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Abstract The mixed scalar curvature of a foliated Riemannian manifold, i.e., an
averaged mixed sectional curvature, has been considered by several geometers. We
explore the Yamabe type problem: to prescribe the leafwise constant mixed scalar
curvature for a foliation by a conformal change of the metric in normal directions
only. For a harmonic foliation, we derive the leafwise elliptic equation and explore
the corresponding nonlinear heat type equation on a closed manifold (leaf). Then
we assume that a foliation is defined by an orientable fiber bundle, and use spectral
parameters of certain Schrödinger operator to find solution, which is an attractor of
the equation.

Keywords Foliation · Riemannian metric · Harmonic · Mixed scalar curvature ·
Conformal · Leafwise Schrödinger operator · Parabolic equation · Attractor
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1 Introduction

Geometrical problemsof prescribing curvature-like invariants (e.g. the scalar curvature
and the mean curvature) of manifolds and foliations are popular for a long time,
see [6,7,19,22]. There are many proofs of a positive answer to the Yamabe problem:
given a closed Riemannian manifold (M, g) of dim M ≥ 3, find a metric conformal to
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g with constant scalar curvature. The study of this geometrical problem was began by
Yamabe in 1960 and completed by Trudinger, Aubin and Schoen in 1986, its solution
is expressed in terms of the existence and multiplicity of solutions of a given elliptic
PDE in the Riemannian manifold, see [2,15]. Several authors developed an analog
of the problem for CR-manifolds, see [10], and its generalization to contact (real or
quaternionic) manifolds. The problem when metrics of constant scalar curvature can
be produced on warped product manifolds has been studied in several articles, see [9].

Let (M, g) be endowed with a foliation F. Denote by D = TF, dimD = p,
the tangent distribution and D⊥, dimD⊥ = n, the orthogonal distribution (or the
normal subbundle) of the tangent bundle T M . In [4], a tensor calculus adapted to the
orthogonal splitting

T M = D + D⊥ (1)

is developed to study the geometry of both distributions and the ambient manifolds.
We have g = gF + g⊥, where g⊥(X,Y ) = g(X⊥,Y⊥) and ( ·)⊥ is the projection of
T M ontoD⊥. Obviously, biconformal metrics g̃ = v2gF+ u2g⊥, u, v > 0, preserve
(1) and extend the class of conformal metrics (i.e., u = v). Biconformal metrics (e.g.
doubly-twisted products, introduced by Ponge and Reckziegel in [13]) have many
applications in differential geometry, relativity, quantum-gravity, etc., see [9]. TheD⊥-
or D-conformal metrics correspond to v ≡ 1 or u ≡ 1, see [18–21].

Using the natural representation of O(p)×O(n) on T M , Naveira [12] distin-
guished thirty-six classes of Riemannian almost-product manifolds (M, g,D,D⊥);
some of them are foliated, e.g., harmonic, totally geodesic, conformal, and Rie-
mannian foliations. Following this line of research, several geometers completed the
geometric interpretation and gave examples for each class of almost-product struc-
tures. The simple examples of harmonic foliations are geodesic ones (e.g., parallel
circles or winding lines on a flat torus, and a Hopf field of great circles on the
3-sphere). Rummler characterized harmonic foliations by existence of an F-closed
differential p-form that is transverse to F. Sullivan’s topological tautness condi-
tion is equivalent to the existence of a metric on M making a foliation harmonic,
see [6,7].

The components of the curvature of a foliation can be tangential, transversal, and
mixed. The tangential geometry of a foliation is infinitesimallymodeled by the tangent
distribution to the leaves, while the transversal geometry by the orthogonal distribution
D⊥. Prescribing the sign of tangential scalar curvature has been studied for foliated
spaces, for example, there is no foliation of positive leafwise scalar curvature on
any torus, see [26]. The transversal scalar curvature is well studied for Riemannian
foliations, e.g. the “transversal Yamabe problem”, see [25].

The mixed scalar curvature, Smix, for foliated (sub)manifolds has been considered
by several geometers, see [3,14,24], but its constancy (so called “mixed Yamabe
problem”) is less studied. In [20,21], we prescribed the sign of Smix using flows of
D⊥-conformal metrics. In this paper we explore the following Yamabe type problem:
Given a harmonic foliation F of a Riemannian manifold (M, g), find aD⊥-conformal
metric g̃ with leafwise constant mixed scalar curvature. For a general foliation, the
topology of the leaf through a point can change dramatically with the point; this gives

123
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many difficulties in studying leafwise parabolic and elliptic equations. Therefore, in
the paper (at least in the main results) we assume that

F is defined by an orientable fiber bundle. (2)

The proofs of the main results are based on Sect. 2.2 (with variation formulae for
geometrical quantities underD⊥-conformal change of ametric), Sect. 2.3 (with Propo-
sition 2.11 and Corollary 2.12), Sect. 3 (about attractor of the nonlinear heat equation
on a closed manifold and about solution of its stationary equation with parameter) and
Sect. 4 (about smooth dependence of a solution on a transversal parameter).

A slight change in the proof allows us to extend the main results for the case when
the prescribed mixed scalar curvature is not leafwise constant.

2 Main results

The main results of the paper are the following.

Theorem 2.1 Let F be a harmonic and nowhere totally geodesic foliation of a closed
Riemannian manifold (M, g) with condition (2). Then there exists a D⊥-conformal
metric g̃ with leafwise constant mixed scalar curvature.

IfD⊥ is integrable thanCorollary 2.12 is applicable. In particular case of codimension-
one foliations, we have the following.

Corollary 2.2 Let F be a codimension-one harmonic and nowhere totally geodesic
foliation of a Riemannian manifold (M, g)with condition (2). Then there exists aD⊥-
conformal metric g̃ with leafwise constant Ricci curvature in the normal direction.

There are examples of foliations of codimension>1withminimal, not totally geodesic
leaves on (compact) Lie groups with left-invariant metrics, see [23]; further, the metric
can be chosen to be bundle-like with respect to F. Such foliations have leafwise
constant mixed scalar curvature.

Theorem 2.3 LetF, dimF > 1, be a totally geodesic foliation of a closedRiemannian
manifold (M, g) with condition (2) and integrable normal distribution. Then there
exists a D⊥-conformal metric g̃ with leafwise constant mixed scalar curvature.

2.1 Preliminaries

Denote by R(X,Y ) = ∇Y∇X − ∇X∇Y + ∇[X,Y ] the curvature tensor of Levi-Civita
connection. The sectional curvature K (X,Y ) = g(R(X,Y )X,Y ), where X ∈ TF,
Y ∈ D⊥ are unit vectors, is calledmixed. It regulates (through the Jacobi equation) the
deviation of leaves along the leaf geodesics. Foliations with constant mixed sectional
curvature play an important role in differential geometry, but are far from being clas-
sified. Examples are k-nullity foliations on Riemannian manifolds which are totally
geodesic, relative nullity foliations, which determine a ruled structure of submanifolds
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in space forms, foliations produced by the Reeb vector field on Sasakian manifolds,
etc. Totally geodesic foliations on complete manifolds with Kmix ≡ 0 split. For a
k-dimensional totally geodesic foliation with Kmix ≡ 1 on a closed manifold Mn+k ,
we have the Ferus inequality k < ρ(n), where ρ(n) − 1 is the number of linear
independent vector fields on a sphere Sn−1, see [16].

The mixed scalar curvature is an averaged mixed sectional curvature,

Smix =
n
∑

j=1

p
∑

a=1

K (E j , Ea),

and is independent of the choice of a local orthonormal frame {E j , Ea} j≤n,a≤p

of T M adapted to D⊥ and TF, see [16,17,24]. If either D⊥ or TF is one-
dimensional and tangent to a unit vector field N , then Smix is the Ricci curvature in the
N -direction.

Let XM be the module over C∞(M) of all vector fields on M , and X⊥ and X	 the
modules of all vector fields onD⊥ and TF, respectively. The extrinsic geometry of a
foliation is related to the second fundamental form of the leaves, h(X,Y ) = (∇XY )⊥,
where X,Y ∈ X	, and its invariants (e.g., the mean curvature H = Trgh). Special
classes of foliations such as totally geodesic, h = 0 (with the simplest extrinsic
geometry); totally umbilical, h = (H/p)gF; and harmonic, H = 0, have been studied
by many geometers, see the survey in [16]. Let h⊥ be the second fundamental form
of D⊥, H⊥ = Trgh⊥ the mean curvature, and T the integrability tensor of D⊥. We
have

2h⊥(X,Y ) = (∇XY +∇Y X)	, 2T (X,Y ) = [X,Y ]	, X,Y ∈ X⊥. (3)

The formula in [24], for foliations reads as

Smix = ‖H⊥‖2 − ‖h⊥‖2 + ‖T ‖2 + ‖H‖2 − ‖h‖2 + div(H⊥+H). (4)

We calculate norms of tensors using local adapted basis as

‖h⊥‖2 =
∑

i, j

‖h⊥(Ei ,E j )‖2, ‖h‖2 =
∑

a,b

‖h(Ea, Eb)‖2,

‖T ‖2 =
∑

i, j

‖T (Ei ,E j )‖2.

Example 2.4 (constant mixed scalar curvature on doubly-twisted products) The dou-
bly twisted product of Riemannian manifolds (B, gF) and (F, g⊥), is a manifold
M = B×F with the metric g = v2gF+u2g⊥, where v, u ∈ C∞(B×F) are positive
functions. The leaves B×{y} of a doubly-twisted product B×(v, u) F and the fibers
{x}×F are totally umbilical. We have

h = −(∇⊥ log v)gF, h⊥ = −(∇	 log u)g⊥.
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By the above, H = −n∇⊥ log v, H⊥ = −p∇	 log u, and

‖H‖2 − ‖h‖2 = (n2 − n)
‖∇⊥v‖2

v2
, ‖H⊥‖2 − ‖h⊥‖2 = (p2 − p)

‖∇	u‖2
u2

.

Next we derive

div H = −p
�	u
u

− (p2 − p)
‖∇	u‖2

u2
,

div H⊥ = −n
�⊥v

v
− (n2 − n)

‖∇⊥v‖2
v2

,

where �	 is the leafwise Laplacian and �⊥ is the fiberwise Laplacian. Substituting
in (4) with T = 0, we obtain the formula

Smix = −n
�	u
u

− p
�⊥v

v
.

