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1 Introduction

What are non-commutative holomorphic functions in d variables? The question has
been studied since the pioneering work of Taylor [21], but there is still no definitive
answer. The class should certainly contain the non-commutative, also called free,
polynomials, i.e. polynomials defined on d non-commuting variables. It should be
some sort of generalization of the free polynomials, analogous to how holomorphic
functions are generalizations of polynomials in commuting variables. Just as in the
commutative case, the class will depend on the choice of domain. In this note, we shall
consider domains that are sets of d-tuples of operators on a Hilbert space.
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One approach is to study non-commutative convergent power series on domains in
B(H)d (where B(H)d means d-tuples of bounded operators on some Hilbert space
H). This has been done systematically in Popescu’s monograph [20], following on
earlier work such as [4,5,17–19].

Working with non-commutative power series is natural and appealing, but does
present some difficulties. One is that assuming a priori that the series converges uni-
formly is a strong assumption, and could be hard to verify if the function is presented
in some other form. On every infinite dimensional Banach space there is an entire
holomorphic function with finite radius of uniform convergence [6, p. 461]. A second
difficulty is dealing with domains that are not the domains of convergence of power
series.

Another approach to non-commutative functions is the theory of nc-functions. Let
Mn denote the n-by-n complex matrices, which we shall think of as operators on a
finite dimensional Hilbert space, and let M[d] = ⋃∞

n=1M
d
n .

If x = (x1, . . . , xd) and y = (y1, . . . , yd) are d-tuples of operators on the spaces
H and K respectively, we let x⊕ y denote the d-tuple (x1⊕ y1, . . . , xd⊕ yd) on
H⊕K; and if s ∈ B(H,K) and t ∈ B(K,H) we let sx and xt denote respectively
(sx1, . . . , sxd) and (x1t, . . . , xd t).

Definition 1.1 A function f defined on some set D ⊆ M
[d] is called graded if, for

each n, f maps D ∩ Md
n into Mn . We say f is an nc-function if it is graded and if,

whenever x, y ∈ D and there exists amatrix s such that sx = ys, then s f (x) = f (y)s.

The theory of nc-functions has recently become a very active area of research,
see e.g. [7–12,15,16]. Kaliuzhnyi-Verbovetskyi and Vinnikov have written a mono-
graph [13] which develops the important ideas of the subject.

Nc-functions are a priori defined on matrices, not operators. Certain formulas that
represent them (such as (17) below) can be naturally extended to operators. This raises
the question of how one can intrinsically characterize functions on B(H)d that are in
some sense extensions of nc-functions.

The purpose of this note is to show that on balanced domains in B(H)d there
is an algebraic property—intertwining preserving—that together with an appropriate
continuity is necessary and sufficient for a function to have a convergent power series,
which in turn is equivalent to the function being approximable by free polynomials
on finite sets. Moreover, it is a variation on the idea of an nc-function. On certain
domains G#

δ defined below, the properties of intertwining preserving and continuity
are equivalent in turn to the function being the unique extension of a bounded nc-
function.

Definition 1.2 Let H be an infinite dimensional Hilbert space, let D ⊆ B(H)d, and
let F : D → B(H). We say that F is intertwining preserving (IP) if:

(i) Whenever x, y ∈ D and there exists some bounded linear operator T ∈ B(H)

such that T x = yT , then T F(x) = F(y)T .
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Non-commutative holomorphic functions on operator domains 733

(ii) Whenever (xn) is a bounded sequence in D, and there exists some invertible
bounded linear operator s : H → ⊕

H such that

s−1

⎡

⎢
⎣

x1 0 · · ·
0 x2 · · ·
...

...
. . .

⎤

⎥
⎦ s ∈ D,

then

F

⎛

⎜
⎝s−1

⎡

⎢
⎣

x1 0 · · ·
0 x2 · · ·
...

...
. . .

⎤

⎥
⎦ s

⎞

⎟
⎠ = s−1

⎡

⎢
⎣

F(x1) 0 · · ·
0 F(x2) · · ·
...

...
. . .

⎤

⎥
⎦ s.

