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1 Introduction

The present paper ismotivated by the study in [1,2] of ameasurewithmaximal entropy
for the Teihmüller flow on the moduli space of Abelian differentials. The following
result was obtained there: a measure with maximal entropy for this flow exists, is
unique, and moreover, it is the well-known invariant measure constructed by H.Masur
and W.Veech in the 80th. In several steps the problem reduces to the investigation
of a measure with maximal entropy for a suspension flow over a countable alphabet
Markov shift. Our argument can be briefly presented as follows. Veech [12] found the
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546 B. Gurevich

entropy of theTeihmüller flowwith respect to theMasur–Veechmeasure and expressed
it in terms of the genus g of the corresponding Riemann surface and the number n
of punctures (in the moduli space context, the surface itself is not fixed, but g and
n are). For the measure μ obtained by transferring the Masur–Veech measure to the
phase space of the suspension flow in question (more exactly to its base), we discovered
some properties in terms of this flow alone, independently of the origin ofμ. Using the
existence of an invariant measure with these properties, we evaluated the topological
entropy (the maximum of the measure theoretic entropies) of the suspension flow,
which turned out to coincide with the Veech entropy. This immediately implied our
main result.

Now the following natural question arises: if Veech’s entropy result [12] have not
been known, would it be possible to deduce it directly from the properties of the
measure, without resorting to the Teihmüller flow itself? In other words, taking into
account that our evaluation of the topological entropy is valid not only for the specific
suspension flow related to the Teihmüller flow, but for every suspension flow that has
an invariant measure with the above properties, is it true that the entropy of this flow
with respect to such a measure coincides with its topological entropy? It could seem
that the whole information contained in the assumptions on μ was already used in [2].
In fact this is not true. In the present paper we are based on the same assumptions as
in [2], but exploit them in a different way (see the proof of Theorem 2.10 below).

2 Definitions and results

We start from some more or less standard definitions.

Definition 2.1 A one-to-one bi-measurable transformation T of a measurable space
(X,B) onto itself is called an automorphism, a group of automorphisms T t, t ∈ Z,
is called a cascade (a discrete time dynamical system); a continuous parameter group
of automorphisms T t, t ∈ R, is called a flow (a continuous time dynamical system).
Two dynamical systems, (X1,B1, {T t

1 }) and (X2,B2, {T t
2 }), are called isomorphic if

there is a one-to-one epimorphic bi-measurable map� : X1 → X2 such that T t
2 ◦� =

�◦T t
1 for all t . (For the discrete time dynamical systems, it is sufficient to check the

last equation for t = 1.)

We often have to deal with a dynamical system (X,B, {T t }) endowed with a {T t }-
invariant probability measure μ on X . We will call the quadruple (X,B, {T t }, μ) a
dynamical system with invariant measure.

Definition 2.2 Two dynamical systems with invariant measure, (X1,B1, {T t
1 }, μ1)

and (X2,B2, {T t
2 }, μ2), are called isomorphic if there are sets X ′

1 ∈ B1, X ′
2 ∈ B2

invariant with respect to all T t
1 and all T

t
2 , respectively, such thatμ1(X ′

1) = μ2(X ′
2) =

1 and the restrictions
(
X ′
1,B1|X ′

1
, {T t

1 }|X ′
1

)
and

(
X ′
2,B2|X ′

2
, {T t

2 }|X ′
2

)
are isomorphic

in the sense of Definition 2.1.

In what follows we will usually drop B from the notation of a dynamical system.
A suspension flow (or special flow) over an automorphism T is defined as follows

(see, e.g., [4,8]).
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On a measure with maximal entropy for a suspension... 547

Definition 2.3 Let T be an automorphism of ameasurable space (X,B), and f : X →
(c,∞), c > 0, be a Borel measurable function. We set

X f = {
x̃ = (x, u) : x ∈ X, 0 ≤ u < f (x)

}
.

For t ≥ 0 and every x̃ = (x, u) ∈ X f , we define a map St by

St x̃ =

⎧
⎪⎪⎨

⎪⎪⎩

(x, u+ t) if u + t < f (x),
(
T nx, u + t −

n−1∑

i=0

f (T i x)

)
otherwise,

where n is such that

n−1∑

i=0

f (T i x) ≤ u + t <

n∑

i=0

f (T i x).

For t < 0 we set St = (S−t )
−1. For the suspension flow thus obtained we will use

the notation (T, f ). The space X and the function f are often called the base of the
suspension flow and the roof function, respectively.

The notion of a suspension flow is an abstract version of the Poincare transversal
surface idea. Suspension constructions (flows and cascades) over countable alphabet
Markov shifts turn out to be a powerful tool in the study of some classes of smooth
dynamical systems on manifolds [1,2,6,10].