Let B be a closed manifold. Given a positive function v ∈ C∞(B×F), define a
leafwise Schrödinger operator H = −�	−β, where β = p(�⊥v)/nv. For any
compact leaf, the spectrum of H is discrete, the least eigenvalue λ0 is isolated from
other eigenvalues, and the eigenfunction e0 (called the ground state) can be chosen
positive, see Sect. 3. Since H(e0) = λ0e0, a doubly-twisted product B×(v, e0) F has
leafwise constant mixed scalar curvature equal to nλ0.

We focus on the mixed Yamabe problem for harmonic foliations, which amounts to
finding a positive solution of the leafwise elliptic equation, see Proposition 2.10,

− n (�	u + β	u) = −2H⊥(u) +˜Smixu + ‖h‖2g u−1 − ‖T ‖2g u−3, (5)

where β	 = (‖T ‖2g − ‖h‖2g − Smix)/n, and a leafwise constant˜Smix corresponds to a
D⊥-conformal metric g̃. Proposition 2.6 allows us to reduce (5) to the case of H⊥ = 0.
By Lemma 2.8, D⊥-conformal changes of the metric preserve harmonic foliations.
For non-harmonic foliations, (5) has additional first order terms.

Example 2.5 The global structure of totally geodesic foliations with integrable normal
bundle (i.e., D⊥ is tangent to a foliation F⊥) has been studied in [5]: the universal
cover ˜M is topologically a product ˜F×˜F⊥ of universal covers of the leaves of both
foliations, F and F⊥. Let F be a totally geodesic foliation with integrable normal
bundle of a closed Riemannian manifold (M, g) with conditions (2) and H⊥ = 0.
Then �1 = �2 = 0, and (5) becomes the linear elliptic equation on F ,

−�	u − (β	+�)u = 0,

where β	 = −Smix/n. Suppose that Smix �= const and � = const. Then H(u∗) =
�u∗, where u∗ = e0 and � = λ0 for the Schrödinger operator H = −�	 − β	.
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Assuming ∇⊥u|F = 0, continue u∗ smoothly on M . Thus, the mixed scalar curvature
of the Riemannian manifold (M, g̃ = g	+u2∗g⊥) is n�.

Proposition 2.6 Let F be a foliation of a closed Riemannian manifold (M, g) with
condition (2). Then there exists a smooth function u > 0 on M such that H⊥ = 0 for
the metric g̃ = gF + u2g⊥.

Proof Recall the equality for any X,Y ∈ X⊥ and U, V ∈ X	, see [16],

g(R(U, X)V,Y ) = g
((

(∇UC)V − CVCU
)

(X), Y
)

+ g
((

(∇X A
	)Y − A	

X A
	
Y

)

(U ), V
)

,
(6)

where the co-nullity operator C : TF×T M → D⊥ is defined by CU (X) =
−(∇XU )⊥, U ∈ X	, X ∈ XM . Note that

∑

j

g
(

(∇UC)V (E j ), E j
) =

∑

j

∇U
(

g(CV (E j ),E j )
)

= ∇U

(

g

(

∑

j

h(E j ,E j ), V

))

= g(∇U H⊥, V ).

Thus, tracing (6) over D and taking the antisymmetric part, we obtain d	H⊥ = 0,
where the 2-form d	H⊥ is defined by

2d	H⊥(U, V ) = g(∇U H⊥, V ) − g(∇V H
⊥,U ), U, V ∈ X	.

Then we apply Lemma 2.7. ��
Lemma 2.7 ([19, Theorem 1.1]) LetF be a foliation of a closed Riemannian manifold
(M, g) with condition (2), and d	H⊥ = 0. Then the Cauchy problem

∂t g = − 2

p
(div	H⊥)g⊥, g0 = g,

has a unique solution gt , t ≥ 0, that converges as t → ∞ to a metric with H⊥ = 0.

2.2 D⊥-conformal change of a metric

We shall find howvarious geometrical quantities are transformed underD⊥-conformal
change of a metric. The Weingarten operator A⊥

U of D⊥ and the skew-symmetric
operator T #

U , where U ∈ X	, are given by

g(A⊥
U (X),Y ) = g(h⊥(X,Y ),U ), g(T #

U (X),Y ) = g(T (X,Y ),U ).

Lemma 2.8 Given a foliation F on (M, g = gF + g⊥), and φ ∈ C1(M), define a
new metric g̃ = gF + e2φg⊥. Then
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˜h 	 = e−2φh, ˜H	 = e−2φH, (7)

˜h⊥ = e 2φ
(

h⊥ − (∇	φ)g⊥), ˜H⊥ = H⊥ − n∇	φ, (8)

˜A⊥
U = A⊥

U −U (φ)id⊥, ˜T #
U = e−2φT #

U , U ∈ X	. (9)

Hence,D⊥-conformal variations preserve total umbilicity, harmonicity, and total geo-
desy of F, and preserve total umbilicity of the normal distribution D⊥.

Proof The Levi-Civita connection ∇ of a metric g is given by the known formula

2g(∇XY, Z) = Xg(Y, Z) + Yg(X, Z) − Zg(X,Y )

+ g([X,Y ], Z) − g([X, Z ],Y ) − g([Y, Z ], X),
(10)

X,Y, Z ∈ XM . Formula (7) follows from (10):

2e2φg(˜∇UV, X) = 2 g̃(˜∇UV, X)

= −Xg(U, V ) − g([U, X ], V ) − g([V, X ],U ) = 2g(∇UV, X).

We deduce (8) using ˜H	 = e−2φ ∑
a h(Ea, Ea) = e−2φH . From ˜T = T and

g(˜T #
U (X),Y ) = e−2φ g̃(˜T #

U (X),Y ) = e−2φ g̃(T (X,Y ),U )

= e−2φg(T (X,Y ),U ) = e−2φg(T #
U (X),Y )

formula (9) follows. By (10), for any X,Y ∈ X⊥ and U ∈ X	 we have

g(˜∇XY, U ) = e2φg(∇XY,U ) − e2φU (φ)g(X,Y ) − (e2φ−1)g(T (X,Y ),U ).

From this, skew-symmetry of T and (3), we deduce (8). Then we get (9) using

e2φg(˜A⊥
U (X),Y ) = g̃(˜A⊥

U (X),Y ) = g̃(˜h⊥(X,Y ),U )

= e2φ
(

g(A⊥
U (X),Y ) −U (φ)g(X,Y )

)

.

Similarly, we prove (9):

e2φg(˜T #
U (X),Y ) = g̃(˜T #

U (X),Y ) = g̃(˜T (X,Y ),U ) = g(T #
U (X),Y ).

The orthonormal bases of D⊥ in both metrics are related by ˜E j = e−φE j . To show
this we calculate for any j ≤ n,

1 = g̃(˜E j ,˜E j ) = e2φg(e−φE j , e
−φE j ) = g(E j ,E j ).

By (8), we have

˜h⊥(˜E j ,˜E j ) = e−2φ
˜h⊥(E j ,E j ) = h⊥(E j ,E j ) − (∇	φ)g(E j ,E j ).

From this and the definition H⊥ = Trgh⊥, the equality (8) follows. ��
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Remark 2.9 By Lemma 2.8, for a leafwise constant φ we obtain ˜h⊥ = e2φh⊥ and
˜H⊥ = H⊥. Hence, D⊥-scalings of g preserve harmonicity and total geodesy of D⊥.

Proposition 2.10 The mixed scalar curvature of a harmonic foliation F under D⊥-
conformal change of a metric g̃ = gF + u2g⊥, where u > 0 is a smooth function, is
transformed according to the formula

(

Smix −˜Smix
)

u = n�	u − 2H⊥(u) + ‖h‖2g (u−1−u) − ‖T ‖2g (u−3−u). (11)

If, in particular, u is leafwise constant (i.e., g̃ is a D⊥-scaling of g), then we have

˜Smix = Smix − (u−2 − 1)‖h‖2g + (u−4 − 1)‖T ‖2g.

Proof By Lemma 2.8, we have

‖˜h	‖2g̃ = e−2φ‖h‖2g,
‖˜T ‖2g̃ = e−4φ‖T ‖2g,

‖˜h⊥‖2g̃ = ‖h⊥‖2g + n‖∇	φ‖2g − 2H⊥(φ),

‖˜H⊥‖2g̃ = ‖H⊥‖2g + n2‖∇	φ‖2g − 2nH⊥(φ),

˜div
	
˜H⊥ = div	H⊥ − n�	φ.

(12)

Indeed, the formulae for ‖˜h	‖2g̃ and ‖˜T ‖2g̃ follow from

‖˜h	‖2g̃ =
∑

a,b,i

g̃
(

˜h	(Ea, Eb),˜Ei
)2 = e4φ

∑

a,b,i

g
(

e−2φh(Ea, Eb), e
−φEi

)2

= e−2φ
∑

a,b,i

g
(

h(Ea, Eb),Ei
)2 = e−2φ‖h‖2g,

‖˜T ‖2g̃ =
∑

a,b,i

g̃
(

˜T (˜Ei ,˜E j ), Ea
)2 =

∑

a,b,i

g
(

T
(

e−φ
˜Ei , e

−φ
˜E j

)

, Ea
)2

= e−4φ
∑

a,b,i

g
(

T (Ei ,E j ), Ea
)2= e−4φ‖T ‖2g.

Formula for ˜div
	
˜H⊥ follows from g(˜∇aU, Ea) = g(∇aU, Ea) for U ∈ X	 and

˜div
	
˜H⊥ =

∑

a

g̃
(

˜∇a ˜H
⊥, Ea

)

div	H⊥ − ndiv	(∇	φ).

