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Abstract We exhibit a series of new examples of rigid plane curves, that is, curves,
whose collection of singularities determines them almost uniquely up to a projective
transformation of the plane.
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1 Introduction

1.1 Background and motivation

We work over the complex field, though most of results can be stated over any alge-
braically closed field of characteristic zero.
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The space Cd of plane curves of degree d can be identified with P
d(d+3)/2. It has

a natural equisingular stratification with the strata determined by the collection of
degrees and multiplicities of irreducible components and by the collection of topo-
logical singularity types of the considered curves (see [10,11]; below, the strata will
be called the families of equisingular curves). Properties of this stratification have
been studied by algebraic geometers since 19th century, attracting attention of leading
experts like Zeuthen, Severi, Segre, Zariski and others (see, for example, [2] for a
modern survey in this area).

In this paper we focus on the minimal equisingular families, that is, those which
are formed by reduced curves and contain only finitely many orbits of the action of
the group of projective transformations of the plane Aut(P2). The curves belonging
to these families are called rigid curves; the corresponding families we also call rigid
(see Definition 1.2 below). The study of rigid curves is motivated by their appearance
in several important problems. First of all, finite coverings of the projective plane
branched along rigid curves are used to obtain examples of rigid, so called, Miyaoka–
Yau surfaces (see, for example, [3,5]). Next (cf. [6]), celebrated Belyi’s Theorem [1]
says that each projective curve defined over Q can be represented as a finite covering
of P

1 branched at three points. Note that any three points in P
1 are rigid in the sense

of definition given below. Therefore we can hope that for any field F of transcendence
degree two over Q there are a projective model X defined over Q with the field of
rational functions Q(X) � F and a finite morphism f : X → P

2 branched along a
rigid plane curve. There are interesting relations to the geometry of line arrangements
(see [3]) and to rational cuspidal curves (see [9]).

The goal of our note is to exhibit examples of rigid curves of any degree and any
genus, and rigid families covered by arbitrarily many orbits of the Aut(P2)-action.

1.2 Definitions and main results

Throughout the paperwe consider isolated plane curve singular points up to topological
equivalence, briefly calling any class of topologically equivalent singular points a
singularity type. Given a singularity type S, the number of irreducible components of
singular curve germs of type S is an invariant, which we denote mS . Cardinality of a
finite set F will be denoted by |F |.
1.2.1 Irreducible rigid curves

Let S1, . . . , Sr be a sequence of distinct singularity types, n1, . . . , nr a sequence of
positive integers, r ≥ 1. Introduce the formal sum S = ∑r

i=1 ni Si . Given a positive
integer d, denote by V (d; g;S) the (equisingular) family of reduced, irreducible plane
curves of degree d having precisely

∑r
i=1 ni singular points and such that ni singular

points are of type Si , i = 1, . . . , r . Here

g = (d − 1)(d − 2)

2
−

r∑

i=1

niδ(Si )

is the geometric genus of the considered curves.
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210 Vik. S. Kulikov, E. Shustin

Such a family is a locally closed union of quasiprojective subvarieties ofCd (cf. [2]).
It is, of course, invariant with respect to the action of Aut(P2), and hence consists of
entire orbits of the Aut(P2)-action.

Definition 1.1 We say that a non-empty equisingular family V (d; g;S) is k-rigid if
it is the union of k distinct orbits of the Aut(P2)-action in Cd for some k ∈ N. If k = 1
then we say that V is strictly rigid. The curves belonging to a k-rigid family of plane
curves are called rigid.

1.2.2 Reducible rigid curves

Considering reduced, irreducible curves, we, first, introduce families of reducible
curves with numbered components, then identify families obtained from each other
by permutation of components.

Let d = (d1, . . . , dN ) and g = (g1, . . . , gN ) be two collections of integers,
di ≥ 1 and gi ≥ 0 for i = 1, . . . , N . To encode the distribution of singularity
types among components and the distribution of local branches centered at singu-
lar points that are intersection points of components, we do the following. For a
fixed singularity type S and fixed N denote by JS = {JS,k} the set of all non-
empty subsets JS,k of {1, 2, . . . , N }, 1 ≤ k ≤ ∑mS

j=1

(N
j

)
, such that |JS,k | ≤ mS .

Let V
(
d; g;∑

{S j }
∑

{JS j ,k } nJS j ,k
S j

)
be the family of plane reduced curves C =

C1 ∪ · · · ∪ CN ⊂ P
2 such that Ci are irreducible curves of degree degCi = di

and genus gi , and for each type S j of plane singularities the intersection
⋂

i∈JS j ,k
Ci

contains exactly nJS j ,k
singular points of C of the type S j which do not lie in Cl for

l /∈ JS j ,k . This is a locally closed union of quasiprojective subvarieties of Cd (cf. [2]).
The sum S = ∑

{S j }
∑

{JS j ,k } nJS j ,k
S j is called the singularity type of the curves

C ∈ V (d; g;S). We identify the families V (d; g;S) obtained by permutations of the
curves C1, . . . ,CN and compatible permutations of S.

A singularity type S splits into two parts, S = Sess + Snon-ess, as follows. For fixed
d and g, we say that Sess is an essential part of the singularity type S (and resp. Snon-ess

is a non-essential part of the singularity type S) if the family V (d; g;S) is determined
uniquely by d, g, and the property that the curves C have the singularities Sess among
all singularities of C . If Sess is an essential part of a singularity type S, then we will
use notation V (d; g;Sess + · · · ) to denote the family V (d; g;S).

Definition 1.2 We say that a family V = V (d; g;S) is k-rigid if it is the union of k
distinct orbits of the Aut(P2)-action in Cd for some k ∈ N. If k = 1 then we say that
V is strictly rigid. The curves belonging to a k-rigid family of plane curves are called
rigid.

