On a paper by Yuri G. Zarhin

Elmer Rees ${ }^{1,2}$

Received: 27 February 2015 / Revised: 6 May 2015 / Accepted: 13 May 2015 /
Published online: 6 August 2015
© Springer International Publishing AG 2015

Abstract

In a recent paper, (Math Notes 91(3-4): 508-516, 2012) Zarhin proved that each member of a naturally defined family of linear maps $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ has co-rank one. We present a direct proof of Zarhin's result about complex polynomials with distinct roots; it is rather similar to that of Appendix by Vik.S. Kulikov to Zarhin's paper but we give explicit constants. We also discuss the case of a polynomial with multiple roots.

Keywords Complex polynomials with distinct roots • Derivate has constant rank • Conjecture on case of coincident roots

Mathematics Subject Classification 30C10 15A15

1 Zarhin's result

First we recall the main result of [1]. Let f be a monic complex polynomial of degree n with distinct roots $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. Define

$$
M(f)=\left(f^{\prime}\left(\alpha_{1}\right), f^{\prime}\left(\alpha_{2}\right), \ldots, f^{\prime}\left(\alpha_{n}\right)\right)
$$

then the derivative $d M_{f}$ of M for each such f has rank $n-1$.

[^0]Since the map $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \mapsto f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right)$ is a regular ($n!$-sheeted) covering at points α where α_{i} are distinct, the study of the rank of the derivative of M can be done equivalently at f or α. We do so at α.

The $n \times n$ matrix $T=T(f)$ of the derivative map is given by

$$
\begin{aligned}
T_{i j} & =\frac{\partial}{\partial \alpha_{j}} f^{\prime}\left(\alpha_{i}\right)=\frac{\partial}{\partial \alpha_{j}}\left(\alpha_{i}-\alpha_{1}\right)\left(\alpha_{i}-\alpha_{2}\right) \cdots\left(\widehat{\alpha_{i}-\alpha_{i}}\right) \cdots\left(\alpha_{i}-\alpha_{n}\right) \\
& =-\left(\alpha_{i}-\alpha_{1}\right)\left(\alpha_{i}-\alpha_{2}\right) \cdots\left(\widehat{\alpha_{i}-\alpha_{j}}\right) \cdots\left(\widehat{\alpha_{i}-\alpha_{i}}\right) \cdots\left(\alpha_{i}-\alpha_{n}\right), \quad i \neq j, \\
T_{i i} & =\sum_{j}\left(\alpha_{i}-\alpha_{1}\right)\left(\alpha_{i}-\alpha_{2}\right) \cdots\left(\widehat{\alpha_{i}-\alpha_{j}}\right) \cdots\left(\widehat{\alpha_{i}-\alpha_{i}}\right) \cdots\left(\alpha_{i}-\alpha_{n}\right) .
\end{aligned}
$$

Our proof of Zarhin's result shows that the matrix T has some remarkable properties and so it might be of independent interest.

We will simplify the notation by writing

$$
\begin{aligned}
f_{k}(x) & =\frac{f(x)}{\left(x-\alpha_{k}\right)}=-\frac{\partial f}{\partial \alpha_{k}}, \\
f_{k \ell}(x) & =\frac{f(x)}{\left(x-\alpha_{k}\right)\left(x-\alpha_{\ell}\right)}, \quad k \neq \ell, \\
f_{k \ell m}(x) & =\frac{f(x)}{\left(x-\alpha_{k}\right)\left(x-\alpha_{\ell}\right)\left(x-\alpha_{m}\right)} .
\end{aligned}
$$

Then, for $i \neq j, T_{i j}=f_{i j}\left(\alpha_{i}\right)$.
For $X \subset\{1,2, \ldots n\}$ with m elements, we let $T[X]$ denote the $(n-m) \times(n-m)$ submatrix of T obtained by omitting the $j^{\text {th }}$ row and column for each $j \in X$ and let $D[X]=\operatorname{det} T[X]$; so the principal minor of T is $D[n]$. We also let $\Delta(g)$ denote the discriminant of a polynomial g.