From

‖˜h⊥‖2g̃ =
∑

a,i, j

g̃
(

˜h⊥(˜Ei ,˜Ei ), Ea
)2

=
∑

a,i, j

(

g
(

h⊥(Ei ,Ei ) − (∇	φ)g(Ei ,Ei ), Ea
))2
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= ‖h⊥‖2g − 2g(H⊥,∇	φ) + n‖∇	φ‖2g,
‖˜H⊥‖2g̃ = g(˜H⊥, ˜H⊥) = g

(

H⊥ − n∇	φ, H⊥ − n∇	φ
)

= ‖H⊥‖2g − 2ng(H⊥,∇	φ) + n2‖∇	φ‖2g,

the formulae for ‖˜h⊥‖2g̃ and ‖˜H⊥‖2g̃ follow. Then, using (12),˜Ei = e−φEi , and

˜Smix =
∑

i

r̃ (˜Ei ,˜Ei ) = e−2φ
∑

i

r̃ (Ei ,Ei ),

we obtain the formula

˜Smix = Smix − n
(

�	φ + ‖∇	φ‖2g
)

+ 2H⊥(φ) + (e−4φ−1)‖T ‖2g − (e−2φ−1)‖h‖2g.
(13)

Substituting φ = log u and ∇	φ = u−1∇	u, �	φ = u−1�	u − u−2‖∇	u‖2g into
(13) yields the required formula (11), which is equivalent to (5). ��

2.3 Proof of main results

Proposition 2.6 allows us to assume H⊥ = 0. Then we associate with (5) the leafwise
parabolic equation with a leafwise constant˜Smix

∂t u − �	u −
(

β	+˜Smix

n

)

u = ‖h‖2
n

u−1 − ‖T ‖2
n

u−3. (14)

We shall study asymptotic behavior of solutions to (14) with appropriate initial data
using spectral parameters of a leafwise Schrödinger operator H	 = −�	−β	.
The least eigenvalue λ	

0 ofH	 is simple and obeys the inequalities

λ	
0 ∈ [−maxF β	, −minF β	],

its eigenfunction e0 (called the ground state) may be chosen positive, see Sect. 3.
By (2) and results in Sect. 4, the leafwise constant λ	

0 and e0 are smooth on M .
Assume h �= 0, � < nλ	

0 and consider the functions (compare with Sect. 3),

φ	−(y) = −(nλ	
0 − �) y + minF (‖h‖2e−2

0 ) y−1 − maxF (‖T ‖2e−4
0 ) y−3,

φ	+(y) = −(nλ	
0 − �) y + maxF (‖h‖2e−2

0 ) y−1 − minF (‖T ‖2e−4
0 ) y−3.

(15)

If the discriminant D = minF (‖h‖4e−4
0 ) − 4(nλ	

0 − �)maxF (‖T ‖2e−4
0 ) > 0, each

of (15) has four real roots (two of them are positive). Their maximal (positive) roots

y	− =
√

minF (‖h‖2e−2
0 ) + (minF (‖h‖4e−4

0 ) − 4(nλ	
0 − �) maxF (‖T ‖2e−4

0 ))1/2

2(nλ	
0 − �)

,
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y	+ =
√

maxF (‖h‖2e−2
0 ) + (maxF (‖h‖4e−4

0 ) − 4(nλ	
0 − �) minF (‖T ‖2e−4

0 ))1/2

2(nλ	
0 − �)

,

obey the inequalities y	− < y	
3 < y	+ , where y	

3 is the maximal root of (φ	−)′(y),

y	
3 =

√

(min(‖h‖4e−4
0 ) + 12(nλ	

0 − �) maxF (‖T ‖2e−4
0 ))1/2 − minF (‖h‖2e−2

0 )

2(nλ	
0 − �)

,

see (26). For a positive function f ∈ C(F) define δ f = minF f/maxF f ∈ (0, 1].

Proposition 2.11 Let F be a harmonic and nowhere totally geodesic foliation on a
Riemannian manifold (M, g) with condition (2) and H⊥ = 0. Then for any leafwise
constant � ∈ C∞(M) obeying the inequalities (along any leaf F)

nλ	
0 − 1

4
δ−4
e0

minF ‖h‖4
maxF ‖T ‖2 < � < nλ	

0 , (16)

there exists a unique u∗ in the set {ũ ∈ C∞(M) : ũ > e0y	
3 } such that the mixed

scalar curvature of g̃ = gF + u2∗g⊥ is �. Moreover, y	− ≤ u∗/e0 ≤ y	+ and u∗ =
limt→∞ u( ·, t), where u solves (14) with ˜Smix = �, does not depend on the value
u( ·, 0) = u0 > e0y	

3 .

Proof By Theorem 4.4, the leafwise constant λ	
0 (the least eigenfunction ofH	) and

its leafwise eigenvector e0 are smooth, i.e., they belong to C∞(M). If M is closed
then there exist many functions � obeying (16), e.g. nλ	

0 − ε for small enough ε > 0.
By the conditions, any leaf F0 has an open neighborhood diffeomorphic to F×R

n

and F0 = F×{0}. Since Fq = F×{q} are compact minimal submanifolds, their
volume form dvolF = |g|F |1/2dx does not depend on q ∈ R

n , see [16]. Thus, the
vector bundles {L2(Fq)}q∈Rn and {Hk(Fq)}q∈Rn coincide with the products L2×R

n

and Hk×R
n . Let � obey (16) and let u0 > e0, y	

3 hold. We shall use the notation

β = β	 + �

n
, λ0 = λ	

0 − �

n
, �1 = ‖h‖2

n
, �2 = ‖T ‖2

n
.

Then (14) with˜Smix = � becomes (19), while (16) follows from

nλ	
0 − 1

4

minF (‖h‖4e−4
0 )

maxF (‖T ‖2e−4
0 )

< � < nλ	
0 ,

which becomes (24). Hence, the claim follows from Theorem 3.6. ��

Corollary 2.12 Let F be a harmonic and nowhere totally geodesic foliation of a
Riemannian manifold (M, g) with condition (2), integrable normal subbundle D⊥
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and H⊥ = 0. Then for any leafwise constant � ∈ C∞(M) such that � < nλ	
0 there

exists a unique positive function u∗ ∈ C∞(M) such that (along any leaf F)

(nλ	
0 −�)−1minF (‖h‖2e−2

0 ) ≤ u∗
e0

≤ (nλ	
0 −�)−1maxF (‖h‖2e−2

0 ),

and the mixed scalar curvature of the metric g̃ = gF + u2∗g⊥ is �.

Proof This is similar to the proof of Proposition 2.11. Since �2 ≡ 0 and λ0 > 0, each

of φ− = −λ0+�−
1 y−1 and φ+ = −λ0+�+

1 y−1 has one positive root y−
1 =

√

�−
1 /λ0

and y+
1 =

√

�+
1 /λ0, see also Example 3.2 (c). ��

Proof of Theorem 2.1 By Proposition 2.6, there exists a metric g1, D⊥-conformal to
g, for which H⊥ = 0 (the mean curvature ofD⊥). By Lemma 2.8, the equality H = 0
is preserved for g1. By Proposition 2.11, there exists a metric g̃,D⊥-conformal to g1,
for which˜Smix is leafwise constant; moreover, H = 0 holds. ��
Proof of Theorem 2.3 By Corollary 2.12, there is a metric g1 that isD⊥-conformal to
g, for which H⊥ = 0. By Lemma 2.8, h = 0 is preserved for g1. Since T = 0, equation
(5) reads as the eigenproblem H(u) =˜Smixu/n, where H = −�	 − β is a leafwise
Schrödinger operator on (M, g1) with potential β = −Smix(g1)/n. Let e0 > 0 be the
ground state of H with the least eigenvalue λ	

0 (leafwise constant). Thus, the metric
g̃ = gF + e20g

⊥
1 has˜Smix = nλ	

0 ; moreover, the equality h = 0 is preserved for g̃. ��

3 Results for the nonlinear heat equation

Let (F, g) be a smooth closed p-dimensional Riemannian manifold (e.g., a leaf of a
compact foliation) with the Riemannian distance d(x, y). Functional spaces over F
will be denoted without writing (F), e.g., L2 instead of L2(F). Let Hk be the Hilbert
space of Sobolev real functions of order k on F with the inner product (·, ·)k and the
norm ‖·‖k . In particular, H0 = L2 with the product ( ·, ·)0 and the norm ‖·‖0. Denote
by ‖·‖Ck the norm in the Banach space Ck for 1 ≤ k < ∞, and ‖·‖C for k = 0.
In local coordinates (x1, . . . , xp) on F , we have ‖ f ‖Ck = maxFmax|m|≤k |dm f |,
where m ≥ 0 is the multi-index of order |m| = ∑

i mi and dm is the partial derivative
(in fact, a finite atlas of F must be considered). For α ∈ (0, 1) and integer k ≥ 0 denote
by Ck,α the Banach space of such functions u ∈ Ck , for which all partial derivatives
of order k belong to Hölder class C0,α . The norm in this space is defined as follows:

‖u‖Ck, α = max
{

max|β|≤k
‖Dβu‖C0 ,

max|β|=k
sup
x,y∈F
x �=y

∣

∣Dβu(x) − Dβu(y)
∣

∣ d(x, y)−α
}

.
(17)
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514 V. Rovenski, L. Zelenko

Proposition 3.1 (scalar maximum principle, see [8, Theorem 4.4]) Let Xt and gt be
smooth families of vector fields and metrics on a closed Riemannian manifold F, and
f ∈ C∞(R×[0, T )). Suppose that u : F×[0, T ) → R is a C∞ solution to

∂t u ≥ �t u − Xt (u) + f (u, t),

and let y : [0, T ] → R solve the Cauchy problem for the ODEs: y′ = f (y(t), t),
y(0) = y0. If u( ·, 0) ≥ y0, then u( ·, t) ≥ y(t) for all t ∈ [0, T ).

3.1 The nonlinear heat equation

We are looking for stable solutions of the elliptic equation, see (5) with H⊥ = 0,

− �u − βu = �1(x)u
−1 − �2(x)u

−3, (18)

where �1 > 0, �2 ≥ 0 and β are smooth functions on F . To study (18), we shall look
for attractors of the Cauchy problem for the nonlinear heat equation,

∂t u = �u + βu + �1(x)u
−1 − �2(x)u

−3, u(x, 0) = u0(x) > 0. (19)

Let Ct = F×[0, t) be cylinder with the base F . By [2, Theorem 4.51], (19) has a
unique smooth solution in Ct0 for some t0 > 0. Let St be a map which relates to each
initial value u0 ∈ C the value of this solution at t ∈ [0, t0). Since the rhs of (19)
does not depend explicitly on t , the family {St } has the semigroup property, and it is
a semigroup (i.e., t0 = ∞) when (19) has a global solution for any u0(x) ∈ C .

Let H = −� − β be a Schrödinger operator with domain in H2 and σ(H) the
spectrum. One can add a real constant to β such thatH becomes invertible in L2 (e.g.
λ0 > 0) and H−1 is bounded in L2.

Elliptic Regularity Theorem (see [2]) If 0 /∈ σ(H), then for any integer k ≥ 0 we
have H−1 : Hk → Hk+2.

By the Elliptic Regularity Theorem with k = 0, we have H−1 : L2 → H2, and the
embedding of H2 into L2 is continuous and compact, see [2]. Hence, the operator
H−1 : L2 → L2 is compact. Thus, the spectrum σ(H) is discrete, i.e., consists of
an infinite sequence of real eigenvalues λ0 ≤ λ1 ≤ · · · ≤ λ j ≤ · · · with finite
multiplicities, bounded from below and lim j→∞ λ j = ∞. One may fix in L2 an
orthonormal basis of eigenfunctions {e j }, i.e.,H(e j ) = λ j e j . Since the eigenvalue λ0
is simple, its eigenfunction e0(x) can be chosen positive, see [20, Proposition 3].

The following examples show us that (19) may have

(i) stationary (i.e., t-independent) solutions on a closed manifold F ;
(ii) attractors (i.e., asymptotically stable stationary solutions) when β < 0.

Example 3.2 Let β and �1 > 0, �2 ≥ 0 be real constants. Then (19) is the Cauchy
problem for the ODE

y′ = f (y), y(0) = y0 > 0, f (y) = βy + �1y
−1 − �2y

−3. (20)
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(a) (b) 

Fig. 1 Example 3.2: the nonlinear heat equation. (a) βy4 + �1y
2 − �2 with β < 0 and 4|β|�2 < �2

1 :
y1 stable, y2 unstable, (b) �1 > 0, �2 = 0 and β < 0

(a) Let β < 0 and �2 > 0. Positive stationary (i.e., constant) solutions of (20) are
the roots of a biquadratic equation y3 f (y) = 0. If 4|β|�2 < �2

1 , then we have

two positive solutions y1,2 =
√

(�1 ± (�2
1 − 4|β|�2)1/2)/2|β| and y1 > y2. The

linearization of (20) at the point yk , k = 1, 2, is v′ = f ′(yk)v, where f ′(yk) =
−|β|(y−3(y2 − y21 )(y

2 − y22 ))
′|y=yk . Hence, f ′(y1) < 0 and f ′(y2) > 0, and y1 is

asymptotically stable, but y2 is unstable. If 4|β|�2 = �2
1 , then (20) has one positive

stationary solution, see Fig. 1(a), and has no stationary solutions if 4|β|�2 > �2
1 .

(b) Let β > 0 and�2 > 0. Then the biquadratic equation y3 f (y) = 0 has one positive

root y1 =
√

(−�1 + (�2
1 + 4β�2)1/2)/2β. We find

f ′(y1) = β

(

y−3(y2 − y21 )

(

y2 + �2

β y21

))′

|y=y1

> 0;

hence, y1 is unstable. One may also show that in the case β = 0, (20) has a unique
positive stationary solution, which is unstable.

(c) Let �2 = 0 and �1 > 0. Then f (y) = βy + �1y−1. If β ≥ 0, then there are no
positive stationary solutions. If β < 0, then f has one positive root y1 = (�1/|β|)1/2.
Since f ′(y1) = −|β|(y−1(y − y1)(y + y1))′|y=y1

< 0, the solution y1 is an attractor.

Example 3.3 Let F be a circle S1 of length l. Then (19) is the Cauchy problem

ut = uxx + f (u), u(x, 0) = u0(x) > 0, x ∈ S1, t ≥ 0. (21)

The stationary equation with u(x) for (21) has the form

u′′ + f (u) = 0, u(0) = u(l), u′(0) = u′(l), l > 0. (22)
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Rewrite (22) as the dynamical system

u′ = v, v′ = − f (u), u > 0. (23)

Periodic solutions of (22) correspond to solutions of (23) with the same period. System
(23) is Hamiltonian, since ∂uv = ∂v f (u), its Hamiltonian H(u, v) (the first integral)
solves ∂uH(u, v) = f (u), ∂vH(u, v) = v. Then H(u, v) = (v2 +βu2)/2+�1 ln u+
�2u−2/2. The trajectories of (23) belong to level lines of H(u, v). Consider the cases.

(a) Assume β < 0. Then (23) has two fixed points: (yi , 0), i = 1, 2, with y1 > y2. To
clear up the type of fixed points, we linearize (23) at (yi , 0),

η′ = Aiη, Ai =
(

0 1
− f ′(yi ) 0

)

.

Since f ′(y1) < 0 and f ′(y2) > 0, the point (y1, 0) is a “saddle” and (y2, 0) is a
“center”. The separatrix is H(u, v) = H(y1, 0), i.e., see Fig. 2(a),

v2 = |β|(u2 − y21 ) − 2�1 ln
u

y1
− �2(u

−2 − y−2
1 ).

The separatrix divides the half-plane u > 0 into three simply connected areas. Then
(y2, 0) is a unique minimum point of H in D = {(u, v) : H(u, v) < H(y1, 0), 0 <

u < y1}. The phase portrait of (23) in D consists of the cycles surrounding the fixed
point (y2, 0), all correspond to non-constant solutions of (22) with various l. Other
two areas do not contain cycles, since they have no fixed points.

(b) Assume β ≥ 0. Then (23) has one fixed point (y1, 0) and f ′(y1) > 0. Hence,
(y1, 0) is a “center”. Since (y1, 0) is a unique minimum of H(u, v) in the semiplane
u > 0, the phase portrait of (23) consists of the cycles surrounding the fixed point
(y1, 0), all correspond to non-constant solutions of (22) with various l, see Fig. 2(b).

(a) (b)

Fig. 2 Example 3.3. (a) β < 0, (b) β > 0
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For �2 = 0 and �1 > 0, the Hamiltonian of (23) is H(u, v) = (v2 + βu2)/2 +
�1 ln u. Solving H(u, v) = C with respect to v and substituting to (23), we get
u′ = √−βu2 − 2�1 ln u + 2C . If β ≥ 0, then (23) has no cycles (since it has no fixed
points); hence, (22) has no solutions. If β < 0, then the separatrix H(u, v) = H(u∗, 0),
see Example 3.2 (c), is v2 = |β|(u2 − u2∗) − 2�1 ln(u/u∗), (23) has a unique fixed
point (u∗, 0) which is a “saddle”. The separatrix divides the half-plane u > 0 into
four simply connected areas with these lines, see Fig. 1(b). Since each of these areas
has no fixed points of (23), the system has no cycles. Hence, u∗ is a unique solution
of (22).

(c) Consider (22) for�1 = 0,�2 > 0 and l = 2π . Set p = u′ and represent p = p(u)

as a function of u. Then u′′ = dp/du and

(p2)′ = −2βu + 2�2u
−3 �⇒ (u′)2 = C1 − βu2 − �2u

−2.

After separation of variables and integration, we obtain

u =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

√

C1/2β +
√

C2
1 − 4β�2 sin

(

2
√

β (x + C2)
)/

2β for β > 0,

√

−C1/2|β| +
√

C2
1 + 4|β|�2 cosh

(

2
√|β| (x + C2)

)/

2|β| for β < 0,

√

�2/C1 + C1(x + C2)2 for β = 0

(in the first case C2
1 ≥ 4β�2). Hence, for β ≤ 0, (22) has no positive solutions, while

for β > 0 the solution is 2π -periodic and positive only if

• β �= n2/4, n ∈ N, and C1 = 2(β�2)
1/2; a solution u∗ = (�2/β)1/4 is unique, or

• β = n2/4, n ∈ N; the set of solutions forms a two-dimensional manifold

nu0(C1,C2) =
√

2C1 + 2(C2
1 − n2�2)1/2 sin(n(x+C2)).

3.2 Attractor of the nonlinear heat equation

Denote by

�+
i = maxF (�i e

−2i
0 ), �−

i = minF (�i e
−2i
0 ), i = 1, 2.

Let �+
2 > 0 (the case of �+

2 = 0 is similar) and

0 < λ0 <
(�−

1 )2

4�+
2

. (24)

Each of the two functions of variable y > 0,

φ+(y) = −λ0y + �+
1 y−1 − �−

2 y−3, φ−(y) = −λ0y + �−
1 y−1 − �+

2 y−3, (25)
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(a) (b)

Fig. 3 Graphs of φ−, φ′− and μ− for �1 = �2 = 1 and λ0 = 0.1. (a) y−
1 ≈ 3, y−

2 ≈ 1, y−
3 ≈ 1.6 and

y−
4 ≈ 2.4, (b) μ−(σ ) for 0 ≤ σ < y−

1 − y−
3 ≈ 1.4

has four real roots, two of which, y+
2 < y+

1 and y−
2 < y−

1 , are positive. Since φ−(y) ≤
φ+(y) for y > 0, we also have y−

1 ≤ y+
1 . Denote by

y−
3 =

√

((�−
1 )2 + 12�+

2 λ0)1/2 − �−
1

2λ0
(26)

a unique positive root of φ′−(y). Clearly, y−
3 ∈ (y−

2 , y−
1 ). Notice that φ−(y) > 0 for

y ∈ (y−
2 , y−

1 ) and φ−(y) < 0 for y ∈ (0,∞)\[y−
2 , y−

1 ]; moreover, φ−(y) increases
in (0, y−

3 ) and decreases in (y−
3 ,∞). The line z = −λ0y is asymptotic for the graph of

φ−(y)when y → ∞, and limy↓0 φ−(y) = −∞. Next,φ′−(y) decreases in (0, y−
4 ) and

increases in (y−
4 ,∞), where y−

4 = (6�+
2 /�−

1 )1/2 > y−
3 , and limy→∞ φ′−(y) = −λ0,

see Fig. 3. Hence,

μ−(σ ) = − sup
y≥y−

1 −σ

φ′−(y) = min{|φ′−(y−
1 − σ)|, λ0} > 0 (27)

for σ ∈ (0, y−
1 − y−

3 ). Similar properties have y+
3 , y+

4 and μ+(σ ) defined for φ′+(y).

Lemma 3.4 Let y(t) be a solution of the Cauchy problem

y′ = φ−(y), y(0) = y−
0 > 0. (28)

(i) If y−
0 > y−

2 then limt→∞ y(t) = y−
1 . Furthermore, if y

−
0 ∈ (y−

2 , y−
1 ) then y(t) is

increasing and if y−
0 > y−

1 then y(t) is decreasing.
(ii) If y−

0 ≥ y−
1 − ε for some ε ∈ (0, y−

1 − y−
3 ) then

|y(t) − y−
1 | ≤ |y−

0 − y−
1 |e−μ−(ε)t . (29)

Similar claims are valid for the Cauchy problem y′ = φ+(y), y(0) = y+
0 > 0.
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Proof (i) Assume that y−
0 ∈ (y−

2 , y−
1 ). Since φ−(y) is positive in (y−

2 , y−
1 ), y(t) is

increasing. The graph of y(t) cannot intersect the graph of the stationary solution
y−
1 ; hence, the solution y(t) exists and is continuous on the whole [0,∞), and it is
bounded there. There exists limt→∞ y(t), which coincides with y−

1 , since y−
1 is a

unique solution of φ(y) = 0 in (y−
2 ,∞). The case y−

0 > y−
1 is treated similarly.

Notice that if y−
0 ∈ (y−

2 , y−
1 ) then y(t) is increasing, and if y−

0 > y−
1 then y(t) is

decreasing.