Note that the number of irreducible components of a k-rigid family V (d; g;S) is less
than or equal to k (since it can (and does) happen that some orbits can lie in the closure
of another) and, in particular, V (d; g;S) is irreducible if it is strictly rigid. Note also
that if a family V (d; g;S) is rigid, then

dim V (d; g;S) ≤ dim PGL(C, 3) = 8. (1)
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On rigid plane curves 211

1.2.3 Main results

Our results are as follows:

• in Theorem 2.1, the complete list of rigid curves of degree ≤ 4 is given;
• in Theorem 3.1, we give an infinite series of examples of strictly rigid families of
irreducible rational curves V (d; 0;S);

• in Theorem 4.1, for each g ≥ 1, we prove the existence of strictly rigid irreducible
plane curves of genus g;

• examples of irreducible 2-rigid families of irreducible curves are given in Theo-
rems5.1 and5.2, andTheorem5.3 provides examples of k-rigid familiesV (d; g;S)

consisting of k irreducible components for each k ∈ N.

We do not know answers to the following questions, which seem to be interesting.

Question 1.3 Do there exist irreducible k-rigid families V (d; g;S) with k > 2?

Question 1.4 Do there exist irreducible 2-rigid families V (d; g;S) with g ≥ 1?

Throughout the paper, we use the following notations for singularity types of plane
curves:

• Tm,n , 2 ≤ m ≤ n, is the type of singularity given by the equation xm + yn = 0;
but if m = 2 then a singularity of type T2,n , as usual, will be denoted by An−1 and
the singularities of types Tm,m will be called simple.

• Tm
m,n , 2 ≤ m < n, is the type of singularity given by the equation y(xm+ yn) = 0.

• T n
m,n , 2 ≤ m < n, is the type of singularity given by the equation x(xm+ yn) = 0.

• Tm,n
m,n , 1 ≤ m < n, is the type of singularity given by the equation xy(xm+ yn) = 0.

2 Rigid curves of small degree

In the following theorem, we provide the complete list of rigid reduced curves of
degree ≤ 4.

Theorem 2.1 Let C be a rigid reduced curve of degree ≤ 4. Then C belongs to one
of the following families:

(I) strongly rigid families:

(I1) V (1; 0; ∅);
(I2) V

(
(1, 1); (0, 0); A1

)
;

(I3) V (2; 0; ∅);
(I4) V

(
(1, 1, 1); (0, 0, 0); 3A1

)
;

(I5) V
(
(1, 1, 1); (0, 0, 0); T3,3

)
;

(I6) V
(
(2, 1); (0, 0); 2A1

)
;

(I7) V
(
(2, 1); (0, 0); A3

)
;

(I8) V (3; 0; A1);
(I9) V (3; 0; A2);
(I10) V

(
(1, 1, 1, 1); (0, 0, 0, 0); 6A1

)
;
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212 Vik. S. Kulikov, E. Shustin

(I11) V
(
(1, 1, 1, 1); (0, 0, 0, 0); T3,3+3A1

)
;

(I12) V
(
(2, 1, 1); (0, 0, 0); 2A3+ A1

)
;

(I13) V
(
(2, 1, 1); (0, 0, 0); A3+3A1

)
;

(I14) V
(
(2, 1, 1); (0, 0, 0); T 2

2,4+ A1
)
;

(I15) V
(
(2, 2); (0, 0); A5+ A1

)
;

(I16) V
(
(2, 2); (0, 0); A7

)
;

(I17) V
(
(3, 1); (0, 0); A5+ A1

)
;

(I18) V
(
(3, 1); (0, 0); T 2

2,4

)
;

(I19) V
(
(3, 1); (0, 0); T 3

2,3

)
;

(I20) V
(
(3, 1); (0, 0); A2+ A5

)
;

(I21) V
(
(3, 1); (0, 0); A3+ A2+ A1

)
;

(I22) V (4; 0; 3A2);
(I23) V

(
4; 0; A4+ A2

)
;

(I24) V (4; 0; A6);

(II) irreducible 2-rigid families:

(II1) V
(
(3, 1); (0, 0); T 2

2,3+ A1
)
;

(II2) V (4; 0; T3,4).
Proof It is well known that if degC ≤ 3 then only smooth cubics are not rigid. All
other families V (d; g;S) of curves of degree ≤ 3 are listed in (I1)–(I9). Therefore we
assume below that degC = 4.

Again, it is well known that if C consists of four lines or two lines and a quadric,
then C is not rigid if and only if C consists of four lines having a common point or C
consists of a quadric Q and two lines in general position with respect to Q. The rigid
families in the case when C consists of four lines or two lines and a quadric is listed
in (I10)–(I14).

Consider the case when C consists of two irreducible components: either C =
Q0 ∪ Q1, where Q0 and Q1 are smooth quadrics, or C = C ∪ L , where C is a cubic
and L is a line.

Consider the case when C1 = Q0 ∪ Q1 ∈ V ((2, 2); (0, 0);S). We have S = m1A1
+ m3A3 + m5A5 + m7A7, where m1 + 2m3 + 3m5 + 4m7 = 4. The singularity
type S consists of k = m1 + m3 + m5 + m7, 1 ≤ k ≤ 4, singular points and
if m1 = 4, that is, S = 4A1, then V ((2, 2); (0, 0); 4A1) is not rigid by (1), since
dim V ((2, 2); (0, 0); 4A1) = 10. Similarly, if m1 = 2, that is, S = A3 + 2A1, then
V ((2, 2); (0, 0); A3+2A1) is not rigid, since dim V ((2, 2); (0, 0); A3+2A1) = 9.
So, we can assume that m1 ≤ 1.

Consider the pencil of quadrics Qλ defined by quadrics Q0 and Q1. It is easy to see
that in the cases m1 = m5 = 1 or m7 = 1 it contains the unique degenerate element
Q∞ consisting of two (coinciding if m7 = 1) lines L1 ∪ L2 and in the case m3 = 2 it
contains two degenerate elements one of which, Q∞, consists of two coinciding lines
L1 = L2 and the other one consists of two different lines. Let f (z1, z2, z3) = 0 be an
equation of the quadric Q0 and li (z1, z2, z3) = 0, i = 1, 2, be an equation of the line
Li . Then, without less of generality, we can assume that

Fλ(z1, z2, z3) = f (z1, z2, z3) + λl1(z1, z2, z3)l2(z1, z2, z3) = 0
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On rigid plane curves 213

is the equation of Qλ. Moreover, applying a projective transformation, we can assume
that f (z1, z2, z3) = z21 − z2z3 and l1(z1, z2, z3) = z3, l1(z1, z2, z3) = z1 in the
case m1 = m5 = 1; l1(z1, z2, z3) = l2(z1, z2, z3) = z1 in the case m3 = 2; and
l1(z1, z2, z3) = l2(z1, z2, z3) = z3 in the case m7 = 1. Therefore we can assume that