We note that the sum of the columns of T is zero and so $\operatorname{rank} T<n$. Since the discriminant of a polynomial with distinct roots is non-zero, the proof will be completed by

Proposition For each $k, 1 \leq k \leq n$,

$$
D[k]=(-1))^{\binom{n-1}{2}}(n-1)!\Delta\left(f_{k}\right)=(-1)^{\binom{n-1}{2}}(n-1)!\prod_{\substack{1 \leq i<j \leq n \\ i, j \neq n}}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

In particular,

$$
D[n]=(-1)^{\binom{n-1}{2}}(n-1)!\Delta\left(f_{n}\right)=(-1)^{\left(\frac{n-1}{2}\right)}(n-1)!\prod_{1 \leq i<j<n}\left(\alpha_{i}-\alpha_{j}\right)^{2} .
$$

Proof We prove the result for $k=n$ (that is, we are considering the principal minor of $T)$ and the proof is, apart from notation, the same for other values of k. Interchanging both the i th and j th rows and the i th and j th columns of T for $1 \leq i<j<n$ interchanges i and j but does not change the determinant $D[n]$ of the principal minor. So $D[n]$ is a symmetric polynomial in $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}$. If we set $\alpha_{i}=\alpha_{j}$ then the
$i^{\text {th }}$ and $j^{\text {th }}$ rows of T are equal, so if $1 \leq i<j<n$ and $\alpha_{i}=\alpha_{j}$ then $D[n]=0$. Now we recall the well known result:

If $P\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ is a symmetric polynomial which vanishes when any pair of the x 's are equal then p is a multiple of $\prod_{1 \leq i<j \leq r}\left(x_{i}-x_{j}\right)^{2}$.

So $D[n]$ is a multiple of $\Delta(f)=\prod_{1 \leq i<j<n}\left(\alpha_{i}-\alpha_{j}\right)^{2}$, which clearly has total degree $(n-1)(n-2)$ but the total degree of each $T_{i j}$ is $n-2$ so $D[n]$ also has total degree $(n-1)(n-2)$. So $D[n]=c \Delta\left(f_{n}\right)$ for some constant c.

To determine the value of c, we consider each $T_{i j}$ as an element of the polynomial ring $R\left[\alpha_{1}\right]$ where $R=\mathbb{C}\left[\alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}\right]$. We use induction on n; it starts trivially at $n=2$.

The degrees of the various $T_{i j}$ as polynomials in α_{1} are given by

Index	Degree $T_{i j}$
$i>1, j>1$	1
$i>1, j=1$	0
$i=1$	$n-2$

Moreover, the coefficient of α_{1}^{n-2} in $T_{1 j}$ is -1 for $j>1$ and, since the sum of the columns of T is zero, the coefficient of α_{1}^{n-2} in T_{11} is $n-1$. There are no occurrences of α_{1} in the first column (except for T_{11}) and so when calculating the determinant by using the first row, the terms that contribute $\alpha_{1}^{2(n-2)}$ to $D[n]$ all come from the product $T_{11} D[1, n]$. (Note that the highest degree term involving α_{1} in T_{11} is α_{1}^{n-2} and that in each entry of $T[1, n]$ it is α_{1}.) The coefficient of α_{1} in the entries of $T[1, n]$ (since these entries are all linear in α_{1}) are given by

$$
\frac{\partial}{\partial \alpha_{1}} T_{i j}=\frac{\partial}{\partial \alpha_{1}} f_{i j}\left(\alpha_{i}\right)=-f_{1 i j}\left(\alpha_{i}\right), \quad i \neq j, \quad i, j>1 .
$$