Note that every free polynomial is IP, and therefore this condition must be inherited
by any function that is a limit of free polynomials on finite sets. Nc-functions have the
property that f (x⊕ y) = f (x)⊕ f (y), and we would like to exploit the analogous
condition (ii) of IP functions. To do this, we would like our domains to be closed under
direct sums. However, we can only do this by some identification of H⊕H withH.

Definition 1.3 Let H be an infinite dimensional Hilbert space. We say a set D ⊆
B(H)d is closed with respect to countable direct sums if, for every bounded sequence
x1, x2, . . . ∈ D, there is a unitary u : H → H⊕H⊕ · · · such that the d-tuple
u∗(x1⊕x2⊕ · · · )u ∈ D.

Two natural examples are the sets

{
x ∈ B(H)d : ‖x1‖, . . . , ‖xd‖ < 1

}
,

{
x ∈ B(H)d : x1(x1)∗ + · · · + xd(xd)∗ < I

}
.

(1)

Definition 1.4 Let F : B(H)d → B(H). We say F is sequentially strong operator
continuous (SSOC) if, whenever xn → x in the strong operator topology on B(H)d,
then F(xn) tends to F(x) in the strong operator topology on B(H).

Since multiplication is sequentially strong operator continuous, it follows that every
free polynomial is SSOC, and this property is also inherited by limits on sets that are
closed w.r.t. direct sums.

Here is our first main result. Recall that a subset B of a complex vector space is
called balanced if whenever x ∈ B and α is in the closed unit disk D, then αx ∈ B.

Theorem 1.5 Let D be a balanced open set in B(H)d that is closed with respect to
countable direct sums, and let F : D → B(H). The following are equivalent:

(i) The function F is intertwining preserving and sequentially strong operator con-
tinuous.

(ii) There is a power series expansion

∞∑

k=0

Pk(x) (2)
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734 J. Agler, J. E. McCarthy

that converges absolutely at each point x ∈ D to F(x), where each Pk is a
homogeneous free polynomial of degree k.

(iii) The function F is uniformly approximable on finite subsets of D by free polyno-
mials.

Let δ be an I × J matrix of free polynomials in d variables, where I and J are any
positive integers. Then

Gδ = {x ∈ M
[d] : ‖δ(x)‖ < 1}, (3)

where if x is a d-tuple of matrices acting on C
n, then we calculate the norm of δ(x)

as the operator norm from (Cn)J to (Cn)I. Notice that Gδ1 ∩ Gδ2 = Gδ1⊕δ2 , so those
sets form a base for a topology; we call this the free topology on M

[d].
For the rest of this paper, we shall fix H to be a separable infinite dimensional

Hilbert space, and let B1(H) denote the unit ball in B(H). Let {e1, e2, . . .} be a fixed
orthonormal basis ofH, and let Pn denote orthogonal projection onto

∨{e1, . . . , en}.
There is an obvious extension of (3) to B(H)d ; we shall call this domain G#

δ .

G#
δ = {x ∈ B(H)d : ‖δ(x)‖ < 1}. (4)

Both sets (1) are of the form (4) for an appropriate choice of δ. Note that every G#
δ is

closed with respect to countable direct sums.
By identifying Mn with PnB(H)Pn , we can embed M

[d] in B(H)d. If a function
F : G#

δ → B(H) satisfies F(x) = PnF(x)Pn whenever x = Pnx Pn , then F naturally
induces a graded function F� on Gδ .

Here is a slightly simplified version of Theorem 5.4 (the assumption that 0 goes to
0 is unnecessary, but without it the statement is more complicated).

Theorem 1.6 Assume that G#
δ is connected and contains 0. Then every bounded nc-

function on Gδ that maps 0 to 0 has a unique extension to an SSOC IP function on G#
δ .

The extension has a series expansion in free polynomials that converges uniformly on
G#

tδ for each t > 1.

2 Intertwining preserving functions

The normal definition of an nc-function is a graded function f defined on a set D ⊆
M

[d] such that D is closed with respect to direct sums, and such that f preserves
direct sums and similarities, i.e. f (x⊕ y) = f (x)⊕ f (y) and if x = s−1ys then
f (x) = s−1 f (y)s, whenever x, y ∈ D∩Md

n and s is an invertible matrix inMn . The
fact that on such sets D this definition agrees with our earlier Definition 1.1 is proved
in [13, Proposition 2.1].

There is a subtle difference between the nc-property and IP, because of the rôle of 0.
For an nc-function, f (x⊕0) = f (x)⊕0, but for an IP function, we have f (x⊕0) =
f (x)⊕ f (0). If f (0) = 0, this presents no difficulty; but 0 need not lie in the domain
of f , and even if it does, it need not be mapped to 0.
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Non-commutative holomorphic functions on operator domains 735

Consider, for an illustration, the case d = 1 and the function f (x) = x + 1. For
each n ∈ N, let Mn be the n-by-n matrix that is 1 in the (1, 1) entry and 0 elsewhere.
As an nc-function, we have

f :

⎡

⎢
⎢
⎢
⎣

1 0 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤

⎥
⎥
⎥
⎦


→

⎡

⎢
⎢
⎢
⎣

2 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎤

⎥
⎥
⎥
⎦

.

But now, if we wish to extend f to an IP function on B(H), what is the image of
the diagonal operator T with first entry 1 and the rest 0? We want to identify T with
Mn⊕0, and map it to f (Mn)⊕0 — but then each n gives a different image.

In order to interface with the theory of nc-functions, we shall assume that all our
domains contain 0. To avoid the technical difficulty we just described, we shall com-
pose our functions with Möbius maps to ensure that 0 is mapped to 0.

Lemma 2.1 If F is an IP function on D ⊆ B(H)d, and P ∈ B(H) is a projection,
then, for all c ∈ D satisfying c = cP (or c = Pc) we have

a = PaP �⇒ F(a) = PF(a)P + P⊥F(c)P⊥. (5)

Proof As Pa = aP , we get PF(a) = F(a)P . As P⊥a = 0 = cP⊥, we get
P⊥F(a) = F(c)P⊥. Combining these, we get (5). ��
We let φα denote the Möbius map on D given by

φα(ζ ) = ζ − α

1 − αζ
.

Lemma 2.2 Let D ⊆ B(H)d contain 0, and assume F is an IP function from D to
B1(H). Then

(i) F(0) = α IH.
(ii) The map H(x) = φα◦F(x) is an IP function on D that maps 0 to 0.
(iii) For any a ∈ D and any projection P we have

a = PaP �⇒ H(a) = PH(a)P.

(iv) F = φ−α◦H.

Proof (i) By Lemma 2.1 applied to a = c = 0, we get that F(0) commutes with
every projection P in B(H). Therefore it must be a scalar.

(ii) For all z in B1(H), we have

φα(z) = −α IH + (
1 − |α|2)

∞∑

n=1

α n−1zn, (6)
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736 J. Agler, J. E. McCarthy

where the series converges uniformly and absolutely on every ball of radius less than
one. By (i), we have H(0) = φα(α IH) = 0. If T x = yT , then T F(x) = F(y)T , and
so T [F(x)]n = [F(y)]nT for every n. Letting z be F(x) and F(y) in (6) and using the
fact that the series converges uniformly, we conclude that Tφα(F(x)) = φα(F(y))T ,
and hence H is IP.

(iii) follows from Lemma 2.1 with c = 0.

(iv) follows from φ−α◦φα(z) = z for every z ∈ B1(H). ��
By choosing a basis {e1, e2, . . . , } for H, we can identify Md

n with PnB(H)dPn . Let
us define

Md
n = PnB(H)dPn, M[d] =

∞⋃

n=1

Md
n .

Applying Lemma 2.2, we get the following.

Proposition 2.3 Let D ⊆ B(H)d contain 0, and assume F is an IP function from
D to B1(H). Let H = φα◦F, where α is the scalar such that F(0) = α IH. Then
H |D∩M[d] is an nc-function that is bounded by 1 in norm, and maps 0 in Md

n to the
matrix 0 inM1

n = PnB(H)Pn.

If we let H � denote H |D∩M[d] , we can ask

Question 2.4 To what extent does H � determine H?

Question 2.5 Does every bounded nc-function from D ∩ M[d] to M1 extend to a
bounded IP function on D?

If

δ
(
x1, x2

) = I − (
x1x2 − x2x1

)
,

then G#
δ is non-empty, but Gδ is empty, and the questions do not make much sense.

But we do give answers to both questions in Theorem 5.4, in the special case that D
is of the form G#

δ and in addition is assumed to be balanced.

3 IP SSOC functions are analytic

Let us give a quick summary of what it means for a function to be holomorphic on
a Banach space; we refer the reader to the book [6] by Dineen for a comprehensive
treatment. Let D be an open subset of a Banach space X , and f : D → Y a map into
a Banach space Y . We say f has a Gâteaux derivative at x if

lim
λ→0

f (x + λh) − f (x)

λ

def= Df (x)[h]

exists for all h ∈ X . If f has a Gâteaux derivative at every point of D it is Gâteaux
holomorphic [6, Lemma 3.3], i.e. holomorphic on each one dimensional slice. If,
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Non-commutative holomorphic functions on operator domains 737

in addition, f is locally bounded on D, then it is actually Fréchet holomorphic [6,
Proposition 3.7], which means that for each x there is a neighborhood G of 0 such
that the Taylor series

f (x + h) = f (x) +
∞∑

k=1

Dk f (x)[h, . . . , h], h ∈ G, (7)

converges uniformly for all h in G. The kth derivative is a continuous linear map from
Xk → Y , which is evaluated on the k-tuple (h, h, . . . , h).

The following lemma is the IP version of [8, Proposition 2.5] and [13, Proposi-
tion 2.2].

Lemma 3.1 Let D be an open set in B(H)d that is closed with respect to countable
direct sums, and let F : D → B(H) be intertwining preserving. Then F is bounded
on bounded subsets of D, continuous and Gâteaux differentiable.

Proof (Locally bounded) Suppose there were xn ∈ D such that {‖xn‖} is bounded,
but {‖F(xn)‖} is unbounded. Since D is closed with respect to countable direct sums,
there exists some unitary u : H → H∞ such that u∗(

⊕
xn)u ∈ D. Since F is IP, by

Definition 1.2, we have [⊕ F(xn)] is bounded, which is a contradiction.

(Continuity) Fix a ∈ D and let ε > 0. By hypothesis, there exists a unitary u : H →
H2 such that

α = u∗
[
a 0
0 a

]

u ∈ D. (8)

Choose δ1 > 0 such that B(a, δ1) ⊆ D, B(α, δ1) ⊆ D, and such that on B(α, δ1)

the function F is bounded by M . Choose δ2 > 0 such that δ2 < min(δ1/2, εδ1/2M).
Note that for any a, b ∈ B(H)d and any λ ∈ C, we have

u∗
[
I −λ

0 I

] [
b 0
0 a

] [
I λ

0 I

]

u = u∗
[
b λ(b − a)

0 a

]

u. (9)

So by part (ii) of the definition of IP (Definition 1.2) we get that if ‖b − a‖ < δ2, and
letting λ = M/ε, then

F

(

u∗
[
I −M/ε

0 I

] [
b 0
0 a

] [
I M/ε

0 I

]

u

)

= u∗
[
F(b) M[F(b) − F(a)]/ε
0 F(a)

]

u

is bounded by M . In particular, since the norm of the (1, 2)-entry of the last matrix is
bounded by the norm of the whole matrix, we see that ‖M(F(b) − F(a))/ε‖ < M ,
so ‖F(b) − F(a)‖ < ε.

(Differentiability) Let a ∈ D and h ∈ B(H)d. Let u be as in (8). Choose ε > 0 such
that, for all complex numbers t with |t | < ε,
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738 J. Agler, J. E. McCarthy

u∗
[
a + th εh

0 a

]

u ∈ D,

and a + th ∈ D. Let b = a + th and λ = ε/t in (9), and as before we conclude that

F

(

u∗
[
a + th εh

0 a

]

u

)

= u∗
[
F(a + th) ε(F(a + th) − F(a))/t

0 F(a)

]

u. (10)

As F is continuous, when we take the limit as t → 0 in (10), we get

F

(

u∗
[
a εh
0 a

]

u

)

= u∗
[
F(a) εDF(a)[h]
0 F(a)

]

u.

Therefore DF(a)[h] exists, so F is Gâteaux differentiable, as required. ��
When we replace X by a Banach algebra (in our present case, this is B(H)d with
coordinate-wisemultiplication), wewould like somethingmore than Fréchet holomor-
phic: we would like the kth term in (7) to be an actual free polynomial, homogeneous
of degree k, in the entries of h.

The following result was proved by Kaliuzhnyi-Verbovetskyi and Vinnikov [13,
Theorem 6.1] and by Klep and Špenko [14, Proposition 3.1].

Theorem 3.2 Let

g : M[d] → M1, x 
→ g(x)

be an nc-function such that each matrix entry of g(x) is a polynomial of degree less
than or equal to N in the entries of the matrices xr, 1 ≤ r ≤ d. Then g is a free
polynomial of degree less than or equal to N.

We extend this result to multilinear SSOC IP maps. Each h j will be a d-tuple of
operators, (h1j , . . . , h

d
j ).

Proposition 3.3 Let

L : B(H)dN → B(H), (h1, . . . , hN ) 
→ L(h1, . . . , hN )

be a continuous N-linear map from (B(H)d)N to B(H) that is IP and SSOC. Then L
is a homogeneous polynomial of degree N in the variables h11, . . . , h

d
N .

Proof By Proposition 2.3, if we restrict L to MdN, we get an nc-function. By The-
orem 3.2, there is a free polynomial p of degree N that agrees with L on MdN. By
homogeneity, p must be homogeneous of degree N . Define

	(h) = L(h) − p(h).

Then 	 vanishes on (Md)N, and is SSOC. Since (Md)N is strong operator topology
dense in (B(H)d)N, it follows that 	 is identically 0. ��

123



Non-commutative holomorphic functions on operator domains 739

One of the achievements of Kaliuzhnyi-Verbovetskyi and Vinnikov in [13] is the
Taylor–Taylor formula [13, Theorem 4.1]. This comes with a remainder term, which
can be estimated. They show [13, Theorem 7.4] that with the assumption of local
boundedness, this renders an nc-function analytic. The following theorem is an IP
version of the latter result.

Theorem 3.4 Let D be an open neighborhood of 0 in B(H)d, and let F : D →
B(H) be a function that is intertwining preserving and sequentially strong operator
continuous. Then there is an open set U ⊆ D containing 0 and homogeneous free
polynomials Pk of degree k such that

F(x) = F(0) +
∞∑

k=1

Pk(x), x ∈ U,

where the convergence is uniform for x ∈ U.

Proof Any open ball centered at 0 is closed with respect to countable direct sums, so
we can assume without loss of generality that D is closed with respect to countable
direct sums and bounded. By Lemma 3.1, F is bounded and Gâteaux differentiable on
D, and so by [6, Proposition 3.7], F is automatically Fréchet holomorphic. Therefore,
there is some open ball U centered at 0 such that

F(h) = F(0) +
∞∑

k=1

DkF(0)[h, . . . , h], h ∈ U.

We must show that each DkF(0)[h, . . . , h] is actually a free polynomial in h.

Claim 3.5 For each k ∈ N, the function

Gk : (h0, . . . , hk) 
→ DkF(h0)
[
h1, . . . , hk

]
(11)

is an IP function on U×(B(H)d)k ⊆ (B(H)d)k+1.

Proof Indeed, when k = 1, we have

DF
(
h0
)[
h1
] = lim

t→0

1

t

[
F
(
h0+ th1

) − F
(
h0
)]

. (12)

As F is IP, so is the right-hand side of (12). For k > 1,

DkF(h0)[h1, . . . , hk] = lim
t→0

1

t

[
Dk−1F(h0+ thk)[h1, . . . , hk−1]

− Dk−1F(h0)[h1, . . . , hk−1]].

By induction, these are all IP. �
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740 J. Agler, J. E. McCarthy

Claim 3.6 For each k ∈ N, the function Gk from (11) is SSOC on U×(B(H)d)k.

Proof Again we do this by induction on k. Let G0 = F , which is SSOC onU ⊆ D by
hypothesis. Since Gk−1 is IP on the set Uk, it is locally bounded, and by Lemma 3.1
it is Gâteaux differentiable. Suppose

SOT lim
n→∞ h j

n = h j , 0 ≤ j ≤ k,

where each h j
n and h j is in U . Let h denote the (k+1)-tuple (h0, . . . , hk)

in Uk+1, and let h̃ denote the k-tuple (h0, . . . , hk−1); similarly, let hn denote
(h0n, . . . , h

k
n) and h̃n denote (h0n, . . . , h

k−1
n ). There exists some unitary u so that

y = u∗(h̃⊕ h̃1⊕ h̃2⊕ · · · )u is in Uk. Since Gk−1 is differentiable at y, and is IP,
we have that the diagonal operator with entries

1

t

[
Gk−1(h0+ thk, h1 . . . , hk−1) − Gk−1(h0, h1, . . . , hk−1)

]
,

1

t

[
Gk−1(h01+ thk1, h

1
1, . . . , h

k−1
1 ) − Gk−1(h01, h

1
1, . . . , h

k−1
1 )

]
, (13)

· · ·

has a limit as t → 0.
Let ε > 0, and let v ∈ H have ‖v‖ ≤ 1. Choose t sufficiently close to 0 that each

of the difference quotients in (13) is within ε/3 of its limit (which is Gk evaluated at
the appropriate h or hn). Let n be large enough so that

∥
∥
[
Gk−1(h0+ thk, h1, . . . , hk−1) − Gk−1(h0n+ thkn, h

1
n, . . . , h

k−1
n )

]
v
∥
∥

+ ∥
∥
[
Gk−1(h0, h1, . . . , hk−1) − Gk−1(h0n, h

1
n, . . . , h

k−1
n )

]
v
∥
∥ ≤ εt

3
.

Then

∥
∥
∥
[
Gk(h0, . . . , hk

) − Gk(h0n, . . . , h
k
n

)]
v

∥
∥
∥ ≤ ε.

So each Gk is SSOC on Uk+1. As Gk is linear in the last k variables, it is SSOC on
U×(B(H)d)k as claimed. �

Therefore for each k, the map

(
h1, . . . , hk

) 
→ DkF(0)
[
h1, . . . , hk

]

is a linear IP function that is SSOC in a neighborhood of 0, so by Proposition 3.3 is a
free polynomial. ��
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Non-commutative holomorphic functions on operator domains 741

4 Power series

Proof of Theorem 1.5 (i)⇒ (ii). As F is bounded on bounded subsets of D by
Lemma 3.1, it is Fréchet holomorphic. By Theorem 3.4, the power series at 0 is
actually of the form (2). We must show the series converges on all of D.

Fix x ∈ D. Since D is open and balanced, there exists r > 1 such that λx ∈ D for
every λ ∈ D(0, r). As each Pk is homogeneous, we have that for λ in a neighborhood
of 0,

F(λx) =
∞∑

k=0

Pk(λx) =
∞∑

k=0

λkPk(x). (14)

Therefore, the function ψ : λ 
→ F(λx) is analytic on D(0, r), with values in B(H),
and its power series expansion at 0 is given by (14). LetM = sup{‖F(λx)‖ : |λ| < r}.

By the Cauchy integral formula, since ‖F‖ is bounded by M , we get that
∥
∥
∥
∥
dkψ

dλk
(0)

∥
∥
∥
∥ ≤ M

k!
rk

. (15)

Comparing (14) and (15), we conclude that

‖Pk(x)‖ ≤ M

rk
,

and so the power series in (14) converges uniformly and absolutely on the closed unit
disk.

(ii)⇒ (iii). Obvious.

(iii)⇒ (i). (IP (i)). Let x, y ∈ D, and assume there exists T ∈ B(H) such that
T x = yT . Let ε > 0, and choose a free polynomial p such that ‖p(x) − F(x)‖ < ε

and ‖p(y) − F(y)‖ < ε. Then

‖T F(x) − F(y)T ‖ = ‖T F(x) − T p(x) + p(y)T − F(y)T ‖ ≤ 2‖T ‖ε.

As ε is arbitrary, we conclude that T F(x) = F(y)T .
(IP (ii)). Suppose (xn) is a bounded sequence in D, and assume it is infinite. (The
argument for finite sequences is similar.) Let z be the diagonal d-tuple with entries
x1, x2, . . ., and let s : H → H∞ be such that y = s−1zs is in D. For each fixed n,
choose a sequence pk of free polynomials that approximate F on {y, xn}. Then

F

⎛

⎜
⎝s−1

⎡

⎢
⎣

x1 0 · · ·
0 x2 · · ·
...

