mm!S2(n,m, x)

(m + a)k
,

c(k)
n (a, x) = (−1)n

n∑

m=0

(−1)mS1(n,m, x)

(m + a)k
,

ĉ (k)
n (a, x) = (−1)n

n∑

m=0

S1(n,m, x)

(m + a)k
.

From the generating functions of Hurwitz type and weighted type numbers we obtain

B(k)
n (a, x) =

n∑

m=0

(−1)m
(
n

m

)
xm B(k)

n−m(a),

c(k)
n (a, x) =

n∑

m=0

(−1)m
(
n

m

)
xmc(k)

n−m(a),
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816 M. Cenkci, P.T. Young

ĉ (k)
n (a, x) =

n∑

m=0

(−1)m
(
n

m

)
xm ĉ (k)

n−m(a).

The generating functions of weighted Stirling numbers suggest two different recur-
rence formulas, namely,

S2(n,m, x + 1) = (m + 1)S2(n,m + 1, x) + S2(n,m, x)

and

S1(n,m, x) = S1(n,m, x + 1) − nS1(n − 1,m, x + 1).

These recurrences lead to the following interesting results:

B(k)
n (a, x + 1) + B(k)

n (a − 1, x) = B(k)
n (a, x) + (−1)nxn

(a − 1)k
, a 
= 1,

c(k)
n (a, x + 1) − nc(k)

n−1(a, x + 1) = c(k)
n (a, x),

ĉ (k)
n (a, x + 1) − nĉ (k)

n−1(a, x + 1) = ĉ (k)
n (a, x).

5 Degenerate poly-Bernoulli and poly-Cauchy numbers

The method that extends Bernoulli and Cauchy numbers to poly-Bernoulli and poly-
Cauchy numbers can be adapted to different kinds of number sequences. In this section
we consider poly-extensions of degenerate Bernoulli and Cauchy numbers.

The degenerate Bernoulli numbers βn(λ) were defined by Carlitz [7] as

t

(1 + λt)μ − 1
=

∞∑

n=0

βn(λ)
tn

n!

where λμ = 1. Note that the limiting case λ = 0 gives the generating function of the
ordinary Bernoulli numbers, so βn(0) = Bn .

Following Kaneko we define the degenerate poly-Bernoulli numbers β
(k)
n (λ) by

Lik(1 − (1 − λt)μ)

1 − (1 − λt)μ
=

∞∑

n=0

β(k)
n (λ)

tn

n! . (32)

Carlitz [7] also defined degenerate Stirling numbers of the second kind S2(n,m |λ) by

((1 + λt)μ − 1)m = m!
∞∑

n=m

S2(n,m |λ)
tn

n! . (33)

Equations (32) and (33) give an explicit formula for degenerate poly-Bernoulli num-
bers.
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Generalizations of poly-Bernoulli and poly-Cauchy numbers 817

Theorem 5.1 For the degenerate poly-Bernoulli numbers β
(k)
n (λ) we have

β(k)
n (λ) = (−1)n

n∑

m=0

(−1)mm!S2(n,m |λ)

(m + 1)k
. (34)

Proof We have

∞∑

n=0

β(k)
n (λ)

tn

n! = Lik(1 − (1 − λt)μ)

1 − (1 − λt)μ

= 1

1 − (1 − λt)μ

∞∑

m=1

(1 − (1 − λt)μ)m

mk

=
∞∑

m=0

(−1)m

(m + 1)k
((1 − λt)μ − 1)m

=
∞∑

m=0

(−1)mm!
(m + 1)k

∞∑

n=m

S2(n,m |λ)
(−t)n

n!

=
∞∑

n=0

n∑

m=0

(−1)m+nm!S2(n,m |λ)

(m + 1)k
tn

n! .

Comparing the coefficients gives the result. ��
We recall that the poly-Cauchy numbers are defined by

Lifk(log(1 + t)) =
∞∑

n=0

c(k)
n

tn

n! .

We therefore define degenerate poly-Cauchy numbers c(k)
n (λ) by

Lifk

(
(1 + t)λ − 1

λ

)
=

∞∑

n=0

c(k)
n (λ)

tn

n! .

To obtain an explicit formula for c(k)
n (λ) we use the degenerate Stirling numbers of

the first kind S1(n,m |λ) which were defined by Carlitz [7] as

(
(1 + t)λ − 1

λ

)m
= m!

∞∑

n=m

(−1)n−mS1(n,m |λ)
tn

n! .