Fλ(z1, z2, z3) = (z21 − z2z3) + λz1z3 (2)

in the case m1 = m5 = 1,

Fλ(z1, z2, z3) = (z21 − z2z3) + λz23 (3)

in the case m7 = 1, and

Fλ(z1, z2, z3) = (z21 − z2z3) + λz21 (4)

in the case m3 = 2.
Note that if m3 = 2, then the degenerate element Q−1 of the pencil Qλ consists of

two lines z2 = 0 and z3 = 0 [see (4)].
In the case m1 = m5 = 1 (case (I15)) the strong rigidity of the curve C1 follows

from the equalityCλ = Q0∪Qλ = hλ(C1) for each λ ∈ C
∗, where the automorphism

hλ acts as follows: hλ(z1 : z2 : z3) = (λz1 :λ2z2 : z3); and in the casem7 = 1 (case (I16))
the strong rigidity of the curve C1 follows from equality Cλ2 = Q0 ∪ Qλ2 = hλ(C1)

for each λ ∈ C
∗.

Let us show thatC1 is not rigid ifm3 = 2. Indeed, assume thatC1 is rigid. Then for
any two elements λ1, λ2 ∈ C

∗ \{−1}, λ1 �= λ2, there is a projective transformation
hλ1,λ2 ∈ Aut(P2) such that hλ1,λ2(Cλ1) = Cλ2 , where Cλ = Q0 ∪ Qλ. The auto-
morphism hλ1,λ2 leaves invariant the pencil Qλ. In particular, it leaves invariant the
singular elements Q∞ and Q−1 of the pencil Qλ,

hλ1,λ2(Q∞) = Q∞, hλ1,λ2(Q−1) = Q−1.

Let us show that hλ1,λ2(Q0) �= Q0 for λ1 �= λ2. Indeed, if hλ1,λ2(Q0) = Q0, then in
the case m3 = 2 we have either h∗

λ1,λ2
(z1) = az1, h∗

λ1,λ2
(z2) = bz2, and h∗

λ1,λ2
(z3) =

cz3 or h∗
λ1,λ2

(z1) = az1, h∗
λ1,λ2

(z2) = bz3, and h∗
λ1,λ2

(z3) = cz2 for some a, b, c

such that a2 = bc, since hλ1,λ2(Q∞) = Q∞ and hλ1,λ2(Q−1) = Q−1. Therefore
hλ1,λ2(Qλ) = Qλ for all λ ∈ C that is possible only if λ1 = λ2. Therefore we must
have hλ1,λ2(Q0) = Qλ2 and hλ1,λ2(Qλ1) = Q0. But, for three pairwise different
λ1, λ2, λ3 ∈ C

∗ \{−1} we obtain that hλ1,λ3(Q0) = hλ2,λ3 ◦hλ1,λ2(Q0) = Q0 and
hence λ1 = λ3. Contradiction.

Consider the case when C = C ∪ L , where C is a cubic and L is a line. It is easy
to see that C is rigid only if C is a rational curve. Therefore we have two cases: C is
a nodal cubic or C is a cuspidal cubic.

Let C be a nodal cubic. Then (case (I8)) V (3; 0; A1) is strongly rigid and
dim V (3; 0; A1) = 8. Therefore, L must be a “very special line” with respect to
C , that is, L is either the tangent line of one of two branches of the node of C or L is
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214 Vik. S. Kulikov, E. Shustin

the tangent line of C at a flex point of C . In both two cases it is easy to see that C is
strictly rigid and we have two cases: (I17)–(I18).

IfC is a cuspidal cubic, then L is a tangent line toC or it passes through the cusp of
C , since V (3; 0; A2) is strongly rigid and dim V (3; 0; A2) = 7. If L is a tangent line
to C at its cusp, then we have case (I19) and if L is the tangent line at the flex point of
C , then we have case (I20). It is easy to see that in both cases C is strongly rigid.

If L is a tangent line to C and it does not pass through the cusp of C , let us choose
homogeneous coordinates (z1 : z2 : z3) such that z3 = 0 is an equation of L , z1 = 0
is an equation of the line tangent to C at its cusp, and the line given by the equation
z2 = 0 passes through the cusp of C and the tangent point of L and C . Then there is
a parametrization of C in P

2 of the following form:

z1 = t3, z2 = t2, z3 = 1 + at, (5)

where a �= 0. Denote by Ca a curve in P
2 given by parametrization (5). Now, the

strong rigidity of V ((3, 1); (0, 0); A3+ A2+ A1) (case (I21)) follows from equality
h(Ca ∪ L) = C1 ∪ L , where the linear transformation h ∈ Aut(P2) acts as follows,
h(z1 : z2 : z3) = (z1 :a−1z2 :a−3z3).

Let L be not the tangent line at the cusp of C and it pass through the cusp of C .
Then if z2 = 0 is an equation of L , z1 = 0 is the line tangent to C at its cusp, and
the line given by the equation z3 = 0 is tangent to C at its non-singular point p of the
intersection C ∩ L , then again we can assume that C is given by parametrization (5)
and there are two possibilities: either a = 0 or a �= 0. Denote by Ca a curve given by
parametrization (5). It is easy to see that p ∈ C0 ∩ L is the flex point of C0 if a = 0
and p ∈ Ca ∩ L is not the flex point of Ca if a �= 0. Therefore there is not a linear
transformation h ∈ Aut(P2) such that h(C0 ∪ L) = Ca ∪ L . On the other hand, the
linear transformation h : (z1 : z2 : z3) � (z1 :a−1z2 :a−3z3) sends Ca ∪ L to C1 ∪ L .
Therefore V ((3, 1); (0, 0), T 2

2,3) (case (II1)) is an irreducible 2-rigid family.