(ii) For y−
0 ≥ y−

1 − ε, where ε ∈ (0, y−
1 − y−

3 ), denote z(t) = y−
1 − y(t). We obtain

from (28), using definition of μ−(ε) and the fact that φ−(y−
1 ) = 0,

(z2)′ = 2zz′ = 2z2
∫ 1

0
φ′−(y+τ z) dτ ≤ −2μ−(ε)z2.

This differential inequality implies (29). The case y−
0 > y−

1 is treated similarly. ��
Under assumption (24), define nonempty sets U

ε,η
2 ⊂ Uε

1, closed in C , with ε ∈
(0, y−

1 − y−
3 ) and η > 0 by

Uε
1 =

{

u0 ∈ C : u0
e0

≥ y−
1 − ε

}

,

U
ε,η
2 =

{

u0 ∈ C : y−
1 − ε ≤ u0

e0
≤ y+

1 + η

}

.

Then, Uε
1 ⊂ U1, where U1 = {u0 ∈ C : u0/e0 > y−

3 } is open in C .

Proposition 3.5 Let (24) hold. Then the Cauchy problem (19) with u0 ∈ Uε
1 for some

ε ∈ (0, y−
1 − y−

3 ), admits a unique global solution. Furthermore, the setsUε
1 andU

ε,η
2 ,

η > 0, are invariant for the semigroup of operators corresponding to (19).

Proof Let u( ·, t), t ≥ 0, solve (19) with u0 ∈ Uε
1 for some ε ∈ (0, y−

1 − y−
3 ).

Substituting u = e0w and using �e0 + βe0 = −λ0e0, yields the Cauchy problem

∂tw = �w + 〈2∇ log e0,∇w〉 + f (w, ·), w( ·, 0) = u0
e0

≥ y−
1 − ε, (30)

for w(x, t), where

f (w, ·) = −λ0w + (�1e
−2
0 )w−1 − (�2e

−4
0 )w−3. (31)

From (30) and (25) we obtain the differential inequalities

φ−(w) ≤ ∂tw − �w − 〈2∇ log e0,∇w〉 ≤ φ+(w). (32)

By Proposition 3.1, applied to the left inequality of (32), and Lemma 3.4, in the
maximal domain DM of the existence of the solution w(x, t) of (30), we obtain the
inequality

w( ·, t) ≥ y−
1 − εe−μ−(ε)t ≥ y−

1 − ε > 0,
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which implies thatw(x, t) cannot “blowdown” to zero. Since φ+(w) ≤ �+
1 w−1, from

the right inequality of (32), applying Proposition 3.1, we obtain in DM

w( ·, t) ≤ w+(t) =
√

(

(u+
0 )2 − �+

1 /λ0
)

e−2λ0t + �+
1 /λ0,

where w+(t) solves the Cauchy problem for the ODE

dw+
dt

+ λ0w+ = �+
1 w−1+ , w+(0) = u+

0 = maxF
u0
e0

.

By the above, the solution u(x, t) of (19) exists for all (x, t) ∈ C∞, and the set Uε
1 is

invariant for the semigroup of operatorsSt : u0 �→ u( ·, t), t ≥ 0, inC∞ = F×[0,∞),
corresponding to (19). Assuming u0 ∈ U

ε,η
1 and applying again Proposition 3.1 and

Lemma 3.4 to the right inequality of (32), we get

w( ·, t) ≤ y+
1 + ηe−μ+(σ )t, σ ∈ (0, y+

1 − y+
3 ).

Thus, u( ·, t) ∈ U
ε,η
1 , t > 0. Hence, also the set Uε,η

2 is invariant for all St . ��
Theorem 3.6 (i) If (24) holds then (18) admits in U1 a unique solution u∗ (on F),

which is smooth; moreover, u∗ = limt→∞ u( ·, t), where u solves (19) with u0 ∈
U1, and y−

1 ≤ u∗/e0 ≤ y+
1 . Furthermore, for any ε ∈ (0, y−

1 − y−
3 ), the set Uε

1
is attracted by (19) exponentially fast to the point u∗ in C-norm:

‖u( ·, t) − u∗‖C ≤ δ−1
e0 e−μ−(ε)t‖u0 − u∗‖C , t > 0, u0 ∈ Uε

1. (33)

(ii) If β,�1, �2 are smooth functions on the product F×R
n with a smooth leafwise

metric g( ·, q) and (24) holds for any leaf F×{q}, q ∈ R
n, then the leafwise

solution u∗ of (18) is smooth on F×R
n.

Proof (i) By Proposition 3.5, the set Uε
1 is invariant for the semigroup of operators

St : u0 → u( ·, t), t ≥ 0, corresponding to (19), i.e., St (Uε
1) ⊆ Uε

1 for t ≥ 0. Take
u0i ∈ Uε

1, i = 1, 2, and denote by

ui ( ·, t) = St (u
0
i ), wi ( ·, t) = ui ( ·, t)

e0
, w0

i = u0i
e0

.

Using (30) and the equalities

2w�w = �(w2) − 2‖∇w‖2, ∇(w2) = 2w∇w

with w = w2 − w1, we obtain

∂t ((w2 − w1)
2) = 2(w2 − w1)∂t (w2 − w1)

≤ �((w2 − w1)
2) + 〈

2∇ log e0,∇(w2 − w1)
2〉

+ 2( f (w2, ·) − f (w1, ·))(w2 − w1).
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We estimate the last term, using wi ≥ y−
1 − ε > y−

3 , i = 1, 2, (27) and (31),

( f (w2, ·) − f (w1, ·))(w2 − w1) = (w2 − w1)
2
∫ 1

0
∂w f (w1+τ(w2−w1), ·) dτ

≤ −μ−(ε)(w2 − w1)
2.

Thus, the function v = (w2 − w1)
2 satisfies the differential inequality

∂tv ≤ �v + 〈2∇ log e0,∇v〉 − 2μ−(ε)v.

By Proposition 3.1, v( ·, t) ≤ v+(t), where v+(t) solves the Cauchy problem for the
ODE:

v ′+ = −2μ−(ε)v+(t), v+(0) = ‖w0
2 − w0

1‖2C .

Thus,

‖St (u02) − St (u
0
1)‖C ≤ ‖w2( ·, t) − w1( ·, t)‖C · maxF e0

≤ e−μ−(ε)t‖w0
2 − w0

1‖C · maxF e0

≤ δ−1
e0 e−μ−(ε)t ‖u02 − u01‖C ,

i.e., the operators St , t ≥ 0, corresponding to (19) satisfy inUε
1 the Lipschitz condition

with respect to C-norm with the Lipschitz constant δ−1
e0 e−μ−(ε)t .

By Proposition 3.5, for any t ≥ 0 the operator St for (19) maps the set Uε
1, which is

closed in C , into itself, and for t > (ln δ−1
e0 )/μ−(ε) it is a contraction there. Since all

operators St commute one with another, they have a unique common fixed point u∗ in
Uε
1. Since ε ∈ (0, y−

1 − y−
3 ) is arbitrary, u∗ is a unique common fixed point of all St

in the set U1. For any u0 ∈ Uε
1 and t ≥ 0, (33) holds. Thus, u∗ ∈ C is a generalized

solution of (18). By the Elliptic Regularity Theorem, u∗ ∈ C∞ and it is a classical
solution. By Proposition 3.5, Uε,η

2 ⊂ Uε
1 is also St -invariant, hence u∗ ∈ U

ε,η
2 . Since

ε ∈ (0, y−
1 − y−

3 ) and η > 0 are arbitrary, we get y−
1 ≤ u∗/e0 ≤ y+

1 .
Notice that if the functions �1 and �2 are constant then φ+ = φ−, see (25); in this

case, u∗/e0 = y+
1 = y−

1 is constant, too.

(ii) Let e0(x, q) > 0 be the normalized eigenfunction for the minimal eigenvalue
λ0(q) of the operator Hq = −� − β(x, q). By Theorem 4.4, λ0 ∈ C∞(Rn) and
e0 ∈ C∞(F×R

n), hence y−
3 , defined by (26), smoothly depends on q. As we have

proved in (i), for any q ∈ R
n the stationary equation, see also (18),

�qu + f (u, x, q) = 0, (34)

with f (u, x, q) = β(x, q)u + �1(x, q)u−1 − �2(x, q)u−3 has a unique solution
u∗(x, q) in the open set U1(q) = {u0 ∈ C(F×R

n) : u0/e0( ·, q) > y−
3 (q)}.

Since y−
3 (q) and e0(x, q) are continuous, for any k ∈ N and α ∈ (0, 1), there exist

open neighborhoods U∗ ⊆ Ck+2,α of u∗(x, 0) and V0 ⊂ R
n of 0 such that
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522 V. Rovenski, L. Zelenko

U∗ ⊆ U1(q), q ∈ V0. (35)

We claim that all eigenvalues of the linear operatorH∗ = −�0−∂u f (u∗(x, 0), x, 0),
acting in L2 with the domain H2, are positive. To show this, observe that y−

1 (0) ≤
u∗( ·, 0)/e0( ·, 0) ≤ y+

1 (0). Let ũ(x, t) be a solution of the Cauchy problem for the
evolution equation

∂t ũ = −H∗(̃u), ũ(x, 0) = ũ0(x) ∈ C. (36)

Using the same arguments as in the proof of (i), we obtain that the function v(x, t) =
ũ 2(x, t)e−2

0 (x, 0) obeys the differential inequality with μ−
0 = min{|φ′−(y−

1 )|, λ0} >

0:

∂tv ≤ �0v + 〈

2∇ log e0( ·, 0),∇v
〉 − 2μ−

0 v.

By Proposition 3.1, v( ·, t) ≤ v+(t), where v+(t) solves the Cauchy problem for the
ODE

v ′+ = −2μ−
0 v+, v+(0) =

∥

∥

∥

∥

ũ0
e0( ·, 0)

∥

∥

∥

∥

2

C
;

moreover, for any ũ0 ∈ C the function ũ(x, t) tends to 0 exponentially fast, as t → ∞.
On the other hand, if˜λν is any eigenvalue of H∗ and ẽν(x) > 0 the corresponding
normalized eigenfunction then ũ = e−˜λν t ẽν solves (36) with ũ0(x) = ẽν(x). Thus,
˜λν > 0 that completes the proof of the claim.