But these are precisely the negatives of the off-diagonal entries of the matrix $T\left(f_{1}\right)$ that one obtains from the polynomial $f_{1}(x)=\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right) \cdots\left(x-\alpha_{n}\right)$. The entries of the first column of T do not involve α_{1} and since the sum of the columns of T is $0, \alpha_{1}$ does not appear in the sum of the columns of $T[n]$. But the sum of the columns of $T\left(f_{1}\right)$ is also 0 and so we conclude that the matrix $T[1, n]-\alpha_{1} T\left(f_{1}\right)$ is independent of α_{1}. Hence, by applying the induction hypothesis to f_{1}, the term in $D[n]$ involving $\alpha_{1}^{2 n-2}$ is

$$
\begin{aligned}
&(n-1) \alpha_{1}^{n-2} \operatorname{det}\left(-I_{n-2}\right) \alpha_{1}^{\left(\frac{n-2}{2}\right)}(n-2)!\Delta\left(f_{n 1}\right) \\
&=(-1)^{\left(\frac{n-1}{2}\right)}(n-1)!\Delta\left(f_{1 n}\right) \alpha_{1}^{2(n-2)}
\end{aligned}
$$

proving the proposition.

2 Multiple roots

Now we consider a monic polynomial $f(x) \in \mathbb{C}[x]$ of degree n with multiple roots. Let $R(f)=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ denote the set of all its roots, $\# R(f)=r, r<n$, and
$R_{k}(f)$ the set of roots of f that have multiplicity exactly k. We order the roots so that their multiplicities are in decreasing order and suppose that $\# R_{1}(f)=s$; clearly $s<n$. The first $r-s$ rows of the $r \times r$ matrix M are zero, so rank $M \leq s$. Somewhat tentatively, we make the following conjecture and sketch some of the calculations that support it.
Conjecture The rank of M is s.
Consider an $s \times s$ submatrix N of M formed from a set of s columns and the last s rows of M. We find that if all the determinants det N are zero then a pair of roots of the polynomial are equal. In particular, calculations that we have carried out suggest that $\operatorname{det} N$ is always of the form

$$
\pm c \prod(a-b)^{t} g
$$

where the product is over a nonempty set of pairs of distinct roots a, b of f and g is a polynomial in $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$. In various cases, we describe the powers t, the constant c and the polynomials g :

- Let $f(x)$ have only one root, say, α_{r} of multiplicity 1 , then the principal minor N is 1×1 and it is easy to calculate that

$$
N=-k_{1} \frac{f_{r}\left(\alpha_{r}\right)}{\left(\alpha_{r}-\alpha_{1}\right)}
$$

where k_{1} is the multiplicity of the root α_{1} and (as in Sect. 1) $f_{r}(x)$ is $f(x)$ with the factor $x-\alpha_{r}$ omitted.

- Let $f(x)$ have the root α_{1} with multiplicity $k>1$ and the other roots be $\alpha_{2}, \ldots, \alpha_{r}$ all of multiplicity 1 then, the principal minor, $\operatorname{det} N$ has factors $\alpha_{1}-\alpha_{\ell}$ with index $t=k-1$ and the factors $\alpha_{m}-\alpha_{\ell}, \ell, m>1$, with index $t=2$ and c is $\pm k(k+1) \cdots(k+r-1)$.
- Let $f(x)$ have the root α_{1} with multiplicity $k>1$, the root α_{2} with multiplicity $\ell>1$ and the other roots of multiplicity 1 . Then, when $r=5$, the determinant of the minors has the form indicated but with a non-trivial factor g. The principal minor has $g=\alpha_{1}+2 \alpha_{2}-3 \alpha_{3}$ and one of the other minors has $g=\alpha_{1}+2 \alpha_{2}-3 \alpha_{4}$. If both these g vanish then we have that $\alpha_{3}=\alpha_{4}$ and if some other factor of the determinant vanishes then, again two of the α 's are equal which contradicts our hypothesis.
This final calculation seems to indicate that it may be difficult to verify the conjecture by a direct calculation.

Acknowledgments The author thanks the editor and the referee for a very careful reading which found several slips.

Reference

1. Zarhin, Yu.G.: Polynomials in one variable and ranks of certain tangent maps. Math. Notes $\mathbf{9 1}(3-4)$, 508-516 (2012)

[^0]: \boxtimes Elmer Rees
 E.Rees@bristol.ac.uk

 1 Heilbronn Institute, School of Mathematics, University of Bristol, Bristol BS8 1TW, UK
 2 School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, UK