Now, consider the case when C is an irreducible curve of degree four. All possible
types of singularities S of irreducible curves of degree four are given in [8]:

S = m1A1 + m2A2 + · · · + m6A6 + m7T3,3 + m8T
2
2,3 + m9T3,4,

where mi , 1 ≤ i ≤ 9, are non-negative integers satisfying the following inequality:

m = 1 + m2 + 2m3 + 2m4 + 3m5 + 3m6 + 3m7 + 3m8 + 3m9 ≤ 3. (6)

By [7, Theorem 2], we have

dim V
(
4; 3 − m;m1A1 + m2A2 + · · · + m6A6

+ m7T3,3 + m8T
2
2,3 + m9T3,4

)

= 14 − (
m1 + 2m2 + 3m3 + 4m4 + 5m5

+ 6m6 + 4m7 + 5m8 + 6m9
)
.

(7)
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Inequality (1) applied to (7) gives rise to the inequality

14 − (
m1 + 2m2 + 3m3 + 4m4 + 5m5 + 6m6 + 4m7 + 5m8 + 6m9

) ≤ 8. (8)

It is easy to see that inequalities (6) and (8) have only the following non-negative
integer solutions:

• m2 = 3 and mi = 0 for i �= 2,
• m2 = m4 = 1 and mi = 0 for i �= 2, 4,
• m6 = 1 and mi = 0 for i �= 6,
• m9 = 1 and mi = 0 for i ≤ 8.

Therefore only the following irreducible curves C of degree four can be rigid:
either C ∈ V (4; 0; 3A2), or C ∈ V (4; 0; A2+ A4), or C ∈ V (4; 0; A6), or
C ∈ V (4; 0; T3,4).

The strict rigidity of a curve C ∈ V (4; 0; 3A2) (case (I22)) is well known.
To show that a curveC ∈ V (4; 0; A2+ A4) (case (I23)) is strictly rigid, let us choose

a non-homogeneous coordinate t in P
1 and homogeneous coordinates (z1 : z2 : z3) in

P
2 such that f (t = 0) = (0 : 0 : 1) is the singular point of C of type A4 and the line

z1 = 0 is tangent to C at this point, the image f (t = ∞) = (1 : 0 : 0) is the singular
point of C , and the line z3 = 0 is tangent to C at this point. Then (after a suitable
linear change of the coordinate t) the morphism f is given by

z1 = t4, z2 = t2, z3 = t + 1, (9)

that is, C is strictly rigid.
To show that a curve C ∈ V (4; 0; A6) (case (I24)) is strictly rigid, note that, by

Plücker formulas, C must have a flex point. As above, let f : P
1 → P

2 be a morphism
such that C = f (P1). We can choose a non-homogeneous coordinate t in P

1 and
homogeneous coordinates (z1 : z2 : z3) in P

2 such that f (t = 0) = (0 : 0 : 1) is the
singular point of C , the line z1 = 0 is the tangent line to C at its singular point, the
image f (t = ∞) = (1 :0 :0) is a flex point of C , and, moreover, the line z3 = 0 is the
tangent line to C at this point. Then (after a suitable linear change of the coordinate
t) the morphism f is given by

z1 = t4, z2 = t2(t − 1), z3 = F(t) = a1t + a2, (10)

where a2 �= 0. It is easy to see that the polynomial F(t)−a2(t −1)2 must be divisible
by t2, since C has a singularity of type A6 at (0 :0 :1). Therefore we have a1 = −2a2
and we can put a2 = 1, that is, V (4; 0; A6) is strictly rigid.

Let us show that the family V (4; 0; T3,4) (case (II2)) is irreducible and 2-rigid.
Indeed, letC ∈ V (4; 0; T3,4), then, by Plücker formulas,C must have a flex point. Let
f : P

1 → P
2 be a morphism such that C = f (P1). We can choose non-homogeneous

coordinate t in P
1 and homogeneous coordinates (z1 : z2 : z3) in P

2 such that f (t =
0) = (0 :0 :1) is the singular point of C , the line z1 = 0 is the tangent line to C at its
singular point, the image f (t = ∞) = (1 : 0 : 0) is a flex point of C , and, moreover,
the line z3 = 0 is the tangent line to C at this point. Then (maybe, after change of the
coordinate t) the morphism f is given by

123



216 Vik. S. Kulikov, E. Shustin

z1 = t4, z2 = t3, z3 = at + 1. (11)

Therefore V (4; 0; T3,4) is an irreducible family.
As in case (II1), there are two possibilities: either a = 0 or a �= 0.
Denote by Ca ∈ V (4; 0; T3,4) a curve given by (11). It is easy to see that C0 has

the unique flex point, namely, p1 = (1 : 0 : 0), and one can check that the curve C1
has two flex points, p1 and p2 = f (t = −2) = (16 : −8 : −1). Hence there is no
projective transformation h ∈ Aut(P2) such that C0 = h(C1).

If we perform the change t1 = at , where a �= 0, then we get h(C1) = Ca , where

h(z1 : z2 : z3) = (a4z1 :a3z2 : z3),

that is, V (4; 0; T3,4) is 2-rigid. ��
Remark 2.2 According to Theorem 2.1, the families V ((1, 1, 1, 1); (0, 0, 0, 0); T4,4)
and V ((2, 2); (0, 0); 2A3) are not rigid and it is easy to see that

dim V
(
(1, 1, 1, 1); (0, 0, 0, 0); T4,4

) = 6, dim V
(
(2, 2); (0, 0); 2A3

) = 8,

that is, (1) is not sufficient for V (d; g;S) to be a rigid family.

3 Strictly rigid rational curves of degree ≥ 5

Theorem 3.1 For each n ≥ 2 the family Vn = V (2n; 0; 3Tn,n+1 + · · · ) is strictly
rigid. The non-essential part of singularities of C ∈ Vn consists of simple singularities.

To prove Theorem 3.1 we need in the following result.

Theorem 3.2 Let dn = (n, 1, 1, 1), g = (0, 0, 0, 0), and n(1,2) = n(1,3) = n(1,4) = 1.
Then the family

V̂n = V
(
dn; g; (n(1,2) + n(1,3) + n(1,4))A2n−1 + · · · )

is strictly rigid for each n ≥ 2. The non-essential part of singularities of C ∈ V̂n
consists of simple singularities.

We prove Theorems 3.1 and 3.2 simultaneously.

Proof of Theorems 3.1 and 3.2 Theorem 3.1 in the case n = 2 and Theorem 3.2 in
the case n ≤ 3 are well known, and we prove the general case by induction on n.