For an automorphism T of X and for x ∈ X,C ⊂ X , we set

τ(x,C) = inf {n > 0 : T nx ∈ C}, x ∈ X, (1)

and for the suspension flow {St } = (T, f ), we set

τ̃ (x,C) = inf
{
t > 0 : St (x, 0) ⊂ C×{0}};

τ(x,C) is clearly the first approach time of the set C by the point x under the action
of the cascade {T n}, while τ̃ (x,C) can be a little inaccurately treated as the first
approach time of the set C by the point x under the action of the flow (T, f ) (we put
τ(x,C) = ∞ if x will never approach C).

We aremainly interested in suspensionflows over topological (or symbolic)Markov
shifts.

Definition 2.4 Let G = (V, E) be a directed graph with vertex set V and edge set
E ⊂ V ×V . One defines the two-sided infinite path space X (G) = X of G by

X = {
x = (xi , i ∈ Z) : xi ∈ V, (xi , xi+1) ∈ E

}
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548 B. Gurevich

and introduces the topology of pointwise convergence in X (G) (every x ∈ X is a
function from Z to V ) and the (left) shift transformation T by

(T x)i = xi+1, i ∈ Z, x ∈ X.

This T , which is clearly a homeomorphism of X , is called the topological (or symbo-
lic)Markov shiftwith alphabet V . IfG = (V, E) is a complete graph, i.e., V = G×G,
the shift T on X (G) is called a full shift or a topological (symbolic) Bernoulli shift.

In what follows we assume that V is countable and G is connected as a directed graph.
Let

var+n ( f ) = sup
{| f (x) − f (x ′)| : x, x ′ ∈ X, xi = x ′

i for 0 ≤ i ≤ n
}
.

We impose the following conditions on f : f (x) does not depend on xi with i < 0 and

∞∑

n=1

var+n ( f ) < ∞.

Remark 2.5 While the former condition can be essentially relaxed, it enables us to
use results from [2], where this condition is present. In contrast, the latter condition,
which is also present in [2], is significant.

Denote the family of all T -invariant Borel probability measures on X by I(T ) and set

I f (T ) = {μ ∈ I(T ) : μ( f ) < ∞}

(here and below we write μ( f ) instead of
∫
X f dμ),

I+f (T ) = {
μ ∈ I f (T ) : μ(C) > 0 for each open C ⊂ X

}
.

If μ ∈ I f (T ), it generates, in a canonical way, a probability measure μ f on X f that is
invariant w.r.t. the suspension flow {St } = (T, f ).

Forμ ∈ I f (T ), denote the entropy of T with respect toμ by hμ(T ) and the entropy
of the flow (T, f ) with respect to the measure μ f by hμ f (T, f ).

Definition 2.6 Let

htop(T, f ) = sup
μ∈If (T )

hμ f (T, f ).

We say that htop(T, f ) is the topological entropy of the flow (T, f ) and that every
measure μ ∈ I f (T ) with

hμ f (T, f ) = htop(T, f )

is a maximal measure for (T, f ).
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On a measure with maximal entropy for a suspension... 549

Remark 2.7 The justification for the above definition of the topological entropy of
(T, f ) is that, in the case of a finite alphabet Markov shift, this quantity would really
be the topological entropy of this suspension flow.

Remark 2.8 It is known [2] that in the situation we are going to study, a maximal
measure is unique, but even in quite simple cases it does not necessarily exist.

In order to state the main result of this paper we have to give the following definition.

Definition 2.9 Given a graph G = (V, E) as above, we call a sequence w = (v0, v1,

. . . , vn−1) with vi ∈ V, (vi , vi+1) ∈ E a path (or a word) of length |w| = n in G. We
call such w a simple word if (v0, v1, . . . , vk) 
= (vn−k, vn−k+1, . . . , vn) unless k = n.
We denote the set of all words in G by W (G).

If w = (v0, v1, . . . , vk) and w′ = (v′
0, v

′
1, . . . , v

′
l) are two words in G such that

vk = v′
0, then their concatenation ww′ = (v0, v1, . . . , vk, v

′
1, . . . , v

′
l) is also a word

in G. We write w′ ⊂ w if vr+i = v′
i for some r ≥ 0 and i = 0, 1, . . . , l. For every

w ∈ W (G), we denote the cylinder Cw = {x ∈ X : (x0, . . . , x|w|−1) = w} by Cw.
The next theorem is the main result of the paper. To state it we have to introduce

the following four conditions on a measure μ ∈ I f (T ):

(a) μ ∈ I+f (T ), i.e., μ(C) > 0 for all open nonempty C ⊂ X .
(b) μ is ergodic, i.e., the transformation T is ergodic with respect to the measure μ.
(c) Hμ(ξ) < ∞, where ξ is the partition of X into one-dimensional cylinders Cv, v ∈

V , and Hμ(ξ) is the entropy of this partition with respect to μ.
(d) There exist a constant s ