

RESEARCH ARTICLE

On a paper by Yuri G. Zarhin

Elmer Rees^{1,2}

Received: 27 February 2015 / Revised: 6 May 2015 / Accepted: 13 May 2015 / Published online: 6 August 2015 © Springer International Publishing AG 2015

Abstract In a recent paper, (Math Notes 91(3–4): 508–516, 2012) Zarhin proved that each member of a naturally defined family of linear maps $\mathbb{C}^n \to \mathbb{C}^n$ has co-rank one. We present a direct proof of Zarhin's result about complex polynomials with distinct roots; it is rather similar to that of Appendix by Vik.S. Kulikov to Zarhin's paper but we give explicit constants. We also discuss the case of a polynomial with multiple roots.

Keywords Complex polynomials with distinct roots \cdot Derivate has constant rank \cdot Conjecture on case of coincident roots

Mathematics Subject Classification 30C10 · 15A15

1 Zarhin's result

First we recall the main result of [1]. Let f be a monic complex polynomial of degree n with distinct roots $\alpha_1, \alpha_2, \ldots, \alpha_n$. Define

$$M(f) = \left(f'(\alpha_1), f'(\alpha_2), \dots, f'(\alpha_n)\right),$$

then the derivative dM_f of M for each such f has rank n - 1.

Elmer Rees E.Rees@bristol.ac.uk

¹ Heilbronn Institute, School of Mathematics, University of Bristol, Bristol BS8 1TW, UK

² School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, UK

Since the map $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n) \mapsto f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$ is a regular (*n*!-sheeted) covering at points α where α_i are distinct, the study of the rank of the derivative of *M* can be done equivalently at *f* or α . We do so at α .

The $n \times n$ matrix T = T(f) of the derivative map is given by

$$T_{ij} = \frac{\partial}{\partial \alpha_j} f'(\alpha_i) = \frac{\partial}{\partial \alpha_j} (\alpha_i - \alpha_1)(\alpha_i - \alpha_2) \cdots (\widehat{\alpha_i - \alpha_i}) \cdots (\alpha_i - \alpha_n)$$

= $-(\alpha_i - \alpha_1)(\alpha_i - \alpha_2) \cdots (\widehat{\alpha_i - \alpha_j}) \cdots (\widehat{\alpha_i - \alpha_i}) \cdots (\alpha_i - \alpha_n), \quad i \neq j,$
 $T_{ii} = \sum_j (\alpha_i - \alpha_1)(\alpha_i - \alpha_2) \cdots (\widehat{\alpha_i - \alpha_j}) \cdots (\widehat{\alpha_i - \alpha_i}) \cdots (\alpha_i - \alpha_n).$

Our proof of Zarhin's result shows that the matrix T has some remarkable properties and so it might be of independent interest.

We will simplify the notation by writing

$$f_k(x) = \frac{f(x)}{(x - \alpha_k)} = -\frac{\partial f}{\partial \alpha_k},$$

$$f_{k\ell}(x) = \frac{f(x)}{(x - \alpha_k)(x - \alpha_\ell)}, \quad k \neq \ell,$$

$$f_{k\ell m}(x) = \frac{f(x)}{(x - \alpha_k)(x - \alpha_\ell)(x - \alpha_m)}.$$

Then, for $i \neq j$, $T_{ij} = f_{ij}(\alpha_i)$.

For $X \subset \{1, 2, ..., n\}$ with *m* elements, we let T[X] denote the $(n-m) \times (n-m)$ submatrix of *T* obtained by omitting the *j*th row and column for each $j \in X$ and let $D[X] = \det T[X]$; so the principal minor of *T* is D[n]. We also let $\Delta(g)$ denote the discriminant of a polynomial *g*.

We note that the sum of the columns of T is zero and so rank T < n. Since the discriminant of a polynomial with distinct roots is non-zero, the proof will be completed by

Proposition For each k, $1 \le k \le n$,

$$D[k] = (-1)^{\binom{n-1}{2}} (n-1)! \Delta(f_k) = (-1)^{\binom{n-1}{2}} (n-1)! \prod_{\substack{1 \le i < j \le n \\ i, j \ne n}} (\alpha_i - \alpha_j)^2$$

In particular,

$$D[n] = (-1)^{\binom{n-1}{2}} (n-1)! \Delta(f_n) = (-1)^{\binom{n-1}{2}} (n-1)! \prod_{1 \le i < j < n} (\alpha_i - \alpha_j)^2.$$

Proof We prove the result for k = n (that is, we are considering the principal minor of *T*) and the proof is, apart from notation, the same for other values of *k*. Interchanging both the *i*th and *j*th rows and the *i*th and *j*th columns of *T* for $1 \le i < j < n$ interchanges *i* and *j* but does not change the determinant D[n] of the principal minor. So D[n] is a symmetric polynomial in $\alpha_1, \alpha_2, \ldots, \alpha_{n-1}$. If we set $\alpha_i = \alpha_j$ then the

*i*th and *j*th rows of *T* are equal, so if $1 \le i < j < n$ and $\alpha_i = \alpha_j$ then D[n] = 0. Now we recall the well known result:

If $P(x_1, x_2, ..., x_r)$ is a symmetric polynomial which vanishes when any pair of the x's are equal then p is a multiple of $\prod_{1 \le i \le j \le r} (x_i - x_j)^2$.