Assume that for n ≤ n0 Theorem 3.1 is true. Then the number of virtual cusps of
C ∈ Vn , n ≤ n0, is equal to 3(n − 1) and the number of its virtual nodes is equal to
2(n − 1)(n − 2) (see the definition of the numbers of virtual cusps and virtual nodes,
for example, in [4]). Let Ĉ be the dual curve to C . By Plücker formulas, we have
deg Ĉ = n + 1 and the number of virtual cusps of the curve Ĉ is zero. Therefore
the irreducible branches of the singular points of Ĉ are smooth and hence Ĉ has only
simple singularities, since C has the only simple singularities and three singularities
of type Tn,n+1. Note also that Ĉ has three flex points, say p1, p2, and p3. Let Li ,
i = 1, 2, 3, be the tangent line to Ĉ at the point pi . It is easy to see that
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C = Ĉ ∪ L1 ∪ L2 ∪ L3

∈ V̂n+1 = V
(
dn+1; g; (n(1,2) + n(1,3) + n(1,4))A2n+1 + · · · ).

Moreover, if n ≤ n0 and the curve C1 = C1 ∪ L ′
1 ∪ L ′

2 ∪ L ′
3 belongs to V̂n+1, then the

curve C1 must have only simple singularities, since the dual curve Ĉ1 belongs to Vn .
Therefore the assumption that Theorem 3.1 is true for n ≤ n0 implies the statement
of Theorem 3.2 for n ≤ n0 + 1.

Remark 3.3 For n ≤ n0 + 1, it follows from strong rigidity that if Ci = Ci ∪ L1 ∪
L2 ∪ L3 ∈ V̂n , i = 1, 2, are two curves such that C1 and C2 have two common flex
points, say p1 and p2, then their third flex points p3 = C1 ∩ L3 and q3 = C2 ∩ L3
should coincide, p3 = q3, and consequently C1 = C2.

To complete the proof of theorems, note that if C = C ∪ L1 ∪ L2 ∪ L3 belongs to V̂n
for n ≤ n0 + 1, then σ(C) ∈ Vn+1, where σ is a quadratic transformation of the plane
with centers at vertices of the triangle L1 ∪ L2 ∪ L3. Therefore Theorem 3.1 in the
case n = n0 + 1 follows from Theorem 3.2 and Remark 3.3. ��

The following theorem provides an infinite series of strictly rigid families parame-
terizing the unions of two rational curves.

Theorem 3.4 The families V
(
(2n+1, 1); (0, 0); n(1,2)(T 2n

2n−1,2n+ A1)+n(1)A4n−2
)
,

where n(1,2) = n(1) = 1, are strictly rigid for n ≥ 2.

Proof Let

C ∪ L ∈ V
(
(2n+1, 1); (0, 0); (0, 0); n(1,2)(T

2n
2n−1,2n+ A1) + n(1)A4n−2

)
.

Then C ∈ V (2n+1; 0; T2n−1,2n+ A4n−2) and L is the line tangent to C at its singular
point p1 of type T2n−1,2n . Let f : P

1 → P
2 be a morphism such that C = f (P1).

We can choose non-homogeneous coordinate t in P
1 and homogeneous coordinates

(z1 : z2 : z3) in P
2 such that f (t = ∞) = p1 = (1 :0 :0) is the singular point of C of

type T2n−1,2n and the line L is given by the equation z3 = 0, f (t = 0) = p2 = (0 :0 :1)
is the singular point of C of type A4n−2 and the line z1 = 0 is the tangent line to C
at p2. Then (maybe, after change of the coordinates in P

2 and P
1) the morphism f is

given by
z1 = t4P2n−3(t), z2 = t2, z3 = t − 1, (12)

where P2n−3(t) = t2n−3+ ∑2n−4
i=0 ai t i.

To prove Theorem 3.4, it suffices to show that the polynomial P2n−3(t) is defined
uniquely by the property that the point p2 is a singular point ofC of type A2(2n−1). For
this put x = z2/z3, y = z1/z3 and x2 = x , y2 = y/x2. Then the germ of singularity
(C, 0) ⊂ (C2, o), given by the parametrization (at t = 0):

x2 = t2

t − 1
, y2 = (t − 1)P2n−3(t),

has singularity type A2(2n−3) at the point o = (0,−a0).
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Consider a sequence of polynomials Ak(t) = tk + ∑k−1
i=0 ai,k t

i, k ∈ N, where
A1(t) = t + 1 and

Ak+1 = t2Ak(t) − Ak(1)

t − 1
, k ≥ 1. (13)

Now, Theorem 3.4 follows from

Lemma 3.5 Let a germ of singularity (C, 0) ⊂ (C2, o) of type A2k , k ≥ 1, be given
by the parametrization (at t = 0):

x = t2

t − 1
, y = (t − 1)Pk(t),

where Pk(t) = tk+∑k−1
i=0 ai t

i and o = (0,−a0). Then the polynomial Pk(t) is defined
uniquely and, moreover, Pk(t) = Ak(t).

Proof If k = 1 then it is easy to see that P1(t) = t +1. Assume that for k < k0 lemma
is true and prove it in the case k = k0.

If (C, 0) ⊂ (C2, o) is a germ of singularity of type A2k0 , then the polynomial
(t − 1)Pk0(t) + a0 is divisible by t2. Therefore (t − 1)Pk0(t) + a0 = t2Qk0(t), where
Qk0(t) = tk0−1 +∑k0−2

i=0 bi t i is a polynomial of degree k0 −1 ≥ 1 and the singularity
given by

x1 = t2

t − 1
, y1 = (t − 1)Qk0−1(t)

is of type A2(k0−1). Then, by assumption, Qk0−1(t) = Ak0−1(t) and hence

(t − 1)Pk0(t) + a0 = t2Ak0−1(t).

In particular, a0 = Ak0−1(1), that is,

Pk0(t) = t2Ak0−1(t) − Ak0−1(1)

t − 1
. ��

4 Strictly rigid curves of positive genera

The following theorem states that the strongly rigid family V (4; 0; 3A2) [see case (I22)
in Theorem 2.1] is the first member in an infinite sequence of strictly rigid families.

Theorem 4.1 For any n ≥ 2, the family V (2n, [n/2]−1, An+2Tn,2n−1) is non-empty
and strictly rigid.

Proof Let C be a plane curve of degree 2n with singularities An + 2Tn,2n−1. Choose
projective coordinates (z1 : z2 : z3) so that the singular points of type Tn,2n−1 are located
at (0 : 1 : 0) and (0 : 0 : 1) with tangent lines z3 = 0 and z2 = 0, respectively, and the
remaining intersection points of C with these lines are (1 : −1 : 0) and (1 : 0 : −1),
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respectively. Then, in the affine coordinates x = z2/z1, y = z3/z1, the curve C is
given by an equation

1 + x + y +
n∑

i=1

ai x
i yi = 0, an �= 0, (14)

the following lemma completes the proof of theorem

Lemma 4.2 There exists a unique curve in C
2, given by (14) and having a singularity

of type An in (C∗)2. It is irreducible and has genus [n/2] − 1.

Proof Note that a singularity of type Tn,2n−1 is analytically irreducible, δ(Tn,2n−1) =
(n − 1)2, and if a plane curve C ′ has a singular point of type Tn,2n−1 then degC ′ ≥
2n − 1. Therefore the curve C in question is irreducible, since if a curve C ′ of degree
2n − 1 has two singular points of type Tn,2n−1, then

g(C ′) ≤ (2n − 2)(2n − 3)

2
− 2δ(Tn,2n−1) = −(n − 1) < 0,

a contradiction.
Under assumption that C has no other singularities in C

2, the genus value follows
from the fact that δ(Tn,2n−1) = (n − 1)2 and δ(An) = [(n + 1)/2].

To find a curve given by (14) and having a singularity of type An , substitute (x, y)
for (x/y, y) in (14) and multiply by y:

y2 + y

(

1 +
n∑

i=1

ai x
i
)

+ x = 0.

This is a quadratic equation in y with the discriminant

�(x) =
(

1 +
n∑

i=1

ai x
i
)2

− 4x .

The existence of a singularity of type An on the considered curve in (C∗)2 is equivalent
to the condition that �(x) has a root of multiplicity n + 1. We shall show that this
condition has a unique solution (a1, . . . , an) such that an �= 0, and that for this solution
the other roots of � are simple. So, into the relation

�(x) =
(

1 +
n∑

i=1

ai x
i
)2

− 4x is divisible by (1 + t x)n+1, t �= 0, (15)

we substitute x = z2, t = −τ 2, and then get an equivalent condition

123



220 Vik. S. Kulikov, E. Shustin

(

1 +
n∑

i=1

ai z
2i − 2z

)(

1 +
n∑

i=1

ai z
2i + 2z

)

is divisible by (1 − τ 2z2)n+1, τ �= 0.

(16)

Since the difference 4z of the factors in the former product in (16) is not divisible
neither by 1+ τ z, nor by 1− τ z for any τ �= 0, we reduce (16) (possibly replacing τ

by −τ ) to the conditions: for k = 1, 2,

Fk(z) = 1 +
n∑

i=1

ai z
2i + (−1)k2z is divisible by (1 + (−1)k+1τ z)n+1, τ �= 0,

which are equivalent to the following combinations:

{
Fk(z), F ′

k(z) are divisible by 1 + (−1)k+1τ z,

F ′′
k (z) is divisible by (1 + (−1)k+1τ z)n−1,

τ �= 0. (17)

The latter relations in (17) yield that

F ′′
1 (z) = F ′′

2 (z) =
n∑

i=1

2i(2i − 1)ai z
2i−2 is divisible by (1 − τ 2z2)n−1,

which results in

ai = (−1)i−1

i(2i − 1)

(
i − 1

n − 1

)

a1τ
2i−2, i = 2, . . . , n, (18)

whereas the former relations in (17) lead to the system

− 2 + a1
τ

n∑

i=1

2(−1)i

2i − 1

(
i − 1

n − 1

)

= 1 + 2

τ
+ a1

τ 2

n∑

i=1

(−1)i−1

i(2i − 1)

(
i − 1

n − 1

)

= 0. (19)

Observe that

n∑

i=1

2(−1)i

2i − 1

(
i − 1

n − 1

)

= −2 I1, I1 =
∫ 1

0
(1 − ξ2)n−1dξ,

where I1 > 0, and

n∑

i=1

(−1)i−1

i(2i − 1)

(
i − 1

n − 1

)

= 2I2, I2 =
∫ 1

0

(∫ ξ

0
(1 − η2)n−1dη

)

dξ,

where 0 < I2 < I1. Hence system (19) has a unique solution, which in view of (18)
implies the uniqueness of the sought curve C .
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The last step in the proof of Theorem 4.1 is to show that C has no other singularity
inC

2, or, equivalently, that the polynomial�(x) has nomultiple root other than 1/τ 2 if
(a1, . . . , an) is the solution of equations (18) and (19). Indeed, let x = θ2, θ2 �= 1/τ 2,
be a root of�(x) ofmultiplicitym ≥ 2. Then z = (−1)kθ is a root of polynomial Fk(z)
ofmultiplicitym. Consider the curveC ′ given by the equationw−1−∑n

i=1 ai z
2i = 0.

The curve C ′ is rational and it has singularity of type T2n−1,2n at infinity. In the pencil
of lines λw + μz = 0, there are at least three lines which intersect C ′ in the number
of points less than 2n = degC ′: by assumption, each of the lines given by w = 2z
and w = −2z is tangent to C ′ at least at two points with multiplicities n + 1 and
m, respectively, and the line given by z = 0 intersects C ′ at its singular point with
multiplicity 2n−1. LetC ′ be the normalization ofC ′. By the Hurwitz formula, applied
to morphism f : C ′ → P

1 of degree 2n defined by the pencil of lines λw + μz = 0,
we get the following inequality:

−2 ≥ −4n + 2(n + m − 1) + (2n − 2)

which breaks down for m ≥ 2. ��
Consider the Fermat curve Cn ⊂ P

2 of degree n ≥ 3 given by the equation zn1 + zn2 +
zn3 = 0. By Plücker formulas, the dual curve Ĉ to C has degree n(n − 1) and the
following type of singularities:

S(Ĉn) = 3nTn−1,n + SFn ,

where SFn is a sum of singularity types of the simple singularities of the curve dual to
the Fermat curve Cn .

The following theorem will be used in the proof of Theorem 5.3 (see Sect. 5.2).