Theorem 5.2 For the degenerate poly-Cauchy numbers c(k)
n (λ) we have

c(k)
n (λ) = (−1)n

n∑

m=0

(−1)mS1(n,m |λ)

(m + 1)k
. (35)
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Proof We have

∞∑

n=0

c(k)
n (λ)

tn

n! = Lifk

(
(1 + t)λ − 1

λ

)
=

∞∑

m=0

((1 + t)λ − 1)m/λm

(m + 1)km!

=
∞∑

m=0

1

(m + 1)k

∞∑

n=m

(−1)n−mS1(n,m |λ)
tn

n!

=
∞∑

n=0

n∑

m=0

(−1)n−mS1(n,m |λ)

(m + 1)k
tn

n! .

Comparing the coefficients proves the theorem. ��
The degenerate Stirling numbers of the first and second kind satisfy the orthogonality
relation

n∑

r=m

(−1)n−r S2(n, r |λ)S1(r,m |λ)

=
n∑

r=m

(−1)r−mS1(n, r |λ)S2(r,m |λ) = δnm

(36)

([7, Equation (1.14)]). From (36) we obtain the inverse relation

fn =
n∑

m=0

(−1)n+mS1(n,m |λ)gm ⇐⇒ gn =
n∑

m=0

S2(n,m |λ) fm, (37)

which provides the following results.

Theorem 5.3 For degenerate poly-Bernoulli and poly-Cauchy numbers we have

n∑

m=0

S1(n,m |λ)β(k)
m (λ) = n!

(n + 1)k
(38)

and
n∑

m=0

S2(n,m |λ)c(k)
m (λ) = 1

(n + 1)k
. (39)

Proof Relation (38) follows from (37) with fm = (−1)mm!/(m + 1)k and gn =
(−1)nβ(k)

n (λ), while relation (39) follows from (37) with gm = 1/(m + 1)k and
fn = c(k)

n (λ). ��
Theorem 5.4 For nonnegative integer n and any λ, θ we have

β(k)
n (λ) =

n∑

l=0

n∑

m=0

(−1)n+mm!S2(n,m |λ)S2(m, l |θ)c(k)
l (θ), (40)
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c(k)
n (λ) =

n∑

l=0

n∑

m=0

(−1)n+m

m! S1(n,m |λ)S1(m, l |θ)β
(k)
l (θ). (41)

Proof For (41) we use (39) and obtain

n∑

l=0

n∑

m=0

(−1)n+m

m! S1(n,m|λ)S1(m, l |θ)β
(k)
l (θ)

=
n∑

l=0

n∑

m=l

(−1)n+m

m! S1(n,m |λ)S1(m, l|θ)β
(k)
l (θ)

=
n∑

m=0

(−1)n+m

m! S1(n,m |λ)

m∑

l=0

S1(m, l |θ)β
(k)
l (θ)

=
n∑

m=0

(−1)n+m

m! S1(n,m |λ)
m!

(m + 1)k
= c(k)

n (λ).

Similarly (38) gives (40). ��

6 Degenerate weighted poly-Bernoulli and poly-Cauchy numbers

We may further generalize poly-Bernoulli and poly-Cauchy numbers by means of
degenerate weighted Stirling numbers. The degenerate weighted Stirling numbers of
the first and second kind are defined by Howard [14] respectively as

(1 + t)λ−x
(

(1 + t)λ − 1

λ

)m
= m!

∞∑

n=m

(−1)n−m S1(n,m, x |λ)
tn

n! (42)

and

(1 + λt)μx ((1 + λt)μ − 1)m = m!
∞∑

n=m

S2(n,m, x |λ)
tn

n! . (43)

We define degenerate weighted poly-Bernoulli β
(k)
n (x, λ) and poly-Cauchy numbers

c(k)
n (x, λ) by simply replacing the degenerate Stirling numbers in (34) and (35) with
S2(n,m, x |λ) and S1(n,m, x |λ). Thus

β(k)
n (x, λ) = (−1)n

n∑

m=0

(−1)mm!S2(n,m, x |λ)

(m + 1)k
(44)

are the degenerate weighted poly-Bernoulli numbers and

c(k)
n (x, λ) = (−1)n

n∑

m=0

(−1)m S1(n,m, x |λ)

(m + 1)k
(45)
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are the degenerate weighted poly-Cauchy numbers. Generating functions for these
numbers are given as follows

Theorem 6.1 We have

Lik(1 − (1 − λt)μ)

1 − (1 − λt)μ
(1 − λt)μx =

∞∑

n=0

β(k)
n (x, λ)

tn

n!

and

Lifk

(
(1 + t)λ − 1

λ

)
(1 + t)λ−x =

∞∑

n=0

c(k)
n (x, λ)

tn

n! .

