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Abstract The mixed scalar curvature of a foliated Riemannian manifold, i.e., an
averaged mixed sectional curvature, has been considered by several geometers. We
explore the Yamabe type problem: to prescribe the leafwise constant mixed scalar
curvature for a foliation by a conformal change of the metric in normal directions
only. For a harmonic foliation, we derive the leafwise elliptic equation and explore
the corresponding nonlinear heat type equation on a closed manifold (leaf). Then
we assume that a foliation is defined by an orientable fiber bundle, and use spectral
parameters of certain Schrodinger operator to find solution, which is an attractor of
the equation.
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1 Introduction

Geometrical problems of prescribing curvature-like invariants (e.g. the scalar curvature
and the mean curvature) of manifolds and foliations are popular for a long time,
see [6,7,19,22]. There are many proofs of a positive answer to the Yamabe problem:
given a closed Riemannian manifold (M, g) of dim M > 3, find a metric conformal to
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g with constant scalar curvature. The study of this geometrical problem was began by
Yamabe in 1960 and completed by Trudinger, Aubin and Schoen in 1986, its solution
is expressed in terms of the existence and multiplicity of solutions of a given elliptic
PDE in the Riemannian manifold, see [2,15]. Several authors developed an analog
of the problem for CR-manifolds, see [10], and its generalization to contact (real or
quaternionic) manifolds. The problem when metrics of constant scalar curvature can
be produced on warped product manifolds has been studied in several articles, see [9].

Let (M, g) be endowed with a foliation &F. Denote by D = TF, dimD = p,
the tangent distribution and DL dim D+ = n, the orthogonal distribution (or the
normal subbundle) of the tangent bundle 7M. In [4], a tensor calculus adapted to the
orthogonal splitting

TM =D + D+ (1)

is developed to study the geometry of both distributions and the ambient manifolds.
We have ¢ = g5 + g+, where g1 (X, Y) = g(X%, Y1) and (-)* is the projection of
T M onto D*. Obviously, biconformal metrics § = v2gg + u’g™’, u, v > 0, preserve
(1) and extend the class of conformal metrics (i.e., # = v). Biconformal metrics (e.g.
doubly-twisted products, introduced by Ponge and Reckziegel in [13]) have many
applications in differential geometry, relativity, quantum-gravity, etc., see [9]. The D--
or D-conformal metrics correspond to v = 1 oru = 1, see [18-21].

Using the natural representation of O(p) xO(n) on TM, Naveira [12] distin-
guished thirty-six classes of Riemannian almost-product manifolds (M, g, D, DLy,
some of them are foliated, e.g., harmonic, totally geodesic, conformal, and Rie-
mannian foliations. Following this line of research, several geometers completed the
geometric interpretation and gave examples for each class of almost-product struc-
tures. The simple examples of harmonic foliations are geodesic ones (e.g., parallel
circles or winding lines on a flat torus, and a Hopf field of great circles on the
3-sphere). Rummler characterized harmonic foliations by existence of an F-closed
differential p-form that is transverse to JF. Sullivan’s topological tautness condi-
tion is equivalent to the existence of a metric on M making a foliation harmonic,
see [6,7].

The components of the curvature of a foliation can be tangential, transversal, and
mixed. The tangential geometry of a foliation is infinitesimally modeled by the tangent
distribution to the leaves, while the transversal geometry by the orthogonal distribution
DL, Prescribing the sign of tangential scalar curvature has been studied for foliated
spaces, for example, there is no foliation of positive leafwise scalar curvature on
any torus, see [26]. The transversal scalar curvature is well studied for Riemannian
foliations, e.g. the “transversal Yamabe problem”, see [25].

The mixed scalar curvature, Syix, for foliated (sub)manifolds has been considered
by several geometers, see [3,14,24], but its constancy (so called “mixed Yamabe
problem”) is less studied. In [20,21], we prescribed the sign of Spix using flows of
D--conformal metrics. In this paper we explore the following Yamabe type problem:
Given a harmonic foliation F of a Riemannian manifold (M, g), find a D*-conformal
metric g with leafwise constant mixed scalar curvature. For a general foliation, the
topology of the leaf through a point can change dramatically with the point; this gives
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many difficulties in studying leafwise parabolic and elliptic equations. Therefore, in
the paper (at least in the main results) we assume that

F is defined by an orientable fiber bundle. 2)

The proofs of the main results are based on Sect. 2.2 (with variation formulae for
geometrical quantities under D -conformal change of a metric), Sect. 2.3 (with Propo-
sition 2.11 and Corollary 2.12), Sect. 3 (about attractor of the nonlinear heat equation
on a closed manifold and about solution of its stationary equation with parameter) and
Sect. 4 (about smooth dependence of a solution on a transversal parameter).

A slight change in the proof allows us to extend the main results for the case when
the prescribed mixed scalar curvature is not leafwise constant.

2 Main results

The main results of the paper are the following.

Theorem 2.1 Let F be a harmonic and nowhere totally geodesic foliation of a closed
Riemannian manifold (M, g) with condition (2). Then there exists a DJ‘-conformal
metric g with leafwise constant mixed scalar curvature.

If D is integrable than Corollary 2.12 is applicable. In particular case of codimension-
one foliations, we have the following.

Corollary 2.2 Let F be a codimension-one harmonic and nowhere totally geodesic
foliation of a Riemannian manifold (M, g) with condition (2). Then there exists a D--
conformal metric g with leafwise constant Ricci curvature in the normal direction.

There are examples of foliations of codimension > 1 with minimal, not totally geodesic
leaves on (compact) Lie groups with left-invariant metrics, see [23]; further, the metric
can be chosen to be bundle-like with respect to F. Such foliations have leafwise
constant mixed scalar curvature.

Theorem 2.3 LetF,dim F > 1, be atotally geodesic foliation of a closed Riemannian
manifold (M, g) with condition (2) and integrable normal distribution. Then there
exists a D--conformal metric g with leafwise constant mixed scalar curvature.

2.1 Preliminaries

Denote by R(X, Y) = VyVx — VxVy + V[x,y] the curvature tensor of Levi-Civita
connection. The sectional curvature K(X,Y) = g(R(X,Y)X,Y), where X € TTF,
Y € D are unit vectors, is called mixed. It regulates (through the Jacobi equation) the
deviation of leaves along the leaf geodesics. Foliations with constant mixed sectional
curvature play an important role in differential geometry, but are far from being clas-
sified. Examples are k-nullity foliations on Riemannian manifolds which are totally
geodesic, relative nullity foliations, which determine a ruled structure of submanifolds
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in space forms, foliations produced by the Reeb vector field on Sasakian manifolds,
etc. Totally geodesic foliations on complete manifolds with Kunix = O split. For a
k-dimensional totally geodesic foliation with Kyjx = 1 on a closed manifold M ntk
we have the Ferus inequality k < p(n), where p(n) — 1 is the number of linear
independent vector fields on a sphere S, see [16].

The mixed scalar curvature is an averaged mixed sectional curvature,

n o p
Smix = > K(&j, Ea),

j=la=1

and is independent of the choice of a local orthonormal frame {E€;, Eq}j<n.a<p
of TM adapted to DL and TF, see [16,17,24]. If either DL or TTF is one-
dimensional and tangent to a unit vector field N, then Spx is the Ricci curvature in the
N-direction.

Let X7 be the module over C*°(M) of all vector fields on M, and X+ and X T the
modules of all vector fields on D+ and T'F, respectively. The extrinsic geometry of a
foliation is related to the second fundamental form of the leaves, 2 (X, Y) = (VxY)=,
where X,Y € X', and its invariants (e.g., the mean curvature H = Trgh). Special
classes of foliations such as totally geodesic, 1 = 0 (with the simplest extrinsic
geometry); totally umbilical, h = (H/p) g5; and harmonic, H = 0, have been studied
by many geometers, see the survey in [16]. Let 4+ be the second fundamental form
of D1, HL = Trth- the mean curvature, and 7 the integrability tensor of DL, We
have

2h(X,Y) = (VxY+VyX)|, 2T(X,Y)=[X,Y], X.Yext (3
The formula in [24], for foliations reads as
Smix = IH 12 = lAH 12 + 1T 1> + I H > = IhI* + div(H "+ H). )

We calculate norms of tensors using local adapted basis as

12 =D Int € EPIE Rl =D I1h(Ea. Ep)II*,

a,b

i,j
717 =D T € EHIP
i,J

Example 2.4 (constant mixed scalar curvature on doubly-twisted products) The dou-
bly twisted product of Riemannian manifolds (B, gg) and (F, g*), is a manifold
M = B x F with the metric g = v?gg+u’g*, where v, u € C*®(B x F) are positive
functions. The leaves B x {y} of a doubly-twisted product B X, ) F and the fibers
{x} x F are totally umbilical. We have

h=—(Vtlogv)gy, ht=—(V logu)g™
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By the above, H = —nV+logv, H-= —pV " logu, and

V4ol IV Tul?
IHIZ =117 = 0% = m) ==, [HE? = ) = (= p) ——5—.
Next we derive
ATy VvV Tull?
divE = —p A [ 2||7
u u
AJ_ VJ_ 2
divH* = —n—v —(nz—n)u,
v v2

where AT is the leafwise Laplacian and A is the fiberwise Laplacian. Substituting
in (4) with T = 0, we obtain the formula

ATu Aty
Smix = —n T - P

v

Let B be a closed manifold. Given a positive function v € C*®(B x F), define a
leafwise Schrodinger operator H{ = — AT — g, where 8 = p(A'v)/nv. For any
compact leaf, the spectrum of J is discrete, the least eigenvalue Aq is isolated from
other eigenvalues, and the eigenfunction eq (called the ground state) can be chosen
positive, see Sect. 3. Since H(eg) = Aoep, a doubly-twisted product B Xy, ¢y) F has
leafwise constant mixed scalar curvature equal to ni.