Using Theorem 4.8, we conclude that for any integers k ≥ 0 and l ≥ 1 we can
restrict the neighborhoodsU∗ of u∗(x, 0) and V0 of 0 in such a way that for any q ∈ V0
there exists in U∗ a unique solution ũ(x, q) of (34) and the mapping q �→ ũ( ·, q)

belongs to class Cl(V0,U∗). In view of (35), ũ( ·, q) = u∗( ·, q) for any q ∈ V0. ��

4 Appendix: Elliptic equation with parameter

Let F×R
n be the product with a compact leaf F , and g( ·, q) a leafwise Riemannian

metric (i.e., on Fq = F×{q} for q ∈ R
n) such that the volume form of the leaves

dvolF = |g|1/2dx depends on x ∈ F only (e.g., the leaves are minimal submanifolds,
see Sect. 2). This assumption simplifies arguments used in the proof of Lemma 4.2,
etc. (we consider products B = L2×R

n and Bk = Hk×R
n instead of infinite-

dimensional vector bundles over Rn), on the other hand, it is sufficient for proof of
the geometric results. The Laplacian in a local chart (U, x) on (F, g|F) is written as
�u = ∇i (gi j∇ j u) = |g|−1/2∂i (|g|1/2gi j∂ j u), see [2] with opposite sign. This defines
a self-adjoint elliptic operator −�q , where q ∈ R

n is a parameter and �0 = �,

�q = gi j (x, q)∂2i j + b j (x, q)∂ j . (37)

Here b j = |g|−1/2∂i (|g|1/2gi j ) are smooth functions in U×R
n . The Schrödinger

operatorHq = −�q − β(x, q) acts (and is self-adjoint) in the Hilbert space L2 with
the domain H2. Denote Hk = H| Hk+2 and Hq,k = (Hq)| Hk+2 for any q ∈ R

n .
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The mixed Yamabe problem for foliations 523

4.1 The Schrödinger operator

If B and C are Banach spaces with norms ‖·‖B and ‖·‖C , denote by Br (B,C) the
Banach space of all bounded r -linear operators A : ∏r

i=1 B → C with the norm

‖A‖Br (B,C) = sup
v1,...,vr∈B \0

‖A(v1, . . . , vr )‖C
‖v1‖B · · · ‖vr‖B .

If r = 1, we shall write A : B → C andB(B,C), and if B = C we shall writeBr (B)

andB(B), respectively. If M is a k-regular manifold or an open neighborhood of the
origin in a real Banach space, and N is a real Banach space, we denote by Ck(M, N ),
k ≥ 1, the Banach space of all Ck-regular functions f : M → N , for which the
following norm is finite:

‖ f ‖Ck (M,N ) = sup
x∈M

max
{

‖ f (x)‖N , max
1≤ j≤k

‖d j f (x)‖Bj (Tx M,N )

}

.

We shall use the simplified version of

Banach Closed Graph Theorem If a linear operator A : B → C (of Banach spaces
B and C) is bijective and bounded, then its inverse A−1 : C → B is also bounded.

Lemma 4.1 Let β ∈ C∞ and μ < −maxx∈F β(x). Then

(i) H−μ acts from H2 into L2, it is continuously invertible and the inverse operator
(H − μ)−1 : L2 → L2 is compact;

(ii) for any k ∈ N the operator Hk − μ acts from Hk+2 into Hk, it is continuously
invertible and (Hk − μ)−1 : Hk → Hk is compact;

(iii) for any integer k ≥ 0 the spectrum of Hk , acting in Hk with the domain Hk+2,
is discrete, and it coincides with the spectrum σ(H);

(iv) for any integer k ≥ 0 and λ /∈ σ(H) we have

Rλ(Hk) = (Hk − λ)−1 ∈ B(Hk, Hk+2), (38)

(λ → Rλ(Hk)) ∈ C
(

C\σ(H),B(Hk, Hk+2)
)

. (39)

Proof (i) Clearly, there exists C > 0 such that for any u ∈ H2 we have

‖H(u) − μu‖L2 ≤ ‖�u − μ‖L2 + ‖(β(x) + μ)u‖L2 ≤ C‖u‖H2 . (40)

Thus, H − μ ∈ B(H2, L2). On the other hand, since β(x) + μ < 0, the operator
H−μ is positive definite as acting in L2 with the domain H2; hence, it is continuously
invertible, i.e., μ /∈ σ(H). Thus,H− μ maps H2 injectively onto L2. By the Banach
Closed Graph Theorem, H − μ : H2 → L2 has a bounded inverse. Compactness of
the embedding H2 ↪→ L2 yields compactness of (H − μ)−1 : Hk → Hk .

(ii) For any u ∈ Hk+2 a similar to (40) estimate holds with Hk and Hk+2 instead of
L2 and H2, respectively. Hence,Hk − μ ∈ B(Hk+2, Hk). By (i),H− μ : H2 → L2
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524 V. Rovenski, L. Zelenko

is bijective, and by the Elliptic Regularity Theorem, (H − μ)−1(Hk) ⊆ Hk+2 holds.
Hence, Hk − μ : Hk+2 → Hk is bijective, too. Thus, the Banach Closed Graph
Theorem and the compactness of the embedding Hk+2 ↪→ Hk complete the proof
of (ii).

(iii) Since for any integer k ≥ 0 the operator (Hk − μ)−1 : Hk → Hk is compact,
its spectrum consists of ν = 0 and a countable number of non-zero eigenvalues νn of
finite multiplicity, which can accumulate only at ν = 0. Hence, the spectrum of Hk

on Hk (with domain in Hk+2) is discrete. SinceH extendsHk , each eigenfunction of
Hk is an eigenfunction ofH; hence, σ(Hk) ⊆ σ(H). To show the opposite inclusion,
let e(x) be an eigenfunction ofH, related to λ ∈ σ(H) (hence, e ∈ H2). The obvious
equality e = (λ − ν) j (H − μ)− j e is valid for any j ∈ N. Applying (several times)
the Elliptic Regularity Theorem, from e ∈ H2 we obtain that e ∈ Hk+2.

(iv) Similarly to the proof of (ii), we obtain inclusion (38). Let us prove (39). By the
well-known property of the resolvent, we have

(λ → Rλ(Hk)) ∈ C
(

C\σ(Hk),B(Hk)
)

.

Take an arbitrary λ0 /∈ σ(H) and choose δ > 0 such that the set Dδ = {λ ∈ C :
|λ − λ0| ≤ δ} does not intersect σ(H). Using the resolvent identity, see [1],

Rλ(Hk) − Rλ0(Hk) = (λ − λ0)Rλ0(Hk)Rλ(Hk),

we have the following estimate for λ ∈ Dδ:

‖Rλ(Hk) − Rλ0(Hk)‖B(Hk ,Hk+2) ≤ |λ − λ0| · ‖Rλ0(Hk)‖B(Hk ,Hk+2)

· max
λ∈Dδ

‖Rλ(Hk)‖B(Hk ),

which implies the desired inclusion (39). ��

4.2 The ground state

We will show smooth dependence on q of the least eigenvalue λ(q) ofHq and of the
corresponding normalized eigenfunction e(x, q) > 0.

Lemma 4.2 If β ∈ C∞(F×R
n) then for any l ∈ N and integer k ≥ 0 the mapping

D : (u, q) �→ Hq(u) is a Cl-morphism (of trivial vector bundles) from Bk+2 into Bk .

Proof Fix a finite atlas {(Ua, xa)}1≤a≤A on F , and let {ρa(x)}1≤a≤A be a subordinated
partition of unity. Taking u ∈ Hk+2, q, s ∈ R

n and using (37), we obtain

1

t

(

D(u, q+ ts) − D(ua, q)
) − D1(u, q)s

= −
(

1

t

∫ t

0
∂qg

i j(x, q+τ s)s dτ − ∂qg
i j(x, q) s

)

∂2i j u
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−
(

1

t

∫ t

0
∂qb

i (x, q+τ s)s dτ − ∂qb
i (x, q)s

)

∂i u

−
(

1

t

∫ t

0
∂qβ(x, q+τ s)s dτ − ∂qβ(x, q)s

)

u

in a local chart, where

D1( ·, q) s = −∂qg
i j(x, q)s∂2i j − ∂qb

i (x, q)s∂i − ∂qβ(x, q)s.

Hence,

∥

∥

∥

∥

1

t

(

D(u, q+ ts) − D(u, q)
) − D1(u, q)s

∥

∥

∥

∥

2

Hk

=
A
∑

a=1

∫

Ua

ρa(x)
∑

|m|≤k

∣

∣

∣

∣

∂mx

(

1

t

(

D(u, q+ ts) − D(u, q)
) − D1(u, q)s

)∣

∣

∣

∣

2

dx

≤ C max
i, j∈{1,2,...,p} max

a∈{1,2,...,A} max
τ∈[0,t]

(

∥

∥∂qg
i j(x, q+τ s) − ∂qg

i j(x, q)
∥

∥

2
Ck (Ua ,B(Rn))

+ ∥

∥∂qb
i (x, q+τ s) − ∂qb

i (x, q)
∥

∥

2
Ck (Ua ,B(Rn))

+ ∥

∥∂qβ(x, q+τ s) − ∂qβ(x, q)
∥

∥

2
Ck (Ua ,B(Rn))

)

|s|2‖u‖Hk+2

holds for some C > 0 that does not depend on u. We conclude thatD : Hk+2×R
n →

Hk has the partial Gâteaux differential ∂qD(u, q) at each point (u, q), and it is equal
to D1(u, q)s. Similarly, for any (ui , qi ) ∈ Hk+2×R

n, i = 1, 2, we obtain

∥

∥∂qD(u1, q1)s − ∂qD(u2, q2)s
∥

∥

Hk

≤ C |s|2 max
i, j∈{1,2,...,p} max

a∈{1,2,...,A}

(

(∥

∥∂qg
i j(x, q1) − ∂qg

i j(x, q2)
∥

∥

2
Ck (Ua ,B(Rn))

+ ∥

∥∂qb
i (x, q1) − ∂qb

i (x, q2)
∥

∥

Ck (Ua ,B(Rn))

+ ∥

∥∂qβ(x, q1) − ∂qβ(x, q2)
∥

∥

Ck (Ua ,B(Rn))

) · ‖u1‖Hk+2

+ (‖∂qgi j(x, q2)‖B(Rn) + ‖∂qbi (x, q2)‖Ck (Ua ,B(Rn))

+ ‖∂qβ(x, q2)‖Ck (Ua ,B(Rn))

) · ‖u1 − u2‖Hk+2

)

,

and conclude that the partial differential ∂qD is continuous:

∂qD ∈ C
(

Hk+2×R
n,B(Rn, Hk)

)

.