Proof From (43) and (44) we have

∞∑

n=0

β(k)
n (x, λ)

tn

n! =
∞∑

n=0

n∑

m=0

(−1)n+mm!S2(n,m, x |λ)

(m + 1)k
tn

n!

=
∞∑

m=0

(−1)mm!
(m + 1)k

∞∑

n=m

S2(n,m, x |λ)
(−t)n

n!

=
∞∑

m=0

(−1)m

(m + 1)k
(1 − λt)μx ((1 − λt)μ − 1)m

= (1 − λt)μx
∞∑

m=0

(1 − (1 − λt)μ)m

(m + 1)k

= (1 − λt)μx

1 − (1 − λt)μ

∞∑

m=1

(1 − (1 − λt)μ)m

mk

= Lik(1 − (1 − λt)μ)

1 − (1 − λt)μ
(1 − λt)μx.

Similarly (42) and (45) yield the second result. ��

From Theorem 6.1 we observe that β(k)
n (0, λ) = β

(k)
n (λ) and c(k)

n (λ, λ) = c(k)
n (λ).

In order to obtain relations among degenerate weighted poly-Bernoulli and poly-
Cauchy numbers, we need an inverse relation for the degenerate weighted Stirling
numbers. Hsu and Shiue [15] defined a very general class S(n,m;α, β, x) of
sequences which generalize the Stirling numbers. An exponential generating func-
tion for S(n,m;α, β, x) is

(1 + αt)x/α
(

(1 + αt)β/α − 1

β

)m
= m!

∞∑

n=0

S(n,m;α, β, x)
tn

n! . (46)
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We note from (46) that S(n,m; 1, λ,−x) = (−1)n+m S1(n,m, x + λ|λ) and
S(n,m; λ, 1, x) = S2(n,m, x |λ). They also gave the orthogonality relation

n∑

r=m

S(n, r;α, β, x)S(r,m;β, α,−x)

=
n∑

r=m

S(n, r;β, α,−x)S(r,m;β, α, x) = δnm .

(47)

If we write α = 1, β = λ and replace x by −x in (47) we obtain the orthogonality
relation for the degenerate Stirling numbers as

n∑

r=m

(−1)n−r S1(n, r, x + λ|λ)S2(r,m, x |λ)

=
n∑

r=m

(−1)r−m S2(n, r, x |λ)S1(r,m, x + λ|λ) = δnm .

(48)

From (48) we easily derive the inverse relation

fn =
n∑

m=0

(−1)n+m S1(n,m, x + λ|λ)gm

⇐⇒ gn =
n∑

m=0

S2(n,m, x |λ) fm .

(49)

Theorem 6.2 For degenerate weighted poly-Bernoulli and poly-Cauchy numbers we
have

n∑

m=0

S1(n,m, x + λ|λ)β(k)
m (x, λ) = n!

(n + 1)k
(50)

and
n∑

m=0

S2(n,m, x |λ)c(k)
m (x, λ) = 1

(n + 1)k
. (51)

Proof Relation (50) follows from (49) by setting fm = (−1)mm!/(m + 1)k and
gn = (−1)nβ(k)

n (x, λ). Relation (51) is obtained from (49) by taking gm = 1/(m+1)k

and fn = c(k)
n (x, λ). ��

Theorem 6.3 For nonnegative integer n and any values of x, y, λ, θ we have

β(k)
n (x, λ) =

n∑

l=0

n∑

m=0

(−1)n+mm!S2(n,m |λ)S2(m, l, y |θ)c(k)
l (y + θ, θ),

c(k)
n (x, λ) =

n∑

l=0

n∑

m=0

(−1)n+m

m! S1(n,m, x + λ|λ)S1(m, l, y + θ |θ)β
(k)
l (y, θ).
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Proof Using Theorem 6.2,

n∑

l=0

n∑

m=0

(−1)n+mm!S2(n,m, x |λ)S2(m, l, y |θ)c(k)
l (y + θ, θ)

=
n∑

l=0

n∑

m=l

(−1)n+mm!S2(n,m, x |λ)S2(m, l, y |θ)c(k)
l (y + θ, θ)

=
n∑

m=0

(−1)n+mm!S2(n,m, x |λ)

m∑

l=0

S2(m, l, y |θ)c(k)
l (y + θ, θ)

=
n∑

m=0

(−1)n+mm!S2(n,m, x |λ)

(m + 1)k
= β(k)

n (x, λ)

giving the first part. Similarly,

n∑

l=0

n∑

m=0

(−1)n+m

m! S1(n,m, x + λ|λ)S1(m, l, y + θ |θ)β
(k)
l (y, θ)

=
n∑

l=0

n∑

m=l

(−1)n+m

m! S1(n,m, x + λ|λ)S1(m, l, y + θ |θ)β
(k)
l (y, θ)

=
n∑

m=0

(−1)n+m

m! S1(n,m, x + λ|λ)

m∑

l=0

S1(m, l, y + θ |θ)β
(k)
l (y, θ)

=
n∑

m=0

(−1)n+m

m! S1(n,m, x + λ|λ)
m!