We focus on the mixed Yamabe problem for harmonic foliations, which amounts to
finding a positive solution of the leafwise elliptic equation, see Proposition 2.10,

—n(ATu+ BTu) = —2H () + Smiu + 1120 = | Tu>, )

where ,BT =T ||§, — || ||§, — Smix)/n, and a leafwise constant §mix corresponds to a

D--conformal metric 3. Proposition 2.6 allows us to reduce (5) to the case of H L=0.
By Lemma 2.8, D' -conformal changes of the metric preserve harmonic foliations.
For non-harmonic foliations, (5) has additional first order terms.

Example 2.5 The global structure of totally geodesic foliations with integrable normal
bundle (i.e., DL is tangent to a foliation CFL) has been studied in [5]: the universal
cover M is topologically a product F x FL of universal covers of the leaves of both
foliations, F and F+. Let F be a totally geodesic foliation with integrable normal
bundle of a closed Riemannian manifold (M, g) with conditions (2) and H+ = 0.
Then ¥ = W, = 0, and (5) becomes the linear elliptic equation on F,

—ATu— (BT +®)u =0,

where ,BT = —Shix/n. Suppose that Spix # const and ® = const. Then H(u,) =
®du,, where u, = ep and ® = A for the Schrodinger operator H = — AT — BT,
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Assuming VLu| r = 0, continue u, smoothly on M. Thus, the mixed scalar curvature
of the Riemannian manifold (M, g = g+ uigl) isnd.

Proposition 2.6 Let F be a foliation of a closed Riemannian manifold (M, g) with
condition (2). Then there exists a smooth function u > 0 on M such that H+= 0 for
the metric g = g5 + u’g™.

Proof Recall the equality forany X, Y € Xt and U, V € X7, see [16],

gRWU,X)V,Y) =g((VuCy — CvCy)(X), Y)

(©6)
+g(((VxATy — AYAY)(U), V),

where the co-nullity operator C: TFxTM — Dt is defined by Cy(X) =
—(VxU)t, U € X7, X € Xy. Note that

D> g((VuOW(E), &) = D Vu(8(Cv(E)), E))
J J

=Vuy (g (Z h(€j. E)), v)) =g(VyH" V).
J
Thus, tracing (6) over D and taking the antisymmetric part, we obtain d T H+ = 0,
where the 2-form d " H is defined by
2d"HY(U,V) = g(VyH V) —g(VyHY U), U, VeX.

Then we apply Lemma 2.7. O

Lemma 2.7 ([19, Theorem 1.1]) Let F be a foliation of a closed Riemannian manifold
(M, g) with condition (2), and d " H+= 0. Then the Cauchy problem

2
dhg=—-=Wiv' H g g=g.
p
has a unique solution g;, t > 0, that converges as t — o0 to a metric with H L=0.

2.2 D+-conformal change of a metric
We shall find how various geometrical quantities are transformed under D -conformal

change of a metric. The Weingarten operator Aﬁ of D+ and the skew-symmetric
operator T, where U € X', are given by

gAGX),Y) = gh(X,Y),U), g(THX),Y)=g(T(X,Y),U).

Lemma 2.8 Given a foliation F on (M, g = gg + g1), and ¢ € C' (M), define a
new metric g = gg + €*®g+. Then
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' = e 2p, H = e H, (7)
Wt =2t — (V). HY=H"—nV'g, ®)
AL = AL —U(g)ids, Tf =218, Uex 9)

Hence, D*-conformal variations preserve total umbilicity, harmonicity, and total geo-
desy of F, and preserve total umbilicity of the normal distribution D=+.

Proof The Levi-Civita connection V of a metric g is given by the known formula

28(VxY, Z) =Xg(Y,Z2)+Yg(X,Z) — Zg(X,Y)

10
X, Y, Z € Xp;. Formula (7) follows from (10):

2e%g(VyV,X) =22(VyV, X)

We deduce (8) using H' = ¢~ 20 > h(E4, Eg) = e ¢ H. From T =T and

(THX), V) = e X ZTHX),Y) = X ZT(X. V), U)
=e ¥(T(X,Y),U)=e ¥g(TH(X). V)

formula (9) follows. By (10), forany X, Y € ¥+ and U € X' we have
g(VxY, U) = &?g(VxY,U) = U9 g(X, ¥) — (= D) g(T(X, Y), U).
From this, skew-symmetry of T and (3), we deduce (8). Then we get (9) using

P g(AG(X).Y) = Z(ALX).Y) =g (X, V). U)
= ¢ (g(AF(X). Y) — U(d)g(X. V).

Similarly, we prove (9):
M g(THX), Y) =8(THX), Y) =8(T(X,Y),U) = g(TH(X), Y).

The orthonormal bases of D in both metrics are related by € ;= e ?&;. To show
this we calculate for any j < n,

1= g(Ej, gj) = ez¢g(e_¢’8j, e_¢8j) =g(&;,&)).
By (8), we have
hHE; € = 2htE;, &) =ht (), 8) — (VIg)gE;, &)).
From this and the definition H+ = Trth-, the equality (8) follows. O
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Iiemark 2.9 By Lemma 2.8, for a leafwise constant ¢ we obtain ht = e2ht and
H~+= H~. Hence, D'-scalings of g preserve harmonicity and total geodesy of D+,

Proposition 2.10 The mixed scalar curvature of a harmonic foliation F under D+-
conformal change of a metric § = gg + u’>g*, where u > 0 is a smooth function, is
transformed according to the formula

(Smix — Smix)u = nATu = 2H>(u) + |kl ™' =u) = I T |} > —u). (11)
If. in particular, u is leafwise constant (i.e., g is a D*-scaling of g), then we have
Smix = Smix — > = DRI} + @™ = DT}
Proof By Lemma 2.8, we have

1R 1% = e |nl3.
ITI3=e*|T]3.
IR 13 = A5 +nlV Tl —2H (¢), (12)
IH-1E = IHYG +n* Vgl — 2nH- (),
dv' HY = divTHE: —nAT.

Indeed, the formulae for ||ﬁ—r ||%57 and || T||% follow from

T2 = > B (R (Ea. E). )" = "> g(e 2P h(Eq. Ep). e *E;)

a,b,i a.b,i
= g(h(Ea, Ep), €)= e |Ih]12,
a,b,i
1T = D B(TEEN. Ea) = D 8(T(e P& e7?E)). Ea)’
a,b,i a.b,i
=" o(T(E €)). Ea) = e | T)2.
a,b,i

Formula for (Ti;/Tﬁl follows from g(%U, E,) =g(VyU, E,) forU € X7 and

dv' A => (WA E)div HE — ndiv(VT9).

a

From

IR =D g (R €. Ed)?

a,i,j

=D (g(ht & &) — (VTP g(Es &), Ed))’

a,i,j
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= [lh"1I3 —2g(H- V') +nlIV o3,
|H |2 = g(HY HY) = g (H- —nV'¢, H: —nV7¢)

= [|[H (3 — 2ng(H* VT¢) +n*|V 9],

the formulae for |7+ 12 and | ﬁing follow. Then, using (12), & = ¢~%¢&;, and
Smix = 2 _F(Ei. &) = e D F(&. &),
i i
we obtain the formula
Smix = Smix — n(AT¢ + [V T]3)

(13)
+2H(@) + (e =DITI; — (=R}

Substituting ¢ = logu and V¢ = u~'V'u, AT¢p = u='ATu — u=?(|Vu||} into
(13) yields the required formula (11), which is equivalent to (5). O

2.3 Proof of main results

Proposition 2.6 allows us to assume H 1 = 0. Then we associate with (5) the leafwise
parabolic equation with a leafwise constant Smlx