...
. . .

⎤

⎥
⎦ s

⎞

⎟
⎠ = lim

k→∞ pk

⎛

⎜
⎝s−1

⎡

⎢
⎣

x1 0 · · ·
0 x2 · · ·
...

...
. . .

⎤

⎥
⎦ s

⎞

⎟
⎠

= s−1 lim
k→∞

⎡

⎢
⎣

pk(x1) 0 · · ·
0 pk(x2) · · ·
...

...
. . .

⎤

⎥
⎦ s.

123



742 J. Agler, J. E. McCarthy

The nth diagonal entry of the right hand side is F(xn); so we conclude as n is arbitrary
that

F

⎛

⎜
⎝s−1

⎡

⎢
⎣

x1 0 · · ·
0 x2 · · ·
...

...
. . .

⎤

⎥
⎦ s

⎞

⎟
⎠ = s−1

⎡

⎢
⎣

F(x1) 0 · · ·
0 F(x2) · · ·
...

...
. . .

⎤

⎥
⎦ s.

(SSOC). Suppose xn in D converges to x in D in the SOT. As before, by taking direct
sums, we can approximate F by free polynomials uniformly on countable bounded
subsets of D. So for any vector v, and any ε > 0, we choose a free polynomial
p so that ‖[F(xn) − p(xn)]v‖ < ε/3, and choose N so that for n ≥ N , we have
‖[p(x) − p(xn)]v‖ < ε/3. Then ‖[F(x) − F(xn)]v‖ < ε for all n ≥ N . ��
In particular, we get the following consequence, which says that bounded IP functions
leave closed algebras invariant.

In [3, Theorem 7.7] it is shown that for general nc-functions f , it need not be true
that f (x) is in the algebra generated by x .

Corollary 4.1 Assume that D is balanced and closed with respect to countable direct
sums, and that F : D → B(H) is SSOC and IP. Then, for each x ∈ D, the operator
F(x) is in the closed unital algebra generated by x1, . . . , xd.

5 Free IP functions

Recall the definition of the sets Gδ in (3); the topology they generate is called the free
topology on M

[d].

Definition 5.1 A free holomorphic function on a free open set D ⊆ M
[d] is an nc-

function that, in the free topology, is locally bounded.

Free holomorphic functions are a class of nc-functions studied by the authors in [1,2].
In particular, it was shown that there was a representation theorem for nc-functions
that are bounded by 1 on Gδ .

Theorem 5.2 ([1, Theorem 8.1]) Let δ be an I -by-J matrix of free polynomials, and
let f be an nc-function on Gδ that is bounded by 1. There exists an auxiliary Hilbert
space L and an isometry

[
α B
C D

]

: C⊕LI → C⊕LJ

so that for x ∈ Gδ ∩ B(K)d,

f (x) = α IK + (IK⊗B)(δ(x)⊗ IL)

· [IK⊗ ILJ − (IK⊗D)(δ(x)⊗ IL)
]−1

(IK⊗C).
(16)
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Obviously, one can define a function onG#
δ using the right-hand side of (16), replacing

the finite dimensional space K by the infinite dimensional space H. The following
theorem gives sufficient conditions on a function to arise this way.

Theorem 5.3 Let δ be an I -by-J matrix of free polynomials, and assume that G#
δ

is connected and contains 0. Let F : G#
δ → B1(H) be sequentially strong operator

continuous. Then the following are equivalent:

(i) The function F is intertwining preserving.
(ii) For each t > 1, the function F is uniformly approximable by free polynomials

on G#
tδ .

(iii) There exists α ∈ D such that if � = φα◦F, then �� is a free holomorphic
function on Gδ that is bounded by 1 in norm, and that maps 0 to 0.

(iv) There exists an auxiliary Hilbert space L and an isometry

[
α B
C D

]

: C⊕LI → C⊕LJ

so that for x ∈ G#
δ ,

F(x) = α IH+(IH⊗B)(δ(x)⊗ IL)

· [IH⊗ ILJ − (IH⊗D)(δ(x)⊗ IL)
]−1

(IH⊗C).
(17)

Proof (i)⇒ (iii). This follows from Proposition 2.3.