(m + 1)k
= c(k)

n (x, λ)

gives the second part. ��

7 Congruences

The presence of Stirling numbers in explicit formulas for weighted, degenerate and
degenerate weighted poly-Bernoulli and poly-Cauchy numbers enables us to discuss
some divisibility properties for them. These properties give information about the
denominators of these numbers. The denominators of classical Bernoulli numbers
are completely determined by the von Staudt and Clausen theorem, which not only
determines the denominator but also describes the fractional part of Bn . In [19] the
denominators of di-Bernoulli numbers B(2)

n are completely determined while in [2]
partial results for denominators of poly-Bernoulli numbers are obtained.

In this section p will denote a prime number, Zp the ring of p-adic integers and
Z

×
p the multiplicative group of units in Zp. The p-adic valuation “ordp” is defined

by setting ordp(x) = k if x = pk y with y ∈ Z
×
p and ordp(0) = ∞. A congruence

x ≡ y (mod mZp) is equivalent to ordp(x − y) � ordp(m), and if x and y are
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rational numbers this congruence for all primes p is equivalent to the congruence
x ≡ y (mod m) given by

a

b
≡ c

d
(mod m) ⇐⇒ m | (ad − bc),

whenever p does not divide b and d.
Since degenerate weighted poly-Bernoulli and poly-Cauchy numbers are the most

general cases considered so far, we present congruences for themwith proofs and state
the results for others as corollaries.

Theorem 7.1 Let p be an odd prime number. For any p-adic integer x and λ ∈ Zp

we have

pk−1β(k)
p (x, λ) ≡ pk−1

(
1

2k
− x

)
− [(p − 1)(1 − λ) + 2x](p − 1)!

2
(mod pkZp)

if λ ∈ pZp and

pk−1β(k)
p (x, λ) ≡ − [(p − 1)(1 − λ) + 2x](p − 1)!

2
(mod pkZp)

if λ ∈ Z
×
p .

Proof We write (44) as

β(k)
p (x, λ) = (−1)p

p∑

m=0

(−1)mm!S2(p,m, x |λ)

(m + 1)k

= −S2(p, 0, x |λ) + S2(p, 1, x |λ)

2k
− S2(p, p − 1, x |λ)(p − 1)!

pk

+ S2(p, p, x |λ) p!
(p + 1)k

−
p−2∑

m=2

(−1)mm!S2(p,m, x |λ)

(m + 1)k
.

Since x is a p-adic integer, S2(p,m, x |λ) ∈ pZp for 1 < m < p ([15, Theorem3], [31,
Equation (3.4)]). We also have ordp(m!) = 0 and ordp((m + 1)k) = 0 for 1 < m <

p − 1. Thus the latter sum is in pZp. For the terms S2(p, 0, x |λ) and S2(p, 1, x |λ)

we use

S2(n,m, x |λ) = 1

m!
m∑

r=0

(−1)n+r
(
m

r

)
(x + r |λ)n

([14, Equation (4.2)]) and obtain

S2(p, 0, x |λ) = (x |λ)p, S2(p, 1, x |λ) = −(x |λ)p + (x + 1|λ)p.
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From (43)we easily get S2(p, p, x |λ) = 1, and repetitive application of the recurrence
formula

S2(n + 1,m, x |λ) = (m + x − λn)S2(n,m, x |λ) + S2(n,m − 1, x |λ)

([14, Equation(4.11)]) gives

S2(p, p − 1, x |λ) =
(
p

2

)
(1 − λ) + px .

Thus we have

β(k)
p (x, λ) ≡ −(x |λ)p + (x + 1|λ)p − (x |λ)p

2k

−
[(p

2

)
(1 − λ) + px

]
(p − 1)!

pk
(mod pZp)

since p! ∈ pZp. Now, since

(x |λ)p =
{
x, if λ ∈ pZp;

0, if λ ∈ Z
×
p ;

(mod pZp),

we have

pk−1β(k)
p (x, λ) ≡ pk−1

(
1

2k
− x

)

− [(p − 1)(1 − λ) + 2x](p − 1)!
2

(mod pkZp)

if λ ∈ pZp and

pk−1β(k)
p (x, λ) ≡ − [(p − 1)(1 − λ) + 2x](p − 1)!