Smi h|? T|?
8;1/1 _ ATM _ (ﬂT+ ﬂ)u — ” ” M_l _ ” ” M_S. (14)
n n n

We shall study asymptotic behavior of solutions to (14) with appropriate initial data
using spectral parameters of a leafwise Schrodinger operator HT = —AT—gT.
The least eigenvalue Ag of KT is simple and obeys the inequalities

)Lg e [— maxp B, — ming ,BT],

its eigenfunction e (called the ground state) may be chosen positive, see Sect. 3.
By (2) and results in Sect. 4, the leafwise constant )»g and eq are smooth on M.
Assume h # 0, < nkg and consider the functions (compare with Sect. 3),

¢l (y) = —(mr — @)y + minp(lhlPe; D)y — maxp(|T )¢y ")y,

(15)
¢1 () = — (A — @)y + maxp(lhlPey?) y ™" — mingp(|IT|1ey )y~

If the discriminant D = ming(||2]|*e _4) - 4(}1)»—r @) maxp (|| T3 _4) > 0, each
of (15) has four real roots (two of them are positive). Their maximal (positive) roots

,T = [mine(ihlZey) + (ming (1hliteg ) — 4ndg — &) maxr (7|6, )1
- 2(nr] — @) ’
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yr_\/maXF(llhllze ?) + (maxp ([lh]|*eg*) — 4 (2] — @) ming ([T |25 ")/
M 2(nrj — @) ’

obey the inequalities y! < y; < yI, where y; is the maximal root of (¢)'(y),

’

T / (min(||2ll*ey®) + 12(nr] — @) max (| T 2eg*) /2 — ming (A 2e2)
73 = 2(nr] — @)

see (26). For a positive function f € C(F) define § y = ming f/maxg f € (0, 1].

Proposition 2.11 Let F be a harmonic and nowhere totally geodesic foliation on a
Riemannian manifold (M, g) with condition (2) and H* = 0. Then for any leafwise
constant ® € C*° (M) obeying the inequalities (along any leaf F)

1, ming||k|* T
PR S el el B P TV 16
0 T 3% maxp T2 S0 M0 (16)

there exists a unique u, in the set {ﬁ e C®M) :u > eoy3 } such that the mixed
scalar curvature of § = g + u*g is ®. Moreover, vyl < uy/eg < y+ and u, =
lim;— oo u(-, 1), where u solves (14) with Smlx = &, does not depend on the value
u(-,0) =ug > eoy3 .

Proof By Theorem 4.4, the leafwise constant Ag (the least eigenfunction of H{ ) and
its leafwise eigenvector ¢ are smooth, i.e., they belong to C*°(M). If M is closed
then there exist many functions ® obeying (16), e.g. nk(;r — ¢ for small enough ¢ > 0.
By the conditions, any leaf Fy has an open neighborhood diffeomorphic to F x R”
and Fp = F x{0}. Since F, = F x{q} are compact minimal submanifolds, their
volume form dvolp = |g|p|1/2dx does not depend on g € R”, see [16]. Thus, the
vector bundles {L>(Fy)},err and {H k (Fy)}4ern coincide with the products Ly x R”
and H* xR". Let ® obey (16) and let ug > e, y3T hold. We shall use the notation

P P 17]? I7?
ﬁ:ﬁ—r"‘;» )»0:)»(—{_;, V) = —— U, = .

n n
Then (14) with §mix = ® becomes (19), while (16) follows from

+ 1 ming(hll*eg®)

n _—_— b < n)LT,
O 4 maxp(IT |25 0

which becomes (24). Hence, the claim follows from Theorem 3.6. O

Corollary 2.12 Let F be a harmonic and nowhere totally geodesic foliation of a
Riemannian manifold (M, g) with condition (2), integrable normal subbundle D+
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and H+ = 0. Then for any leafwise constant ® € C*®(M) such that ® < n)LT there
exists a unique positive function u, € C*° (M) such that (along any leaf F)

*

_ . _ u _ _
(nrg — @) 'minp () %ey %) < = (nrd — @) 'maxp ([|h]%ep?),

and the mixed scalar curvature of the metric ¢ = g + uﬁgl is ®.

Proof This is similar to the proof of Proposition 2.11. Since W, = 0 and Ao > 0, each
of p_ = —A0+\Ill_y_1 and ¢4 = —)»0+\I"l+y_l has one positiveroot y;” = /¥, /Ao
and ler = ,/‘-IJIJ’/)LO, see also Example 3.2 (c). O

Proof of Theorem 2.1 By Proposition 2.6, there exists a metric g;, D--conformal to
g, for which H+ = 0 (the mean curvature of D). By Lemma 2.8, the equality H = 0
is preserved for g;. By Proposition 2.11, there exists a metric g, D-L-conformal to 21,
for which §mix is leafwise constant; moreover, H = 0 holds. O

Proof of Theorem 2.3 By Corollary 2.12, there is a metric g; that is D-+-conformal to
g, for which Ht=0. ByLemma?2.8, h = Ois preserved for g1. Since T = 0, equation
(5) reads as the eigenproblem H(u) = Simix U /n, where H = — AT — B is a leafwise
Schrodinger operator on (M, g1) with potential 8 = —Snix(g1)/n. Let eg > 0 be the
ground state of H with the least eigenvalue AT (leafwise constant). Thus, the metric
g=g5+ 60 g1 has Smix = nko ; moreover, the equality 2 = 0 is preserved for g. O

3 Results for the nonlinear heat equation

Let (F, g) be a smooth closed p-dimensional Riemannian manifold (e.g., a leaf of a
compact foliation) with the Riemannian distance d(x, y). Functional spaces over F
will be denoted without writing (F), e.g., L instead of L, (F). Let H K be the Hilbert
space of Sobolev real functions of order k on F with the inner product (-, -); and the
norm || - ||¢. In particular, H 0 = L, with the product (-, -)o and the norm || - ||p. Denote
by |- [lc« the norm in the Banach space Ckforl <k < oo, and ||| for k = 0.
In local coordinates (xi,...,x,) on F, we have || fllcx = maxpmax), <k |[d" f],
where m > 0 is the multi-index of order |m| = >_, m; and d™ is the partial derivative
(in fact, a finite atlas of F' must be considered). For o € (0, 1) and integer k > 0 denote
by CK¢ the Banach space of such functions u € C¥, for which all partial derivatives
of order k belong to Hélder class C%¢. The norm in this space is defined as follows:

lutl| o4 = max { max || DPul| 0.
IBI<k

max sup |DPu(x) — D’su(y)|d(X,y)7a}-
IBI=k x, yeF
Xy

a7)
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Proposition 3.1 (scalar maximum principle, see [8, Theorem 4.4]) Let X; and g; be
smooth families of vector fields and metrics on a closed Riemannian manifold F, and
f e C®MRx[0,T)). Suppose that u: F x [0, T) — R is a C* solution to

ou > Aju— X, (u) + fu,t),

and let y: [0, T] — R solve the Cauchy problem for the ODEs: y' = f(y(1),1),

3.1 The nonlinear heat equation
We are looking for stable solutions of the elliptic equation, see (5) with H+= 0,
— Au—Bu =W (x)u"" = W(x)u, (18)

where W > 0, W, > 0 and $ are smooth functions on F'. To study (18), we shall look
for attractors of the Cauchy problem for the nonlinear heat equation,

ou = Au+ fu + v (0wl = \IJz(x)u_3, u(x,0) =ug(x) > 0. (19)

Let C; = F x [0, t) be cylinder with the base F. By [2, Theorem 4.51], (19) has a
unique smooth solution in €, for some 7y > 0. Let S; be a map which relates to each
initial value ug € C the value of this solution at t € [0, fp). Since the rhs of (19)
does not depend explicitly on ¢, the family {S;} has the semigroup property, and it is
a semigroup (i.e., fp = o0) when (19) has a global solution for any ug(x) € C.

Let H = —A — B be a Schrodinger operator with domain in H? and o () the
spectrum. One can add a real constant to 8 such that J{ becomes invertible in L, (e.g.
0 > 0) and H~! is bounded in L,.

Elliptic Regularity Theorem (see [2]) If 0 ¢ o (J), then for any integer k > 0 we
have H~': HF — H¥+2,

By the Elliptic Regularity Theorem with k = 0, we have H~!: L, — H?, and the
embedding of H? into L; is continuous and compact, see [2]. Hence, the operator
KL, > Ly is compact. Thus, the spectrum o (H) is discrete, i.e., consists of
an infinite sequence of real eigenvalues A g < A; < --- < A; < --- with finite
multiplicities, bounded from below and lim; .o, A; = o0. One may fix in L, an
orthonormal basis of eigenfunctions {e;},i.e., H(e;) = A e;. Since the eigenvalue Ao
is simple, its eigenfunction ep(x) can be chosen positive, see [20, Proposition 3].
The following examples show us that (19) may have

(i) stationary (i.e., f-independent) solutions on a closed manifold F’;
(ii) attractors (i.e., asymptotically stable stationary solutions) when 8 < 0.

Example 3.2 Let § and ¥ > 0, W, > 0 be real constants. Then (19) is the Cauchy
problem for the ODE

Y=, Y0 =y>0, fO=+¥y-wy3 (0
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Fig. 1 Example 3.2: the nonlinear heat equation. (a) ,By4 + L111y2 — Wy with 8 < Oand 4|8|¥; < \IJ12 :
y1 stable, yp unstable, (b) ¥; >0, ¥, =0and 8 <0

(a) Let B < 0 and ¥, > 0. Positive stationary (i.e., constant) solutions of (20) are
the roots of a biquadratic equation y3f(y) = 0. If 4||W, < W2, then we have

two positive solutions yj = \/(‘111 + (\1112 —4|B|W2)1/2)/218| and y; > yp. The

linearization of (20) at the point yg, k = 1,2, is v' = f'(yx)v, where f'(y;) =

—IBIG 0% = yDO? = ¥9)) ly=y- Hence, f'(y1) < 0and f'(y2) > 0, and y; is
asymptotically stable, but y; is unstable. If 4|8| W, = \1112, then (20) has one positive
stationary solution, see Fig. 1(a), and has no stationary solutions if 4|8|¥, > \1112.

(b) Let 8 > 0and W, > 0. Then the biquadratic equation y> f (y) = 0 has one positive
root yi = /(— W1 + (W] + 4W,)1/2)/26. We find

‘-I’ /!
f'on =8 (y3<y2 - y%)(y2 + —"‘2)) > 0;
B i ly=y1

hence, y; is unstable. One may also show that in the case 8 = 0, (20) has a unique
positive stationary solution, which is unstable.

(c) Let W = 0and ¥; > 0. Then f(y) = By + \llly_l. If B > 0, then there are no
positive stationary solutions. If 8 < 0, then f has one positive root y; = (¥/|8])'/%.
Since f'(y1) = — Bl 'y — yD(y + yl))iy=y1< 0, the solution y; is an attractor.

Example 3.3 Let F be a circle S! of length /. Then (19) is the Cauchy problem
Uy =ty + f), u(x,0) =ug(x) >0, xeS', 1=0. @D
The stationary equation with u(x) for (21) has the form

W'+ Fw) =0, u©) =ul), 0 =ud), [>0. (22)
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Rewrite (22) as the dynamical system
w=v, vV=—fu), u>O0. (23)

Periodic solutions of (22) correspond to solutions of (23) with the same period. System
(23) is Hamiltonian, since d,v = 9, f (u), its Hamiltonian H(u, v) (the first integral)
solves 8,H(u, v) = f(u), 3,H(u, v) = v. Then H(u, v) = (0> + pu?)/2 + ¥ Inu +
Wy ~2 /2. The trajectories of (23) belong to level lines of H(u, v). Consider the cases.

(a) Assume B < 0. Then (23) has two fixed points: (y;, 0),i = 1, 2, with y; > y>. To
clear up the type of fixed points, we linearize (23) at (y;, 0),

o o 0 1
= A A"(—f’(yi) 0)'

Since f/(y;) < 0 and f’(y;) > 0, the point (y, 0) is a “saddle” and (y;, 0) is a
“center”. The separatrix is H(u, v) = H(y1, 0), i.e., see Fig. 2(a),

u _ _
v = |Blu? - y}) —2¥; 1n 5~ e 2y,

The separatrix divides the half-plane # > 0 into three simply connected areas. Then
(y2, 0) is a unique minimum point of H in D = {(u, v) : H(u,v) < H(y1,0),0 <
u < y1}. The phase portrait of (23) in D consists of the cycles surrounding the fixed
point (y2, 0), all correspond to non-constant solutions of (22) with various /. Other
two areas do not contain cycles, since they have no fixed points.

(b) Assume B > 0. Then (23) has one fixed point (y1, 0) and f/(y;) > 0. Hence,
(y1,0) is a “center”. Since (y1, 0) is a unique minimum of H(u, v) in the semiplane
u > 0, the phase portrait of (23) consists of the cycles surrounding the fixed point
(y1, 0), all correspond to non-constant solutions of (22) with various [/, see Fig. 2(b).

N
—

Q‘?
N

Fig.2 Example3.3.(a) 8 <0,(b) 8 >0
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For W, = 0 and ¥; > 0, the Hamiltonian of (23) is H(u, v) = (v* + ,3142)/2 +
Wi lnu. Solving H(u, v) = C with respect to v and substituting to (23), we get
u = \/—ﬁuz —2Wilnu + 2C.If B > 0, then (23) has no cycles (since it has no fixed
points); hence, (22) has no solutions. If 8 < 0, then the separatrix H(u, v) = H(uy, 0),
see Example 3.2(c), is v? = |Blu? — ui) —2WyIn(u/uy), (23) has a unique fixed
point (u,, 0) which is a “saddle”. The separatrix divides the half-plane # > 0 into
four simply connected areas with these lines, see Fig. 1(b). Since each of these areas

has no fixed points of (23), the system has no cycles. Hence, u, is a unique solution
of (22).

(c) Consider (22) for W = 0, W, > Oand/ = 2. Set p = u’ and represent p = p(u)
as a function of u. Then u” = dp/du and

(P = 2Bu+2Vu> = W) =C - But—Vu .

After separation of variables and integration, we obtain

\/CI/Z,B +/C? — 4BV, sin (2/B (x + C2)) /2 for B >0,
“= \/—C1/2|/3| +/C? +4]B1W, cosh (2V/IB] (x + C2)) /218 for B <0,

| /92/C1 4 Clix 4+ 002 for f=0

(in the first case C12 > 48W5). Hence, for 8 < 0, (22) has no positive solutions, while
for B > 0 the solution is 27 -periodic and positive only if
e B # n2/4, neN,and C; = 2(,3\112)1/2; a solution uy, = (\Ilz/ﬁ)l/4 is unique, or
e = n? /4, n € N; the set of solutions forms a two-dimensional manifold

nug(Cy, Ca) = \/2C1 +2(C? — n2W)2sin (n(x +C2)).

3.2 Attractor of the nonlinear heat equation
Denote by

U= maxp(Wiep2), W

T=mingp(Wiep?),  i=1,2.

Let \IJ;' > 0 (the case of \IJ;' = 0 is similar) and

v)?

0<Ag < .
°T 4uf

(24)

Each of the two functions of variable y > 0,

() = —hoy + Wy =Wy g ()= —roy+ ¥y =Wy (25)

@ Springer



518 V. Rovenski, L. Zelenko

08 L
018, —m—=——""=~ S
0.6 ] .
;]
0.4 0.141 S
, AY
&) AY
02 o e
. : K@)
0.06]
027
041 0.021
o
0.6 0 02 04 06 08 1 12 14
(a) (b)

Fig. 3 Graphs of ¢_, ¢’ and u~ for | = Wp = 1 and A9 = 0.1. (a) yi 3,5, ®1,y; ®16and
vy *24,b)p"(0)for0<o <y —y; 14

has four real roots, two of which, y;' < yl+ and y, <y ,are positive. Since ¢_(y) <
¢4 (y) for y > 0, we also have y; < y1+. Denote by

(26)

o \/((wl)z + 12U A) 2 — Wy
3 2%
0

a unique positive root of ¢’ (y). Clearly, y; € (y; , ¥, ). Notice that ¢_(y) > 0 for
y €,y )and ¢_(y) < O0fory e (0,00)\[y,,y, ]; moreover, ¢_(y) increases
in (0, y;') and decreases in (y; , 00). The line z = —Aqy is asymptotic for the graph of
¢_(y)wheny — oo,andlimy o ¢ (y) = —o00. Next, ¢’ (y) decreasesin (0, ¥4 ) and
increasesin (y; , 00), where y, = (6% /W,)!/2 >y andlimy_, o0 ¢' (y) = —Ao,
see Fig. 3. Hence,

p(0) == sup ¢L(y) = min{|¢_(y; — )|, Ao} > 0 27)

y=y, —o

foro € (0, y, — y3). Similar properties have y3+, y[f and ut (o) defined for &L ().

Lemma 3.4 Let y(t) be a solution of the Cauchy problem
Y=¢-(y), »0) =y, >0. (28)
() Ifyy > y, thenlim; o y(t) = y, . Furthermore, if y, € (y, , y| ) then y(t) is
increasing and if y, >y, then y(t) is decreasing.

(i) Ifyy =y, —¢forsomee € 0,y —y;)then

Iy(@) =y | < lyg — vy le™* @ (29)

Similar claims are valid for the Cauchy problem y' = ¢ (y), y(0) = y(')F > 0.
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Proof (i) Assume that y,” € (y,, ¥, ). Since ¢_(y) is positive in (y, , y; ), y(t) is
increasing. The graph of y(f) cannot intersect the graph of the stationary solution
¥7 ; hence, the solution y(¢) exists and is continuous on the whole [0, 00), and it is
bounded there. There exists lim; . y(#), which coincides with y;", since y, is a
unique solution of ¢(y) = 0 in (y,, 00). The case y, > y, is treated similarly.
Notice that if y, € (y, , y; ) then y(¢) is increasing, and if y, > y, then y(¢) is
decreasing.

(ii) For y; > y;” — &, where ¢ € (0, y;” — y5 ), denote z(¢) = y; — y(¢). We obtain
from (28), using definition of 1+~ (¢) and the fact that ¢_(y,; ) =0,

i
(%) =277 = 212/0 ¢ (y+tz)dr < —2u"(8)Z%.

This differential inequality implies (29). The case y, > y, is treated similarly. O

Under assumption (24), define nonempty sets u;”’ C U, closed in C, with ¢ €
(0, y; —y;)andn > 0by

u§=[u0ec —Ozyl_—e],
€o
u
u;’n:[uoeC:yl_—afe—Ofyf'—i-n}.
0

Then, U] C Uy, where Uy = {ug € C : up/ep > y; }is openin C.

Proposition 3.5 Let (24) hold. Then the Cauchy problem (19) with ug € U for some
e € (0, y; — vy ), admits a unique global solution. Furthermore, the sets U] and u;’",
n > 0, are invariant for the semigroup of operators corresponding to (19).

Proof Let u(-,1), t > 0, solve (19) with ug € U] for some ¢ € (0,y; — y3).
Substituting # = egw and using Aeg + Beg = — Apeo, yields the Cauchy problem

dw = Aw + (2Vlogeo, Vu) + f(w, ), w(-.0) =2 >y —e  (30)
€0

for w(x, t), where

fw, ) =—=row+ WieggHw ™ = (WaeghHw™ 31)
From (30) and (25) we obtain the differential inequalities

¢_(w) < dw — Aw — (2Vlogeg, Vw) < ¢4 (w). (32)
By Proposition 3.1, applied to the left inequality of (32), and Lemma 3.4, in the

maximal domain Dy of the existence of the solution w(x, t) of (30), we obtain the
inequality

w(e, 1) >y —ee P D>y e,
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which implies that w(x, ¢) cannot “blowdown” to zero. Since ¢4 (w) < ‘-I-'fw_1 , from
the right inequality of (32), applying Proposition 3.1, we obtain in D,

w(-, 1) < wyt) = \/((ug)z — W /hg)e=22or + WiF /g,
where w (¢) solves the Cauchy problem for the ODE

dwy + -1 + 4o

7+Aow+=\lll wy, w4 (0) = uy = maxp a.
By the above, the solution u(x, ¢) of (19) exists for all (x, t) € Cx, and the set U is
invariant for the semigroup of operators 8; : ug +— u(-,1),t > 0,in Cx, = F X [0, 00),
corresponding to (19). Assuming ug € UT’" and applying again Proposition 3.1 and
Lemma 3.4 to the right inequality of (32), we get

_t
w(, ) <y +ne @0 e,y —yi).

Thus, u(-,t) € Ui’n, t > 0. Hence, also the set u;"’ is invariant for all §;. 0

Theorem 3.6 (i) If (24) holds then (18) admits in U a unique solution u, (on F),
which is smooth; moreover, uy, = lim,_ o u(-, t), where u solves (19) with ug €
Uy, and y; < uy/eg < yf‘. Furthermore, for any € € (0, y, — y3 ), the set U]
is attracted by (19) exponentially fast to the point u, in C-norm:

luC. ) —uslle <83 e™ @ ug —uslle, >0, ugeUs. (33)

(i) If B, Wy, Wy are smooth functions on the product F x R" with a smooth leafwise
metric g(-, q) and (24) holds for any leaf F x{q}, g € R", then the leafwise
solution u, of (18) is smooth on F x R".

Proof (i) By Proposition 3.5, the set UJ is invariant for the semigroup of operators
8;:up — u(-,1),t = 0, corresponding to (19), i.e., 8;(U7) € U] for t > 0. Take
u? € U3, i = 1,2, and denote by

0
0 ui(-, 1) 0o_ U

wi(-, 1) =8(uy), wi(-,t) = , wY = L
€0 €0

Using (30) and the equalities
2WAW = AW = 2|Vw|?, V(w?) =2wVw
with w = wy — wy, we obtain

3 (wa — w1)?) = 2(wr — w) d (wy — wy)
< A((wy — w)*) +(2Vlogep, V(wy — wy)?)
+2(f (w2, -) — fwr, ))(wa — wy).
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We estimate the last term, using w; > y; —¢& > y5,i = 1,2, (27) and (31),

(f (w2, ) = fwr, ) (w2 —wy) = (w2 — wl)z/olawf(wmtr(wz—wl), -)dr
< —u” (&) (w2 —wy)’
Thus, the function v = (wy — w1)? satisfies the differential inequality
v < Av+ (2Vlogep, Vv) — 21" (e)v.

By Proposition 3.1, v(-, 1) < vy (t), where v4(¢) solves the Cauchy problem for the
ODE:

v = =2p" @vp®),  v(0) = w) — wl|Z.
Thus,

0 0
18 (u3) — 8 (ullc < llwa(-, 1) —wi(-, 1)|lc - maxrep
<e ™ O wd —wlc - maxFeg

—1 —pn (o)t 0 0
<8 e Eud —ulllc.

i.e., the operators §;, ¢ > 0, corresponding to (19) satisfy in U] the Lipschitz condition
with respect to C-norm with the Lipschitz constant S%Ie_“_(g)’ .

By Proposition 3.5, for any > 0 the operator 8, for (19) maps the set U§, which is
closed in C, into itself, and for r > (In 8;01 )/ (e) it is a contraction there. Since all
operators §; commute one with another, they have a unique common fixed point u, in
US. Since ¢ € (0, y; — y3 ) is arbitrary, u, is a unique common fixed point of all 8¢
in the set U;. For any ug € U‘i and ¢ > 0, (33) holds. Thus, u, € C is a generalized
solution of (18). By the Elliptic Regularity Theorem, u, € C* and it is a classical
solution. By Proposition 3.5, Uy" C U is also §;-invariant, hence u, € U5". Since
¢ € (0, y; —y3) and n > O are arbitrary, we get y; < ux/ep < y1+.

Notice that if the functions W1 and W, are constant then ¢+ = ¢_, see (25); in this
case, Uy /ey = yf =y is constant, too.

(i1) Let eg(x,g) > 0 be the normalized eigenfunction for the minimal eigenvalue
Xo(q) of the operator 3, = —A — B(x, g). By Theorem 4.4, Ay € C*°(R") and
eg € C°(F xR™), hence ¥z » defined by (26), smoothly depends on g. As we have
proved in (i), for any ¢ € R" the stationary equation, see also (18),

Agu+ f(u,x,q) =0, (34)
with f(u,x,q) = B(x,q)u + Vi(x,q)u"" — Wr(x, g)u"3 has a unique solution
u4(x, q) in the open set U1 () = {up € C(F xR") 1 up/eo(-, q) > y;3 (q)}.

Since y; (¢) and ep(x, g) are continuous, for any k € N and a € (0, 1), there exist
open neighborhoods U, € C k+2.@ of 4, (x, 0) and Vo C R” of O such that
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U« SWi(g), g€V (35

We claim that all eigenvalues of the linear operator H, = — Ag— 9, f (u«(x, 0), x, 0),
acting in L, with the domain H 2 are positive. To show this, observe that y, (0) <
ui(-,0)/eo(-,0) < y{" (0). Let u(x, t) be a solution of the Cauchy problem for the
evolution equation

u = —H. (), u(x,0) =up(x) e C. (36)

Using the same arguments as in the proof of (i), we obtain that the function v(x, t) =
w2 (x, t)ey 2(x, 0) obeys the differential inequality with to = min{|¢” (y; ), Ao} >
0:

v < Agv + (2V10ge0(~,0), Vv) —2ugv.

By Proposition 3.1, v(-, 1) < vy (t), where v4(¢) solves the Cauchy problem for the
ODE

~ 2
uo

eo(-.0)

v ==2p5ve,  v4(0) =

C
moreover, for any ug € C the function u(x, ) tends to 0 exponentially fast, as t — oo.
On the other hand, if X, is any eigenvalue of 3, and e, (x) > 0 the corresponding
normalized eigenfunction then # = e~*'¢, solves (36) with iig(x) = ¢,(x). Thus,
*y > 0 that completes the proof of the claim.

Using Theorem 4.8, we conclude that for any integers k > 0 and / > 1 we can
restrict the neighborhoods U of u4(x, 0) and V of 0 in such a way that for any ¢ € V
there exists in U, a unique solution u(x, ¢) of (34) and the mapping ¢ + u(-, q)
belongs to class Cl(Vy, Uy). In view of (35), (-, q) =us(-,q)foranyg € Vp. O

4 Appendix: Elliptic equation with parameter

Let F x R" be the product with a compact leaf F, and g(-, ¢) a leafwise Riemannian
metric (i.e., on F;, = F x{q} for g € R") such that the volume form of the leaves
dvolr = |g|'/?dx depends on x € F only (e.g., the leaves are minimal submanifolds,
see Sect. 2). This assumption simplifies arguments used in the proof of Lemma 4.2,
etc. (we consider products B = Lo xR"” and By = H k' R" instead of infinite-
dimensional vector bundles over R"), on the other hand, it is sufficient for proof of
the geometric results. The Laplacian in a local chart (U, x) on (F, g|5) is written as
Au = V;(g"V;u) = |g|7128;(1g|'/>g"/ 3 ;u), see [2] with opposite sign. This defines
a self-adjoint elliptic operator —A,, where ¢ € R" is a parameter and Ag = A,

Ay =g"(x.q)3]; + b (x.9)9;. (37)

Here b/ = |g|~'/%9;(|g|'/?g"/) are smooth functions in U x R”. The Schrodinger
operator Hy, = — A, — B(x, g) acts (and is self-adjoint) in the Hilbert space L; with
the domain H2. Denote H; = H, pr+2 and Hy g = (Hy)) g+ for any g € R™.
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4.1 The Schrodinger operator

If B and C are Banach spaces with norms ||-| g and | - ||c, denote by 8" (B, C) the
Banach space of all bounded r-linear operators A: [[_; B — C with the norm

A1, ..., v)llc
|Allsr(B,c)y = sup .
vienvreB\0 VLB - lvrllB

If r = 1, weshall write A: B — C and B(B, C), and if B = C we shall write B" (B)
and B (B), respectively. If M is a k-regular manifold or an open neighborhood of the
origin in a real Banach space, and N is a real Banach space, we denote by ck (M,N),
k > 1, the Banach space of all C*-regular functions f: M — N, for which the
following norm is finite:

1 llcs .y = sup max [ILFCO v, max 1/ £COllawir v |-
xeM l=<j=<k

We shall use the simplified version of

Banach Closed Graph Theorem If a linear operator A: B — C (of Banach spaces
B and C) is bijective and bounded, then its inverse A~Ll: C = B is also bounded.

Lemma 4.1 Let B € C*° and p < — maxyep f(x). Then

() H— p acts from H? into Lo, it is continuously invertible and the inverse operator
(H —w)~': Ly — L is compact;
(ii) for any k € N the operator Hy —  acts from H**? into H, it is continuously
invertible and (Hy, — ,u)_lz H* — HY s compact;
(iil) for any integer k > 0 the spectrum of Hy, acting in H* with the domain H**2,
is discrete, and it coincides with the spectrum o (H);
@iv) for any integer k > 0 and A ¢ o (H) we have

Ru(H) = (M — )" € BHY H), (38)
(A = Ry.(3p) € C(C\o (30), B(H*, H)). (39)

Proof (i) Clearly, there exists C > 0 such that for any u € H? we have
[H () — pull, < 1Au = plie, + 1B + wullr, < Cllullge. (40)

Thus, H — u € SB(H?, L,). On the other hand, since B(x) + n < 0, the operator
H —  is positive definite as acting in L, with the domain H?2; hence, it is continuously
invertible, i.e., i ¢ o (F). Thus, H —  maps H? injectively onto L,. By the Banach
Closed Graph Theorem, 3{ — yu: H> — L5 has a bounded inverse. Compactness of
the embedding H? < L, yields compactness of (H — u)~!': HK — HF.

(i) Foranyu € H k+2 3 similar to (40) estimate holds with H¥ and H k+2 instead of
L>and H?, respectively. Hence, Hy — u € B(HK2 HEK. By (1), H — u: H?> > L,
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is bijective, and by the Elliptic Regularity Theorem, (H — u)~'(H*) € H**2 holds.
Hence, Hy — u: H k2 HK s bijective, too. Thus, the Banach Closed Graph
Theorem and the compactness of the embedding H**? < H* complete the proof
of (ii).

(iii) Since for any integer k > 0 the operator (H; — u)~': H* — H* is compact,
its spectrum consists of v = 0 and a countable number of non-zero eigenvalues v, of
finite multiplicity, which can accumulate only at v = 0. Hence, the spectrum of Jy
on Hj (with domain in H¥12) is discrete. Since H extends Hy, each eigenfunction of
Hk 1s an eigenfunction of J(; hence, o (Hy) < o (). To show the opposite inclusion,
let e(x) be an eigenfunction of I, related to A € o () (hence,e € H 2). The obvious
equality e = (A — v)/(H — ) /e is valid for any j € N. Applying (several times)
the Elliptic Regularity Theorem, from ¢ € H? we obtain that e € H¥*2.

(iv) Similarly to the proof of (ii), we obtain inclusion (38). Let us prove (39). By the
well-known property of the resolvent, we have

(r = Ri.(H) € C(C\o (F), B(HY)).

Take an arbitrary 19 ¢ o (H) and choose § > 0 such that the set D = {L € C :
L — Xo| < &} does not intersect o (J{(). Using the resolvent identity, see [1],

Ry (Hi) = Ry (Hi) = (A = 20) Ry (Fi) Ry (Fi),
we have the following estimate for A € Ds:

1R (FHk) — Rog (i) lsg ik, mrv2y = 12— Aol - 1 Rug (Fh) sk, 42y
. Ry(K ,
){2%’; [l Rx.( k)“sB(Hk)

which implies the desired inclusion (39). O

4.2 The ground state

We will show smooth dependence on ¢ of the least eigenvalue A(q) of H, and of the
corresponding normalized eigenfunction e(x, g) > 0.

Lemma 4.2 If 8 € C°(F xR") then for any | € N and integer k > 0 the mapping
D:(u,q) > Hyw) isa Cl—morphism (of trivial vector bundles) from By into By.

Proof Fix afinite atlas {(Uy,, X4)}1<a<a on F,and let {p, (x)}1<4<4 be a subordinated
partition of unity. Taking u € H**?, ¢, s € R" and using (37), we obtain

1
? (@(l/t, q-HS) - CD(ua, 51)) - @1(”, CI)S

1 ! ii ii 2
== (7 [ 248" (x.q+T9)sdT — 058" (x, @) 5 ) O u
0
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1/t 4
— (;/qu’(x, g+ts)sdr — 9,0 (x, q)s) oiu
0
1 t
_ (;/aqﬂ(x, g+ts)sdr — 9,8(x, q)s) u
0

in a local chart, where

Di(.q)s = —0y8" (x, 9)s97 — dgb' (x, q)50; — 3y B(x. q)s.

Hence,

1 2
H_ (Q(Ma CI+[S) - g(l’h 6])) - @1(1/{, CI)S

—Z/ pa(x) >

Im|<k

Hk
2

8“‘( (D, g+1s) —D(u, q)) —Di(u, q)s)

<C max max(a ijx, +715) — 0 ijx, . .
= el acis Ay o0t 298" Cx. g +-75) — 8y8"¢ q)”Ck(Um%(R )

j 2
+ [[8gb" (v, g +T8) = 9" (¥, D cr gy, ey
2
+ 0BG, g +79) = 08, @) | x g, swzny ) 1912 Il s
holds for some C > 0 that does not depend on u. We conclude that © : H¥t2x R" —

H* has the partial Gateaux differential 94D (u, q) at each point (#, g), and it is equal
to ©1(u, g)s. Similarly, for any (u;, g;) € H¥2xR" i = 1,2, we obtain

104D 1, q1)s — 94D (2, g2)s | 1

= Cls'z el . P}ue{l 5 A}((Ha‘fgij(x’ q1) — 358" (x. ‘A’Z)HZCHU,J,%(R"))
+[|9g0" (v, 1) — By’ (., qZ)HCk(U,Z,%(R”))
+ (848G, q1) = 84 B(x. @) cu o, 3 mnyy) - N1l re2

+ (848" (x, @)l + 046" (x. g2) | o (17, BRnY)

+ 1185 BCx, g2) ek, wrny) - lur — M2||1-1k+2),
and conclude that the partial differential 9, is continuous:
3,0 € C(H*xR", BR", H")).