One may prove by induction that for any l ∈ N the mapping D(·, ·) has at any point
(u, q) ∈ Hk+2×R

n the partial differential of l-th order ∂ lqD(u, q), and it has the form

∂ lqD(u, q) = −∂ lq g
i j(x, q)∂2i j u − ∂ lqb

i (x, q)∂i u − ∂ lqβ(x, q)u
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526 V. Rovenski, L. Zelenko

in a local chart, and ∂ lqD ∈ C(Hk+2×R
n,Bl(Rn, Hk)). SinceD(u, q) and ∂ lqD(u, q)

are linear by u, this differential is continuous andD(u, q) has continuous differentials
by q and u of any order. ��
Lemma 4.3 Let K be a compact subset of C\σ(H0,k) for some integer k ≥ 0. If
β ∈ C∞(F×R

n), then there is an open neighborhood W ⊆ R
n of the origin such that

K ⊂ C\σ(Hq,k), q ∈ W, (41)

and the following inclusion holds for any l ∈ N:

(λ → Rλ(Hq,k)) ∈ C
(

K ,Cl(W,B(Hk, Hk+2))
)

. (42)

Proof The following obvious representation holds for λ ∈ K :

Hq,k − λ = (id + L(q, λ))(H0,k − λ), q ∈ W, (43)

where

L(q, λ) = (Hq,k − H0,k)Rλ(H0,k). (44)

Using Lemma 4.2, we get that for any integer l ≥ 0,

(q → Hq,k) ∈ Cl(W,B(Hk+2, Hk)
)

. (45)

Taking into account Lemma 4.1 (iv), we have for any (q, λ) ∈ W ×K ,

‖L(q, λ)‖B(Hk ) ≤ ‖Hq,k − H0,k‖B(Hk+2,Hk ) max
μ∈K ‖Rμ(H0,k)‖B(Hk ,Hk+2).

Hence, and in view of (45) with l = 0, there exists an open neighborhood W ⊂ R
n of

the origin such that

sup
(q,λ)∈W×K

‖L(q, λ)‖B(Hk ) ≤ 1

2
. (46)

Thus, for any (q, λ) ∈ W ×K the operator id + L(q, λ) ∈ B(Hk) is continuously
invertible and its inverse is expressed by the Neumann series (id + L(q, λ))−1 =
∑∞

j=0(−L(q, λ)) j converging in theB(Hk)-norm. In view of (43), we conclude that
(41) is valid and for any (q, λ) ∈ W ×K we have

Rλ(Hq,k) = Rλ(H0,k)(id + L(q, λ))−1. (47)

Lemma 4.1 (iv) and (44)–(45) imply L( ·, λ) ∈ Cl(W,B(Hk)) for λ ∈ K and
l ∈ Z, and using the resolvent identity, we obtain L(q, λ) − L(q, μ) = (λ −
μ)L(q, μ)Rλ(H0,k) for λ,μ ∈ K . Hence,
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‖L( ·, λ) − L( ·, μ)‖Cl (W,B(Hk )) ≤ |λ − μ| ·‖L( ·, μ)‖Cl (W,B(Hk ))

· max
ν∈K ‖Rν(H0,k)‖B(Hk ).

This estimate implies

(λ → L( ·, λ)) ∈ C
(

K ,Cl(W,B(Hk))
)

. (48)

By [20, Lemma 7] and the arguments in the end of the proof of [20, Lemma 8], and
in view of (46) and (48), we get (λ → (id + L( ·, λ))−1) ∈ C(K ,Cl(W,B(Hk))).
Then (47) and Lemma 4.1 (iv) imply the desired inclusion (42). ��
Theorem 4.4 Let λ(q) be the least eigenvalue of Hq , q ∈ R

n. If β ∈ C∞(F×R
n)

then λ ∈ C∞(Rn) and there exists a unique smooth section e : Rn → L2×R
n such

that e( ·, q) is a positive eigenfunction of Hq related to λ(q) with ‖e( ·, q)‖L2 = 1.

Proof Assume without loss of generality that β(x, q) < 0 (otherwise we can consider
Hq − μ instead of Hq with a suitable μ > 0). Since λ(q) is a simple eigenvalue of
Hq for any q ∈ R

n , there exists a unique positive eigenfunction e( ·, q), related to it,
such that ‖e( ·, q)‖L2 = 1. Let λ0 be the least eigenvalue of the operatorH0 and e0 be
the eigenfunction related to λ0 and satisfying conditions mentioned above. Let � be a
circle of small radius in the complex plane C not intersecting σ(H0) and surrounding
only λ0. By Lemma 4.3 (with k = 0), one may restrict on the open neighborhood Q
of 0 in such a way that � ⊂ C\σ(Hq) for any q ∈ Q, and inclusion (42) is valid with
K = �. Hence, in view of H2 ↪→ L2, the Riesz projection

P(q) = − 1

2π i

∮

�

Rλ(Hq) dλ, q ∈ Q, (49)

onto the invariant subspace ofHq corresponding to the part of its spectrum lying inside
of � [11, Introduction, Section 4] has the property for any l ∈ N:

P ∈ Cl(Q,B(L2)). (50)

In particular, onemay restrict Q in such a way that ‖P(q)−P(0)‖B(L2) ≤ 1/2 for any
q ∈ Q. Then, taking into account that P(q) are orthogonal projections (sinceHq are
self-adjoint), we have dim Im P(q) = dim Im P(0), see [1, Chapter III, Section 34].
This means that for q ∈ Q the operatorHq has inside of � only one simple eigenvalue
˜λ(q), it is real becauseHq is self-adjoint, Im P(q) is the eigenspace ofHq related to
˜λ(q), and˜λ(0) = λ0. Denote ẽ( ·, q) = P(q)e0. We have for any q ∈ Q,

‖ẽ( ·, q)‖L2 ≥ ‖P(0)e0‖L2 − ‖(P(q) − P(0))e0‖L2 ≥ 1

2
.

Thus, ẽ(x, q) is an eigenvector of Hq related to ˜λ(q) such that ẽ(x, 0) = e0(x).
By (50),

(q → ẽ( ·, q)) ∈ Cl(Q, L2) (51)
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528 V. Rovenski, L. Zelenko

for any l ∈ N. Then the equality ˜λ(q)〈H−1
q ẽ( ·, q), ẽ( ·, q)〉L2 = ‖ẽ( ·, q)‖2L2

and

Lemma 4.3 (with k = 0 and K = {0}) imply that˜λ ∈ C∞(Q,R).
Take an arbitrarym ∈ N and set j = [p/4+m/2]+1. Since the equality ẽ( ·, q) =

(˜λ(q)) jH
− j
q ẽ( ·, q) is valid, then in view of (51) and Lemma 4.3, we can restrict Q in

such a way that (q → ẽ( ·, q)) ∈ Cl(Q, H2 j ) for any l ∈ N. On the other hand, by the
Sobolev Embedding Theorem, H2 j ↪→ Cm , see [2]. Thus, for any m ∈ N there is an
open neighborhood Q of 0 such that (q → ẽ( ·, q)) ∈ C∞(Q,Cm). In particular, since
e0 > 0, we can restrict Q in such a way that e(x, q) = Re ẽ(x, q)/‖Re ẽ( ·, q)‖L2

> 0
for any q ∈ Q. Clearly, e(x, q) is an eigenfunction of Hq , related to the eigenvalue
˜λq and ‖e( ·, q)‖L2 = 1. It remains only to show that it is possible to restrict Q in
such a way that˜λ(q) is the least eigenvalue of Hq for any q ∈ Q, i.e.,˜λ(q) = λ(q).
Indeed, otherwise there is a sequence qν ∈ Q such that limν→∞ qν = 0 and for any
ν there exists an eigenvalue˜λν of Hqν obeying˜λν <˜λ(qν). Since the operators Hqν

are positive definite and for some δ > 0 in the interval (λ0 − δ, λ0 + δ) there is only
the eigenvalue˜λ(qν) of Hqν , we get˜λν ∈ [0, λ0 − δ] for any ν. Let λ∗ ∈ [0, λ0 − δ]
be a concentration point of the sequence {˜λν}ν∈N. Choosing a subsequence, we can
assume that limν→∞˜λν = λ∗. Surrounding λ∗ by a small enough circle � such that
� ∩ [λ0,∞) = ∅, considering for each ν the Riesz projection ˜Pν , defined by the
rhs of (49) with q = qν and using the above arguments, we get that limν→∞ ‖˜Pν −
˜P(0)‖B(L2) = 0, where ˜P(0) is defined by the rhs of (49) with q = 0. Since qν lies
inside � for a large enough ν, dim ImP(0) > 0. Hence, there is at least one eigenvalue
of H0 inside of �. But this is impossible, because λ0 is the least eigenvalue of H0. ��

4.3 Solution of the stationary equation

Consider the compact domain in R×F

D = {

(u, x) ∈ R×F : u−(x) ≤ u ≤ u+(x)
}

,

where u−, u+ ∈ C∞ and u− ≤ u+. Define sets Gk = Int(G) ∩ Ck for k > 0, where
G ⊂ C is a bounded, closed and convex set given by

G = {

u ∈ C : u−(x) ≤ u(x) ≤ u+(x), x ∈ F
}

.

Lemma 4.5 Let m, l ∈ N, � be an open domain in R
m×F of the form

� = R
m−1×Int(D), and θ(·, ·, ·) : �×R

n → R
l be a continuous function. Then

for any q ∈ R
n the superposition operator �(v, q)(x) = θ(v(x), x, q) maps the set

Y = {

v ∈ C(F,Rm) : (v(x), x) ∈ �, x ∈ F
}

into the set C(F,Rl), and the inclusion � ∈ C
(

Y ×R
n,C(F,Rl)

)

holds.

Proof The first claim is obvious. Let us prove the second one. Suppose that v0 ∈ Y .
Consider the set�(v0) = {(v0(x), x)}x∈F . Take a relatively compact open set Q ⊂ R

n

such that 0 ∈ Q. In order to construct a similar open neighborhood of the set �(v0),
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observe that it is compact in �. Then there is a finite open covering {Uj }kj=1 of �(v0)

such that Uj ⊂ �, 1 ≤ j ≤ k, and each of Uj is compact. Consider the open set
�′ = ⋃k

j=1Uj . Then �(v0) ⊂ �′, �′ = ⋃k
j=1Uj ⊂ � and the set �′ is compact.

Consider the following open subset of C(F,Rm):

Y ′ = {

v ∈ C(F,Rm) : (v(x), x) ∈ �′, x ∈ F
}

.