2
(mod pkZp)

if λ ∈ Z
×
p . ��

For x = 0 we have the following result for degenerate poly-Bernoulli numbers.

Corollary 7.2 For an odd prime p and λ ∈ Zp we have

pk−1β(k)
p (λ) ≡ pk−1

2k
+ (p − 1)(λ − 1)(p − 1)!

2
(mod pkZp)

if λ ∈ pZp and

pk−1β(k)
p (λ) ≡ (p − 1)(λ − 1)(p − 1)!

2
(mod pkZp)

123



Generalizations of poly-Bernoulli and poly-Cauchy numbers 825

if λ ∈ Z
×
p .

Similarly, if we let λ = 0 in Theorem 7.1 we obtain

Corollary 7.3 For an odd prime p and any p-adic integer x we have

pk−1B(k)
p (x) ≡ pk−1

2k
− (p − 1 + 2x)(p − 1)!

2
(mod pkZp).

We note that similar congruences for poly-Bernoulli numbers were given in [2]
and [19].

The following result gives a divisibility property for degenerate weighted poly-
Cauchy numbers of the first kind.

Theorem 7.4 Let p be an odd prime number. For any p-adic integer x and λ ∈ Z
×
p

we have

pk−1c(k)
p (x, λ) ≡ pk−1 − (p − 1)(λ − 1) + 2x − 2λ

2
(mod pkZp).

Proof Consider the defining equation

c(k)
p (x, λ) = (−1)p

p∑

m=0

(−1)mS1(p,m, x |λ)

(m + 1)k
.

Since λ ∈ Z
×
p and λ − x ∈ Zp we have S1(p,m, x |λ) ∈ pZp for 1 < m < p ([15,

Theorem 3], [31, Equation (3.4)]). Thus we get

c(k)
p (x, λ) ≡ −S1(p, 0, x |λ) + S1(p, 1, x |λ)

2k
− S1(p, p − 1, x |λ)

pk

+ S1(p, p, x |λ)

(p + 1)k
(mod pZp).

From the equation

λmm!S1(n,m, x |λ)

=
m∑

r=0

(−1)n+r
(
m

r

)
(λr + λ − x)(λr + λ − x − 1) · · · (λr + λ − x − n + 1)

([14, Equation(4.1)]) we obtain

S1(p, 0, x |λ) = (x − λ)p, S1(p, 1, x |λ) = (2λ − x)p − (λ − x)p
λ

.

From (42) we have S1(p, p, x |λ) = 1 and

S1(n,m, x |λ) =
n∑

r=0

(
n

r

)
(x − λ)(x − λ + 1) · · · (x − λ + r − 1)S1(n − r,m |λ)
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([14, p. 51]) gives

S1(p, p − 1, x |λ) =
(
p

2

)
(1 − λ) + px − pλ

since S1(p, p − 1|λ) = (p
2

)
(1 − λ). Thus we have

c(k)
p (x, λ) ≡ 1 − (x − λ)p + (2λ − x)p − (λ − x)p

λ2k

+ p(x − λ)
(p
2

)
(1 − λ)

pk
(mod pZp).

Now, since for any z ∈ Zp we have (z)p ∈ pZp, we see that pk−1(x − λ)p and
pk−1(2λ − x)p are zero modulo pk . Therefore we obtain

pk−1c(k)
p (x, λ) ≡ pk−1 + (p − 1)(1 − λ) + 2λ − 2x

2
(mod pkZp)

which is the result. ��
For λ = 0 we have the following result.

Corollary 7.5 For an odd prime p and any p-adic integer x we have

pk−1c(k)
p (x) ≡ pk−1 − p − 1 + 2x

2
(mod pkZp).

The next result states a divisibility property for c(k)
n (λ), which follows from Theo-

rem 7.4 with x = λ.

Corollary 7.6 Let p be an odd prime. Then

pk−1c(k)
p (λ) ≡ pk−1 + (p − 1)(λ − 1)

2
(mod pkZp)

if λ ∈ Z
×
p and

pk−1c(k)
p (λ) ≡ (p − 1)(λ − 1)

2
(mod pk−1

Zp)

if λ ∈ pZp.

For the second result we note that if λ ∈ pZp then S1(p,m |λ) is in Zp not in pZp.
Thus when λ ∈ pZp we conclude that

pk−1c(k)
p (λ) ≡ (p − 1)(λ − 1)

2
(mod pk−1

Zp).
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