One may prove by induction that for any / € N the mapping D (-, -) has at any point
(u,q) e H k42  R” the partial differential of /-th order 8(11@ (u, g), and it has the form

8;@(14,(]) = —8 g (x, q)8 u—a b (x, q)8u—8 Bx,q)u
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inalocal chart, and 8] D € C(H***xR", B! (R", HY)). Since D (u, ¢) and 3, D (u, ¢)
are linear by u, this differential is continuous and ® (u, ¢) has continuous differentials
by ¢ and u of any order. O

Lemma 4.3 Let K be a compact subset of C\ o (Ho x) for some integer k > 0. If
B € C°(F xR"), then there is an open neighborhood W C R" of the origin such that

K CcC\o(Hyr), qeW, 41)
and the following inclusion holds for any l € N:
(r = Ri(Hyx)) € C(K, C'(W, B(H*, H*?))). (42)
Proof The following obvious representation holds for A € K:
Hyp—Ar=0(0d + Lg, M) (Hox —2), qeW, (43)
where
L(g,») = (Hyx — Hox) Ry.(Hox). (44)
Using Lemma 4.2, we get that for any integer [ > 0,
(g — Hyp) € C (W, BH, HY). (45)
Taking into account Lemma 4.1 (iv), we have for any (¢, A) € W x K,

IL(q, )‘)”‘B(Hk) =< ”g{q,k - %0,k||%(Hk+2)Hk) gleal)é ”Ru(g{o,k)”%(yk’ykﬂ)-

Hence, and in view of (45) with [ = 0, there exists an open neighborhood W C R”" of
the origin such that

[u—y

sup  [|L(g, Mgty = 5 (46)
(g, 0)EWXK

Thus, for any (g, A) € W x K the operator id + L(g, 1) € B(HY) is continuously
invertible and its inverse is expressed by the Neumann series (id + L(g,1))"! =
Z?‘;O(— L(g, 1))/ converging in the B(H ky-norm. In view of (43), we conclude that
(41) is valid and for any (g, A) € W x K we have

Ry.(Hgx) = Ri.(Hox) (id + L(g, 1)~ 47
Lemma 4.1(iv) and (44)—(45) imply L(-,A) € CHW,B(H*)) for » € K and

|l € Z, and using the resolvent identity, we obtain L(g,A) — L(g, ) = (A —
W) L(g, n) Ry (Ho x) for A, u € K. Hence,

@ Springer



The mixed Yamabe problem for foliations 527

ILC2) = LGl sy < 13— mIFILC et st
- max | Ry (Ho,i) ll sty -

This estimate implies
(= L(-, 1) € C(K, C'(W, B(H"))). (48)

By [20, Lemma 7] and the arguments in the end of the proof of [20, Lemma 8], and
in view of (46) and (48), we get (A — (id + L(-, 1)) € C(K, C'(W, B(H"))).
Then (47) and Lemma 4.1 (iv) imply the desired inclusion (42). O

Theorem 4.4 Let \(q) be the least eigenvalue of Hy, g € R". If B € C(F xR")
then . € C°(R") and there exists a unique smooth section e: R" — Ly xR" such
that e(-, q) is a positive eigenfunction of H, related to A(q) with |le(-, @)L, = 1.

Proof Assume without loss of generality that 8(x, g) < 0 (otherwise we can consider
Hy — w instead of H, with a suitable ;1 > 0). Since A(g) is a simple eigenvalue of
H, for any g € R”, there exists a unique positive eigenfunction e(-, ¢), related to it,
such that [le(-, )|z, = 1. Let Ao be the least eigenvalue of the operator H{p and e( be
the eigenfunction related to A and satisfying conditions mentioned above. Let I" be a
circle of small radius in the complex plane C not intersecting o (3{¢) and surrounding
only Ag. By Lemma 4.3 (with k = 0), one may restrict on the open neighborhood Q
of 0in such a way that I' C C\ o (H,) forany ¢ € Q, and inclusion (42) is valid with
K = TI'. Hence, in view of H? <> L,, the Riesz projection

1
P(q) = —%]{F Ry(Hg)dr,  q€Q, (49)

onto the invariant subspace of H, corresponding to the part of its spectrum lying inside
of I" [11, Introduction, Section 4] has the property for any / € N:

P e ClO,B(Ly)). (50)

In particular, one may restrict Q in such a way that || P(¢) — P(0)[|3(z,) < 1/2 for any
g € Q. Then, taking into account that P (q) are orthogonal projections (since H, are
self-adjoint), we have dim Im P(g) = dim Im P(0), see [1, Chapter III, Section 34].
This means that for g € Q the operator H, has inside of I'" only one simple eigenvalue
A(q), it is real because H, is self-adjoint, Im P(q) is the eigenspace of H{, related to
A(g), and A(0) = Ag. Denote (-, g) = P(q)eo. We have for any g € Q,

N =

leC. i, = 1PO)eollz, = II(P(g) — P(O)eollz, =

Thus, e(x, ¢) is an eigenvector of J{, related to X(q) such that e(x,0) = eg(x).
By (50),

(g —¢(-,q) € CQ, Ly (51)
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for any I € N. Then the equality A(¢){(H,'2(-. ). 2(-.q))r, = [2(-, @)z, and
Lemma 4.3 (with k = 0 and K = {0}) imply that & € C®(Q,R).

Take an arbitrary m € N and set j = [p/4+m/2]+ 1. Since the equality e(-, g) =
(X(q))f J{;jz(- , q) is valid, then in view of (51) and Lemma 4.3, we can restrict Q in
such a way that (¢ — ¢(-,q)) € CI(Q, H?J) for any [ € N. On the other hand, by the
Sobolev Embedding Theorem, H 2j s ™, gee [2]. Thus, for any m € N there is an
open neighborhood Q of 0 suchthat (¢ — €(-, ¢)) € C*°(Q, C™).In particular, since
eo > 0, we canrestrict Q in such a way thate(x, g) = Ree(x, g)/||Ree(-, )|, > 0
for any g € Q. Clearly, e(x, q) is an eigenfunction of H,, related to the eigenvalue

q and |le(-, )|z, = 1. It remains only to show that it is possible to restrict Q in
such a way that A(g) is the least eigenvalue of }{,; forany ¢ € O, i.e., A(q) = A(g)-
Indeed, otherwise there is a sequence g, € Q such that lim,_, o, ¢, = 0 and for any
v there exists an eigenvalue oy of J(,, obeying Xy < A(gy). Since the operators Hg,
are positive definite and for some § > 0 in the interval (Ag — §, A9 + §) there is only
the eigenvalue X(qv) of H,,, we get o € [0, 2o — 8] for any v. Let A, € [0, 20 — 4]
be a concentration point of the sequence {),},cn. Choosing a subsequence, we can
assume that lim,_, o X,, = A4. Surrounding X, by a small enough circle I" such that
I' N [Ao, 00) = @, considering for each v the Riesz projection P,, defined by the
rAl}s of (49) with ¢ = ¢, ay}d using the above arguments, we get that lim, .« || P, —
P(0)|l(z,) = 0, where P(0) is defined by the rhs of (49) with ¢ = 0. Since g, lies
inside I for a large enough v, dim Im P (0) > 0. Hence, there is at least one eigenvalue
of J{y inside of I". But this is impossible, because A is the least eigenvalue of Hy. O

4.3 Solution of the stationary equation
Consider the compact domain in R x F
D = {(u,x) ERXF:u_(x)<u< u+(x)},

where u_, u; € C*® and u_ < u. Define sets G¥ = Int(G) N C¥ for k > 0, where
G C C is abounded, closed and convex set given by

G = {u eC:u_(x)<ulkx)<uyx), x € F}.
Lemma 4.5 Let m,l € N, Il be an open domain in R"x F of the form
I = R" !'xInt(D), and 6(-, -, -): IxR" — R! be a continuous function. Then
for any g € R" the superposition operator © (v, q)(x) = 6(v(x), x, q) maps the set
Y={veC(F.R"): (v(x),x) e, x € F}
into the set C(F, RZ), and the inclusion © € C(Y xR", C(F, Rl)) holds.

Proof The first claim is obvious. Let us prove the second one. Suppose that vy € Y.
Consider the set I'(vg) = {(vo(x), x)}reF. Take arelatively compact open set 0 C R”
such that 0 € Q. In order to construct a similar open neighborhood of the set I"(vg),
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observe that it is compact in IT. Then there is a finite open covering {U; }’j‘.:1 of I'(vo)
such that 7, C II, 1 < j < k, and each of U_, is compact. Consider the open set
I = U,;'=1 Uj. Then I'(vp) C IT', = UI;-:] 7] C I and the set TT' is compact.
Consider the following open subset of C(F, R™):

Y={veC(F.R"): (v(x),x) el ,x € F}.

It is clear that vy € Y’. Since 0(u, x, g) is uniformly continuous on the compact
T’ x O/, for any ¢ > 0 there is § > 0 such that |0 (v, x, g) — 0(v2, x, 0)| < & for all
(v1, x), (v2, x) € € and q € Q’, where |lv; — v2| < & and llgll < &. Let us choose
o € (0,8) such that B, (vo) = {v € C(F,R™) : [[v —wllc(rrmy < 0} C Y. If
v € By (up) and ||g|| < & then [|®(u, ¢) — O (uo, 0)||¢(p Rty < € holds. O

Lemma 4.6 Let f € C°°(D xR™). Then the superposition operator

Qp(u,q) = f(ulx),x,q) (52)
obeys @y € CHG* xR", C¥) for any integers k,1 > 0.