Theorem 4.3 Let dn = (n(n−1), 1, 1, 1), gn = ((n−1)(n−2)/2, 0, 0, 0), and
n(1,2) = n(1,3) = n(1,4) = n, n(1) = n(2,3) = n(2,4) = n(3,4) = 1. Then the fam-
ily

Vn = V
(
dn; gn; n(1)SFn + (

n(1,2) + n(1,3) + n(1,4)
)
T n−1
n−1,n

+ (
n(2,3) + n(2,4) + n(3,4)

)
A1

)

is strictly rigid for each n ≥ 3.

Proof Consider a curve C = C1 ∪ C2 ∪ C3 ∪ C4 ∈ Vn and denote the components
Ci of C as follows: C1 = C and Ci = Li−1 for i ≥ 2. The curves L1, L2, L3 are
lines and C is a curve of degree n(n − 1). The curve C has 3n singular points of the
singularity type Tn−1,n , since n(1,2) = n(1,3) = n(1,4) = n, and the set of all other
singularities of C is SFn , that is, the singularity type of C is the same as the singularity
type of the dual curve to the Fermat curve of degree n. Therefore, the dual curve Ĉ to
C is non-singular and deg Ĉ = n, and to prove theorem, it suffices to show that there
are homogeneous coordinates in P

2 such that in this coordinate system the curve Ĉ is
the Fermat curve.
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Let (z1 : z2 : z3) be homogeneous coordinates in P̂
2 such that p1 = (1 : 0 : 0),

p2 = (0 :1 :0), and p3 = (0 :0 :1) are the points in P̂
2 dual, respectively, to the lines

L1, L2, and L3, and let

F(z1, z2, z3) =
∑

i1+i2+i3=n

ai z
i

be an equation of the curve Ĉ , where i = (i1, i2, i3) and zi = zi11 z
i2
2 z

i3
3 . Without loss

of generality, we can assume that an,0,0 = a0,n,0 = a0,0,n = 1 since the points p1, p2,
and p3 do not belong to the curve Ĉ .

The curve Ĉ has 3n flex points given in local coordinates by the equation y = xn

and for i = 1, 2, 3 there are n lines Li,1, . . . , Li,n from the pencil of lines passing
through pi such that they are tangent to Ĉ at its flex points.

Let q j = L1, j ∩ Ĉ = (q1, j :q2, j :q3, j ), 1 ≤ j ≤ n, and let us rewrite the equation
of the curve Ĉ in the form

F(z1, z2, z3) = zn1 +
n∑

i=1

(
n

i

)

Hi (z2, z3)z
n−i
1 , (20)

where Hi (z2, z3) are homogeneous polynomials in z2, z3 of degree i . Then for i =
1, . . . , n − 1 the homogeneous polynomial Hi

1(z2, z3) − Hi (z2, z3) of degree i has
n > i different roots, namely, (q2,1 : q3,1), . . . , (q2,n : q3,n). Therefore Hi (z2, z3) =
Hi
1(z2, z3) and hence the polynomial F(z1, z2, z3) has the form

F(z1, z2, z3) = (z1+H1(z2, z3))
n + H̃n(z2, z3), (21)

where H̃n(z2, z3) is a homogeneous polynomial of degree n,

H̃n(z2, z3) = α

n∏

j=1

(q3, j z2 − q2, j z3)

with some α ∈ C.
By the same arguments, we have

F(z1, z2, z3) = (z2+G1(z1, z3))
n + G̃n(z1, z3) (22)

and
F(z1, z2, z3) = (z3+P1(z1, z2))

n + P̃n(z1, z2), (23)

where G1(z1, z3), P1(z1, z2) and G̃n(z1, z3), P̃n(z1, z2) are homogeneous polynomi-
als of degree one and n respectively.

It follows from (22) that H̃n(z2, z3) = (z2 +G1(0, z3))n + G̃n(0, z3)−Hn
1 (z2, z3).

Therefore

F(z1, z2, z3) = (z1 +az2 +bz3)
n − (az2 +bz3)

n + (z2 + cz3)
n + (1− cn)zn3 (24)

for some a, b, c ∈ C (remind that, by assumption, an,0,0 = a0,n,0 = a0,0,n = 1).
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It follows from (22) and (24) that for 1 ≤ k ≤ n − 1,

Gk
1(z1, z3) = an−k((z1+bz3)

k − bkzk3
) + ckzk3. (25)

In particular, G1(z1, z3) = an−1z1 + cz3 and hence

(an−1z1+cz3)
k = an−k((z1+bz3)

k − bkzk3
) + ckzk3. (26)

It follows from (26) that
a j (n−1)ck− j = an−kbk− j (27)

for 1 ≤ k ≤ n − 1 and 1 ≤ j ≤ k. In particular, if we put j = k in (27), then we
obtain that an = 1 if a �= 0.

Similarly, it follows from (23) and (24) that for 1 ≤ k ≤ n − 1,

Pk
1 (z1, z2) = bn−k((z1+az2)

k − akzk2
) + cn−k zk2. (28)

In particular, P1(z1, z3) = bn−1z1 + cz2 and hence

(bn−1z1+cz2)
k = bn−k((z1+az2)

k − akzk2
) + cn−k zk2. (29)

It follows from (29) that

b j (n−1)ck− j = bn−kak− j, ck = cn−k, (30)

for 1 ≤ k ≤ n − 1 and 1 ≤ j ≤ k. In particular, if c �= 0 then we obtain that
c2 = cn = 1, that is, c = ±1 and n is an even number if c = −1. If we put j = k in
(30), then we obtain that bn = 1 if b �= 0.

Let us show that the case when abc �= 0 is impossible. Indeed, if abc �= 0, then
an = bn = 1, c = ±1, and c = −1 only if n is even. If we apply again (27) and (30)
we obtain that ck− j = (a/b)k− j = (b/a)k− j for 1 ≤ k ≤ n − 1 and 1 ≤ j ≤ k.
Therefore, c = a/b = b/a and hence

F(z1, z2, z3) = (z1 + az2 + acz3)
n − (az2 + acz3)

n + (z2 + cz3)
n

= (z1 + az2 + acz3)
n,

since an = cn = 1. This contradicts the assumption that C is an irreducible reduced
curve.

It easily follows from (27) and (30) that the case, when the only one number either
a or b, or c is equal to zero, is also impossible.