So D[n] is a multiple of $\Delta(f) = \prod_{1 \le i < j < n} (\alpha_i - \alpha_j)^2$, which clearly has total degree (n-1)(n-2) but the total degree of each T_{ij} is n-2 so D[n] also has total degree (n-1)(n-2). So $D[n] = c \Delta(f_n)$ for some constant *c*.

To determine the value of *c*, we consider each T_{ij} as an element of the polynomial ring $R[\alpha_1]$ where $R = \mathbb{C}[\alpha_2, \alpha_3, \dots, \alpha_n]$. We use induction on *n*; it starts trivially at n = 2.

The degrees of the various T_{ij} as polynomials in α_1 are given by

Index	Degree T_{ij}
i > 1, j > 1	1
i > 1, j = 1	0
i = 1	n-2

Moreover, the coefficient of α_1^{n-2} in T_{1j} is -1 for j > 1 and, since the sum of the columns of *T* is zero, the coefficient of α_1^{n-2} in T_{11} is n-1. There are no occurrences of α_1 in the first column (except for T_{11}) and so when calculating the determinant by using the first row, the terms that contribute $\alpha_1^{2(n-2)}$ to D[n] all come from the product $T_{11}D[1, n]$. (Note that the highest degree term involving α_1 in T_{11} is α_1^{n-2} and that in each entry of T[1, n] it is α_1 .) The coefficient of α_1 in the entries of T[1, n] (since these entries are all linear in α_1) are given by

$$\frac{\partial}{\partial \alpha_1} T_{ij} = \frac{\partial}{\partial \alpha_1} f_{ij}(\alpha_i) = -f_{1ij}(\alpha_i), \quad i \neq j, \quad i, j > 1.$$

But these are precisely the negatives of the off-diagonal entries of the matrix $T(f_1)$ that one obtains from the polynomial $f_1(x) = (x - \alpha_2)(x - \alpha_3) \cdots (x - \alpha_n)$. The entries of the first column of T do not involve α_1 and since the sum of the columns of T is 0, α_1 does not appear in the sum of the columns of T[n]. But the sum of the columns of $T(f_1)$ is also 0 and so we conclude that the matrix $T[1, n] - \alpha_1 T(f_1)$ is independent of α_1 . Hence, by applying the induction hypothesis to f_1 , the term in D[n] involving α_1^{2n-2} is

$$(n-1)\alpha_1^{n-2}\det(-I_{n-2})\alpha_1^{\binom{n-2}{2}}(n-2)!\,\Delta(f_{n1})$$

= $(-1)^{\binom{n-1}{2}}(n-1)!\,\Delta(f_{1n})\alpha_1^{2(n-2)}$

proving the proposition.

2 Multiple roots

Now we consider a monic polynomial $f(x) \in \mathbb{C}[x]$ of degree *n* with multiple roots. Let $R(f) = \{\alpha_1, ..., \alpha_r\}$ denote the set of all its roots, # R(f) = r, r < n, and

 $R_k(f)$ the set of roots of f that have multiplicity exactly k. We order the roots so that their multiplicities are in decreasing order and suppose that $\# R_1(f) = s$; clearly s < n. The first r - s rows of the $r \times r$ matrix M are zero, so rank $M \le s$. Somewhat tentatively, we make the following conjecture and sketch some of the calculations that support it.

Conjecture *The rank of M is s.*

Consider an $s \times s$ submatrix N of M formed from a set of s columns and the last s rows of M. We find that if all the determinants det N are zero then a pair of roots of the polynomial are equal. In particular, calculations that we have carried out suggest that det N is always of the form

$$\pm c \prod (a-b)^t g$$

where the product is over a nonempty set of pairs of distinct roots *a*, *b* of *f* and *g* is a polynomial in $\{\alpha_1, \ldots, \alpha_r\}$. In various cases, we describe the powers *t*, the constant *c* and the polynomials *g*:

• Let f(x) have only one root, say, α_r of multiplicity 1, then the principal minor N is 1×1 and it is easy to calculate that

$$N = -k_1 \frac{f_r(\alpha_r)}{(\alpha_r - \alpha_1)}$$

where k_1 is the multiplicity of the root α_1 and (as in Sect. 1) $f_r(x)$ is f(x) with the factor $x - \alpha_r$ omitted.

- Let f(x) have the root α_1 with multiplicity k > 1 and the other roots be $\alpha_2, \ldots, \alpha_r$ all of multiplicity 1 then, the principal minor, det N has factors $\alpha_1 - \alpha_\ell$ with index t = k - 1 and the factors $\alpha_m - \alpha_\ell$, $\ell, m > 1$, with index t = 2 and c is $\pm k(k+1)\cdots(k+r-1)$.
- Let f(x) have the root α_1 with multiplicity k > 1, the root α_2 with multiplicity $\ell > 1$ and the other roots of multiplicity 1. Then, when r = 5, the determinant of the minors has the form indicated but with a non-trivial factor g. The principal minor has $g = \alpha_1 + 2\alpha_2 3\alpha_3$ and one of the other minors has $g = \alpha_1 + 2\alpha_2 3\alpha_4$. If both these g vanish then we have that $\alpha_3 = \alpha_4$ and if some other factor of the determinant vanishes then, again two of the α 's are equal which contradicts our hypothesis.

This final calculation seems to indicate that it may be difficult to verify the conjecture by a direct calculation.

Acknowledgments The author thanks the editor and the referee for a very careful reading which found several slips.

Reference

 Zarhin, Yu.G.: Polynomials in one variable and ranks of certain tangent maps. Math. Notes 91(3–4), 508–516 (2012)