Proof This is divided into two steps.

Step 1. First, we shall reduce the operator (52), acting from G* into C* to a superposi-
tion operator, acting in spaces of continuous vector functions. Take (i, g) € G¥ x R"
for some k € N. Observe that differentials d’ u(x), 1 < j <k, can be considered as
functions defined on F with values in R"/ (e.g., ny = p,n> = p(p + 1)/2 and so
on). We have the following:

de @y (u, q) = 3 f((x), X, q) + 3y f((x), x, q) du(x),
A2, q) = 02 f (u(x), x,q) + 32 f (), x, @) (du(x), du(x))
+ B f (u(x), x, @) d*u(x),

and so on. Hence,
(dc®p(u,q), d2s(u,q), ..., d @ru, q), @r(u, q)) = Y((x), x, q),

where v(x) = (du(x), d*u(x), ...,d*u(x), u(x)) is the vector function on F, and
the function ¥ : 2 xR” — RY is smooth. Here 2 = RV~ !xInt(D) and N = 1 +

21;21 n ;. Itis enough to show that the superposition operator ¥ (v, g) = ¥ (v(x), x, q)

obeys
W e C'(XxR", C(F,RY)) (53)

forany ! € N, where X = {v € C(F,RY) : (v(x),x) € Q,x € F}.

Step 2. In aim to prove (53), take v € X,q € R", h € C(F, RN) and § > 0 such that
u+th € X for any ¢ € [0, §]. We have the following representation for ¢ € [0, 8]:
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t
1T (W(v+th,q) — ¥ (v, q)) =flh(x)/avw(v(x)ﬂh(x),x,q) dr.
0
Hence,

|t (W+1h, ¢) = (@, ) = ¥ @), %, Q7O | ¢,
|3UW(U+T’1» ) ‘1) - 81)1)0(1)1 T C])”C(R %(RN))'

< lhllcrryy sup
7€(0,7]

Since for any fixed ¢ € R" the function g(x, ) = 9, ¥ (v(x)+th(x), x, ¢) is uni-
formly continuous in F x [0, §], the last estimate implies

1ti£ [t (W (v+1h, q) — W(v, @) — ¥ (v(x), x, q)h(x)”C(F,RN) =0.

Hence, for any ¢ € R” the operator W(-,¢g): X — C(F,R") has at any u € X the
Gateaux partial differential 9, ¥ (v, ¢) of the form

WV (v, g)h = ¥ (v(x), x, g)h(x), h e C(F,RY).
We see that 3, W (v, ¢) € B(C(F,R"Y)) and
[0u ¥ (w1, 1) — 3, W (v2, q2) | BC(F.RV))
< |90 1 q1) = 0¥ (2, . @) | ¢ (p oy
By Lemma 4.5 applied to the superposition operator,
Wi(v, @) = ¥ (W), x, @) C(F,RY) — C(F, BR")),
the partial differential 3, W (v, ¢) is continuous in the sense that 3, W € C(C(F, RV) x

R™ B(C(F,RM))). Hence, 3, ¥ (v, ¢) is the Fréchet partial differential. Similarly, one
may show that at any (v, g) € X x R” there is the Gateaux partial differential

Vv, q)s = hf{)l 1! (\I»’(v, q+ts)— Y(v, q)) =0y (v(x), x,q)s,
13

where s € R”, and the limit is taken with respect to the C(F, R")-norm. Further-
more, this differential is continuous: 3, ¥ € C(C(F, RM) xR B(R", C(F,RM))).
Again, this fact implies that d,W¥ (v, ¢) is the Fréchet partial differential. Thus, we
have proved that the superposition operator W (v, ¢)(x) = ¥ (v(x), x, q) belongs to
class C'(X x R", C(F, RV)). Applying similar arguments to superposition operators

Vi, q) = 0¥ (v(x), x,q),  Wa(v,q) =¥ (v(x), x.q),

one may show that W € C 2(X xR*, C(F,RN)). Further, we can prove by induction
that (53) holds for any / € N. m|

@ Springer



The mixed Yamabe problem for foliations 531

Lemma 4.7 Let A, be the elliptic operator in (37). Then for any | € N the mapping
D: (u,q) = —Ayu belongs to class Cl(Ckr2e xR Ck@).

Proof Fix afinite atlas {(U,, x4)}1<q<a of F. Takingu € CK+2% 4 c R"ands € R,
we obtain in a local chart, see (37):

1
" (@(u, q+ts) —D(u, q)) —D1(u,q)s
1t y
= —(;/ng”(x,q+rs)s dr — qu”(x,q)s) afju
0
1 7. .

- (—/qu’ (x,g+ts)sdr — 8qb’(x,q)s) oiu,

0

t

where (-, q)s = —aqgij(x, q)sal.zj — qui (x, g)s9;. In view of (17),

1
H - (D(u, g+15) =D, q)) —D1(u, q)s

Cka(Uy)

<C max max (8 ijx, Ts) — 0 ijx,
= T4 el 2., p) Tel0,t],xeUs 948" (e g +75) = 48" (x. )]

+ || 8qbi(x’ fZ—I—TS) - aqbi (X, q)HCkJrl(Ua"B(Rn))) : |S| : ||u||Ck+2~“(Ua)

holds for some C, > 0 thatdoes notdepend on u. Replacing C, by C = maxj<4<a Cq,
we find that ©: CKt2.¢ x R" — Ck“ has the partial Gateaux differential 9,0 (u, q)
at each point (u, ¢), and it is equal to ©1(u, ¢). Similarly to the proof of Lemma 4.2,
we obtain that ® has continuous mixed partial differentials by ¢ and x (of any order)
at any point (u, g) € C¥T2% xR". |

Theorem 4.8 Let [ € C®°(D xR") and u,(x) € Int(G) be a smooth solution of
(34) with ¢ = 0 such that .. = 0 is not an eigenvalue of the operator H = — A —
oy f(ux(x), x,0) on Ly with domain in H2. Then for any integers k > 0 andl > 1 and
o € (0, 1) there are open neighborhoods U, C Ckt2.a of uy and Vo € R" of 0 such
that for any q € Vy there exists in U, a unique solution u(x, q) of (34), in particular,
u(x) = u(x, 0), such that the function g — u(-, q) belongs to class C'(Vy, Uy).

Proof By Lemma 4.6, for any g € R” and integers k,/ > 0 the operator (52) maps
the set Gyi2 = Int(G) N C*2 into C¥*2 and @ € C!(Grya x R?, C*F2). Since
Ck+2:¢ and C*¥+2 are continuously embedded into C¥+2 and CK*, respectively, we
get Oy € Cl(Gk+2,(x x R”, Ck'“), where Gi42,o = Int(G) N Ck+2.@ Consider oper-
ators Y(u,q) = Aqu + Pr(u,q), g € R", defined on Ggy2,4. By Lemma 4.7,
Y e Cl(Gk+2,a x R", Ck’“). Let H be H restricted on C¥® with the domain C¥+2:@.
Set B = 9y f (ux(x), x, 0). By (17), there is C > 0 such that || Au||cre < Cllu||crr2.a
for any u € C¥*2%; hence, H — u € B(CH2 Ck®) Let u < —maxyer B(x).
By [2, Theorem 4.18], H(u) — pu = f(x) has a unique solution u € Ckt2.o for
any f e C5% ie., H — u maps C¥T2¢ injectively onto C*%. As in the proof of
Lemma 4.1 (i), using the Banach Closed Graph Theorem and compactness of the
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embedding C¥+2¢ < k¢ we prove that 7{ — 4 is continuously invertible and
(H—p)~t: cke - che s compact.

By the above, the spectrum of (J{ — 1) ~! consists of the point v = 0 and a countable
number of non-zero eigenvalues v, of finite multiplicity, which can accumulate only
at the point v = 0. Hence the spectrum of J{ is discrete. By Lemma 4.1 (i—iii), o (3{()
is discrete and ¢ o (3(). By the same arguments as in the proof of Lemma 4.1 (iii),
we find that the spectrum of J is discrete and coincides with o ().

Let A ¢ o (). Then 3{ — A maps injectively C¥t2¢ into C** and it is bounded.
By the Elliptic Regularity Theorem, this operator is surjective. By the Banach Closed
Graph Theorem, J{ — A acts from CKt2¢ into C¥* and it is continuously invertible.
Since 0 ¢ o (H), the partial differential is continuously invertible

Y (uy, 0) = —H € B(Ck>e, choy,

These facts and the Implicit Function Theorem, see [2], complete the proof. O
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