(iii)⇒ (iv). By Theorem 5.2, we get such a representation for all x ∈ Gδ . The series
on the right-hand side of (17) that one gets by expanding the Neumann series of

[
IH⊗ ILJ − (IH⊗D)(δ(x)⊗ IL)

]−1 (18)

converges absolutely onG#
δ ; let us denote this limit by H(x). By Theorem 1.5, since H

is a limit of free polynomials, it is IP and SSOC. Moreover, as

[
α B
C D

]

is an isometry,

we get by direct calculation that

IH − H∗(x)H(x) = (IH⊗C∗)
[
IH⊗ ILJ − (δ(x)∗⊗ IL)(IH⊗D∗)

]−1

· [IH⊗ ILJ − δ(x)∗δ(x)⊗ IL
]

· [IH⊗ ILJ − (IH⊗D)(δ(x)⊗ IL)
]−1

(IH⊗C) ≥ 0.

Indeed, to see the last equality without being deluged by tensors, let us write

H(x) = α̇ + Ḃδ̇ [ I − Ḋδ̇]−1Ċ,
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where the dots denote appropriate tensors in (17). Then

I − H∗H = I − α̇∗α̇ − α̇∗ Ḃδ̇ [ I − Ḋδ̇]−1Ċ − Ċ∗[ I − δ̇∗Ḋ∗]−1δ̇∗Ḃ∗α̇
− Ċ∗[ I − δ̇∗Ḋ∗]−1δ̇∗ Ḃ∗Ḃδ̇ [ I − Ḋδ̇]−1Ċ

= Ċ∗Ċ + Ċ∗Ḋδ̇ [ I − Ḋδ̇]−1Ċ + Ċ∗[ I − δ̇∗Ḋ∗]−1δ̇∗Ḋ∗Ċ
− Ċ∗[ I − δ̇∗Ḋ∗]−1δ̇∗[I − Ḋ∗Ḋ] δ̇ [ I − Ḋδ̇]−1Ċ

= Ċ∗[ I − δ̇∗Ḋ∗]−1
{
[ I − δ̇∗Ḋ∗][ I − Ḋδ̇]

+ [ I − δ̇∗Ḋ∗] Ḋδ̇ + δ̇∗Ḋ∗[ I − Ḋδ̇]
− δ̇∗[ I − Ḋ∗Ḋ] δ̇

}
[ I − Ḋδ̇]−1Ċ

= Ċ∗[ I − δ̇∗Ḋ∗]−1[ I − δ̇∗δ̇][ I − Ḋδ̇]−1Ċ .

Therefore, ‖H(x)‖ ≤ 1 for all x ∈ G#
δ . Let	(x) = H(x)−F(x). Then	 is a bounded

IP SSOCFréchet holomorphic function onG#
δ that vanishes onG

#
δ ∩M[d] = Gδ . There

is a balanced neighborhood U of 0 in G#
δ . By Theorem 1.5, 	 has a power series

expansion 	(x) = ∑
Pk(x), and each Pk vanishes onU ∩M

[d]. This means each Pk
vanishes on a neighborhood of zero in everyMd

n , and hence must be zero. Therefore,
	 is identically zero on U . By analytic continuation, 	 is identically zero on all of
G#

δ , and therefore (17) holds.

(iv)⇒ (ii). This follows because the Neumann series obtained by expanding (18) has
the kth term bounded by ‖δ(x)‖k. Therefore, it converges uniformly and absolutely
on G#

tδ for every t > 1.

(ii)⇒ (i). Repeat the argument of (iii)⇒ (i) of Theorem 1.5. ��
In the notation of the theorem, let F� = φ−α◦��. Then the proof of (iii)⇒ (iv) shows
that F and F� determine each other uniquely. So we get

Theorem 5.4 Let δ be an I -by-J matrix of free polynomials, and assume that G#
δ is

connected and contains 0. Then every bounded free holomorphic function on Gδ has
a unique extension to an IP SSOC function on G#

δ .
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