In the case when a = b = 0 and c �= 0 we have F(z1, z2, z3) = zn1 + (z2 ± z3)n.
But, it is impossible since C is an irreducible curve.

The cases a = c = 0, b �= 0 and b = c = 0, a �= 0 are also impossible since
in these cases we have, respectively, that F(z1, z2, z3) = (z1 + bz3)n + zn2 since
bn = 1 or F(z1, z2, z3) = (z1 + az2)n + zn3 since an = 1. As a result, we obtain that
a = b = c = 0, that is F(z1, z2, z3) = zn1 + zn2 + zn3. ��
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5 k-rigid curves with k ≥ 2

5.1 2-rigid irreducible families of equisingular plane curves of degree ≥ 5

An infinite series of irreducible 2-rigid families is given in the following two theorems.

Theorem 5.1 The families V (2n+1; 0; Tn+1,2n+1+Tn,2n+1) are 2-rigid and irre-
ducible for n ≥ 2.

Proof LetC ∈ V (2n+1; 0; Tn+1,2n+1+Tn,2n+1) and let f : P
1 → P

2 be amorphism
such that C = f (P1). We can choose non-homogeneous coordinate t in P

1 and
homogeneous coordinates (z1 : z2 : z3) in P

2 such that f (t = 0) = p1 = (0 : 0 : 1)
is the singular point of C of type Tn+1,2n+1, the line z1 = 0 is the tangent line to C
at p1, f (t = ∞) = p2 = (1 : 0 : 0) is the singular point of C of type Tn,2n+1, the
line L3 given by z3 = 0 is the tangent line to C at p2. Then (maybe, after change of
coordinates in P

2) the morphism f is given by

z1 = t2n+1, z2 = tn+1, z3 = at + 1 (31)

for some a ∈ C. LetCa have parametrization (31). The intersection number ofCa and
L3 at the point p2 is

(C0, L3)p2 =
{
2n + 1 if a = 0,

2n if a �= 0.

Hence there is no projective transformation h ∈ Aut(P2) such that h(C0) = C1. On the
other hand, if a �= 0, we make change t1 = at , and then the projective transformation
h((z1 : z2 : z3)) = (a2n+1z1 :an+1z2 : z3) sends C1 to Ca . ��
Theorem 5.2 The families V (4n; 0; T2n−1,4n+T2n+1,4n) are 2-rigid and irreducible
for n ≥ 3.

Proof Let C ∈ V (4n; 0; T2n−1,4n+T2n+1,4n) and let f : P
1 → P

2 be a morphism
such that C = f (P1). As in the proof of Theorem 5.1, it is easy to show that we can
choose non-homogeneous coordinate t inP

1 andhomogeneous coordinates (z1 : z2 : z3)
in P

2 such that f (t = 0) = p1 = (0 :0 :1) is the singular point of C of type T2n−1,4n ,
the line z1 = 0 is the tangent line to C at p1, f (t = ∞) = p2 = (1 : 0 : 0) is the
singular point of C of type T2n+1,4n , and the line z3 = 0 is the tangent line to C at p2.
Then (maybe, after change of the coordinates in P

2 and P
1) the morphism f is given

by
z1 = (t2 − a2)t4n−2, z2 = t2n−1, z3 = 1 (32)

for some a ∈ C. Let Ca has parametrization (32). The intersection number of Ca and
L1 at the point p1 is

(C0, L1)p1 =
{
4n if a = 0,

4n − 2 if a �= 0.
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Hence there is no projective transformation h ∈ Aut(P2) such that h(C0) = C1.
On the other hand, if a �= 0, we make change t1 = a−1t , and then the projective
transformation h((z1 : z2 : z3)) = (a−4nz1 :a1−2nz2 : z3) sends Ca to C1. ��

5.2 k-rigid families parameterizing curves with k connected components

Theorem 5.3 For each k ∈ N there is a k-rigid family of equisingular plane curves
consisting of k irreducible components.

Proof Let n = 2k + 1 and let n(1,2) = n − 2, n(1,3) = n(1,4) = n, and n(1) = n(2,4) =
n(3,4) = n(1,2,5) = n(1,2,6) = n(3,4,5,6) = 1. Consider the family Vn = V (dn; gn;Sn),
where

dn = (
n(n−1), 1, 1, 1, 1, 1

)
, gn =

(
(n − 1)(n − 2)

2
, 0, 0, 0, 0, 0

)

,

and

Sn = (
n(1,2) + n(1,3) + n(1,4)

)
T n−1
n−1,n + (

n(1,2,5) + n(1,2,6)
)
T n
n−1,n + n(1)SFn

+ n(3,4,5,6)T4,4 + (
n(2,4) + n(3,4)

)
A1,

where SFn is a sum of singularity types of the simple singularities of the curve dual to
the Fermat curve given by the equation zn1 + zn2 + zn3 = 0.

Consider a curve C̃ = ⋃6
i=1 Ci ∈ V n . Denote the curve C1 by C and the curve

Ci by Li−1 for i ≥ 2. The curves L1, . . . , L5 are lines and C is a curve of degree
n(n − 1) and it is easy to see that C = C ∪ L1 ∪ L2 ∪ L3 ∈ Vn , where Vn is the
family of plane curves from Theorem 4.3. By Theorem 4.3, we can assume that C
is the curve dual to the Fermat curve of degree n and Li is given by the equation
zi = 0 for i = 1, 2, 3. Then it follows from the singularity type of the curve C̃ that
L4 and L5 have, respectively, equations z2 + εm1 z3 = 0 and z2 + εm2 z3 = 0, where
m1 �≡ m2(mod n) and ε is a primitive root of the equation xn + 1 = 0.

Consider two curves C̃i = C ∪ L4,i ∪ L5,i ∈ V n , i = 1, 2, where L4,i is given by
the equation z2 + εm1,i z3 = 0 and L5,i is given by the equation z2 + εm2,i z3 = 0. It is
easy to see that a projective transformation h ∈ Aut(P2) such that C̃2 = h(C̃1) exists
if and only if m1,1 − m1,2 ≡ ±(m2,1 − m22)(mod n). Hence V n is a (n − 1)/2-rigid
family of plane curves consisting of (n − 1)/2 = k irreducible components. ��
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