It is clear that v0 ∈ Y ′. Since θ(u, x, q) is uniformly continuous on the compact
�′×Q′, for any ε > 0 there is δ > 0 such that |θ(v1, x, q) − θ(v2, x, 0)| < ε for all
(v1, x), (v2, x) ∈ �′ and q ∈ Q′, where ‖v1 − v2‖ < δ and ‖q‖ < δ. Let us choose
σ ∈ (0, δ) such that Bσ (v0) = {v ∈ C(F,Rm) : ‖v − v0‖C(F,Rm ) < σ } ⊂ Y ′. If
v ∈ Bσ (u0) and ‖q‖ < δ then ‖�(u, q) − �(u0, 0)‖C(F,Rl ) < ε holds. ��
Lemma 4.6 Let f ∈ C∞(D×R

n). Then the superposition operator

� f (u, q) = f (u(x), x, q) (52)

obeys � f ∈ Cl(Gk×R
n,Ck) for any integers k, l ≥ 0.

Proof This is divided into two steps.

Step 1. First, we shall reduce the operator (52), acting from Gk into Ck to a superposi-
tion operator, acting in spaces of continuous vector functions. Take (u, q) ∈ Gk×R

n

for some k ∈ N. Observe that differentials d ju(x), 1 ≤ j ≤ k, can be considered as
functions defined on F with values in R

n j (e.g., n1 = p, n2 = p(p + 1)/2 and so
on). We have the following:

dx� f (u, q) = ∂x f (u(x), x, q) + ∂u f (u(x), x, q) du(x),

d2x� f (u, q) = ∂2x f (u(x), x, q) + ∂2u f (u(x), x, q)(du(x), du(x))

+ ∂u f (u(x), x, q)d2u(x),

and so on. Hence,

(

dx� f (u, q), d2x� f (u, q), . . . , dkx� f (u, q),� f (u, q)
) = ψ(v(x), x, q),

where v(x) = (du(x), d2u(x), . . . , dku(x), u(x)) is the vector function on F , and
the function ψ : �×R

n → R
N is smooth. Here � = R

N−1×Int(D) and N = 1 +
∑k

j=1 n j . It is enough to show that the superpositionoperator�(v, q) = ψ(v(x), x, q)

obeys

� ∈ Cl(X×R
n,C(F,RN )

)

(53)

for any l ∈ N, where X = {v ∈ C(F,RN ) : (v(x), x) ∈ �, x ∈ F}.
Step 2. In aim to prove (53), take v ∈ X , q ∈ R

n , h ∈ C(F,RN ) and δ > 0 such that
u + th ∈ X for any t ∈ [0, δ]. We have the following representation for t ∈ [0, δ]:
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t−1(�(v+ th, q) − �(v, q)
) = t−1h(x)

∫ t

0
∂vψ

(

v(x)+τh(x), x, q
)

dτ.

Hence,

∥

∥t−1(�(v+ th, q) − �(v, q)
) − ∂vψ(u(x), x, q)h(x)

∥

∥

C(F,RN )

≤ ‖h‖C(F,RN ) sup
τ∈[0,t]

∥

∥∂vψ(v+τh, ·, q) − ∂vψ(v, ·, q)
∥

∥

C(F,B(RN ))
.

Since for any fixed q ∈ R
n the function g(x, τ ) = ∂vψ(v(x)+τh(x), x, q) is uni-

formly continuous in F×[0, δ], the last estimate implies

lim
t↓0

∥

∥t−1g
(

�(v+ th, q) − �(v, q)
) − ∂vψ(v(x), x, q)h(x)

∥

∥

C(F,RN )
= 0.

Hence, for any q ∈ R
n the operator �( ·, q) : X → C(F,RN ) has at any u ∈ X the

Gâteaux partial differential ∂v�(v, q) of the form

∂v�(v, q)h = ∂vψ(v(x), x, q)h(x), h ∈ C(F,RN ).

We see that ∂v�(v, q) ∈ B(C(F,RN )) and

∥

∥∂v�(v1, q1) − ∂v�(v2, q2)
∥

∥

B(C(F,RN ))

≤ ∥

∥∂vψ(v1, ·, q1) − ∂vψ(v2, ·, q2)
∥

∥

C(F,B(RN ))
.

By Lemma 4.5 applied to the superposition operator,

�1(v, q) = ∂vψ(v(x), x, q) : C(F,RN ) → C(F,B(RN )),

the partial differential ∂v�(v, q) is continuous in the sense that ∂v� ∈ C(C(F,RN )×
R
n,B(C(F,RN ))). Hence, ∂v�(v, q) is the Fréchet partial differential. Similarly, one

may show that at any (v, q) ∈ X×R
n there is the Gâteaux partial differential

∂q�(v, q)s = lim
t↓0 t−1(�(v, q + ts) − �(v, q)

) = ∂qψ(v(x), x, q)s,

where s ∈ R
n , and the limit is taken with respect to the C(F,RN )-norm. Further-

more, this differential is continuous: ∂q� ∈ C(C(F,RN )×R
n,B(Rn,C(F,RN ))).

Again, this fact implies that ∂q�(v, q) is the Fréchet partial differential. Thus, we
have proved that the superposition operator �(v, q)(x) = ψ(v(x), x, q) belongs to
class C1(X×R

n,C(F,RN )). Applying similar arguments to superposition operators

�1(v, q) = ∂vψ(v(x), x, q), �2(v, q) = ∂qψ(v(x), x, q),

one may show that � ∈ C2(X×R
n,C(F,RN )). Further, we can prove by induction

that (53) holds for any l ∈ N. ��
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Lemma 4.7 Let �q be the elliptic operator in (37). Then for any l ∈ N the mapping
D : (u, q) �→ −�qu belongs to class Cl(Ck+2,α×R

n,Ck,α).

Proof Fix a finite atlas {(Ua, xa)}1≤a≤A of F . Taking u ∈ Ck+2,α , q ∈ R
n and s ∈ R

n ,
we obtain in a local chart, see (37):

1

t

(

D(u, q+ ts) − D(u, q)
) − D1(u, q)s

= −
(

1

t

∫ t

0
∂qg

i j(x, q+τ s)s dτ − ∂qg
i j(x, q)s

)

∂2i j u

−
(

1

t

∫ t

0
∂qb

i (x, q+τ s)s dτ − ∂qb
i (x, q)s

)

∂i u,

where D1( ·, q)s = −∂qgi j(x, q)s∂2i j − ∂qbi (x, q)s∂i . In view of (17),

∥

∥

∥

∥

1

t

(

D(u, q+ ts) − D(u, q)
) − D1(u, q)s

∥

∥

∥

∥

Ck,α(Ua)

≤ Ca max
i, j∈{1,2,...,p} max

τ∈[0,t],x∈Ua

(

∣

∣∂qg
i j(x, q+τ s) − ∂qg

i j(x, q)
∣

∣

+ ∥

∥∂qb
i (x, q+τ s) − ∂qb

i (x, q)
∥

∥

Ck+1(Uα,B(Rn))

)

· |s| ·‖u‖Ck+2,α(Ua)

holds for someCa > 0 that does not depend on u. ReplacingCa byC = max1≤a≤A Ca ,
we find that D : Ck+2,α×R

n → Ck,α has the partial Gâteaux differential ∂qD(u, q)

at each point (u, q), and it is equal toD1(u, q). Similarly to the proof of Lemma 4.2,
we obtain thatD has continuous mixed partial differentials by q and x (of any order)
at any point (u, q) ∈ Ck+2,α ×R

n . ��
Theorem 4.8 Let f ∈ C∞(D×R

n) and u∗(x) ∈ Int(G) be a smooth solution of
(34) with q = 0 such that λ = 0 is not an eigenvalue of the operator H = −� −
∂u f (u∗(x), x, 0) on L2 with domain in H2. Then for any integers k ≥ 0 and l ≥ 1 and
α ∈ (0, 1) there are open neighborhoods U∗ ⊆ Ck+2,α of u∗ and V0 ⊆ R

n of 0 such
that for any q ∈ V0 there exists in U∗ a unique solution u(x, q) of (34), in particular,
u∗(x) = u(x, 0), such that the function q �→ u( ·, q) belongs to class Cl(V0,U∗).

Proof By Lemma 4.6, for any q ∈ R
n and integers k, l ≥ 0 the operator (52) maps

the set Gk+2 = Int(G) ∩ Ck+2 into Ck+2 and � f ∈ Cl(Gk+2×R
n,Ck+2). Since

Ck+2,α and Ck+2 are continuously embedded into Ck+2 and Ck,α , respectively, we
get � f ∈ Cl(Gk+2,α ×R

n,Ck,α), where Gk+2,α = Int(G) ∩ Ck+2,α . Consider oper-
ators Y (u, q) = �qu + � f (u, q), q ∈ R

n , defined on Gk+2,α . By Lemma 4.7,
Y ∈ Cl(Gk+2,α×R

n,Ck,α). Let ˜H be H restricted on Ck,α with the domain Ck+2,α .
Set β = ∂u f (u∗(x), x, 0). By (17), there is C > 0 such that ‖�u‖Ck,α ≤ C‖u‖Ck+2,α

for any u ∈ Ck+2,α; hence, ˜H − μ ∈ B(Ck+2,α,Ck,α). Let μ < −maxx∈F β(x).
By [2, Theorem 4.18], H(u) − μu = f (x) has a unique solution u ∈ Ck+2,α for
any f ∈ Ck,α , i.e., ˜H − μ maps Ck+2,α injectively onto Ck,α . As in the proof of
Lemma 4.1 (i), using the Banach Closed Graph Theorem and compactness of the
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532 V. Rovenski, L. Zelenko

embedding Ck+2,α ↪→ Ck,α , we prove that ˜H − μ is continuously invertible and
(˜H − μ)−1 : Ck,α → Ck,α is compact.

By the above, the spectrum of (˜H−μ)−1 consists of the point ν = 0 and a countable
number of non-zero eigenvalues νn of finite multiplicity, which can accumulate only
at the point ν = 0. Hence the spectrum of ˜H is discrete. By Lemma 4.1 (i–iii), σ(H)

is discrete and μ /∈ σ(H). By the same arguments as in the proof of Lemma 4.1 (iii),
we find that the spectrum of ˜H is discrete and coincides with σ(H).

Let λ /∈ σ(H). Then ˜H − λ maps injectively Ck+2,α into Ck,α and it is bounded.
By the Elliptic Regularity Theorem, this operator is surjective. By the Banach Closed
Graph Theorem, ˜H − λ acts from Ck+2,α into Ck,α and it is continuously invertible.
Since 0 /∈ σ(H), the partial differential is continuously invertible

∂uY (u∗, 0) = −H ∈ B(Ck+2,α,Ck,α).

These facts and the Implicit Function Theorem, see [2], complete the proof. ��
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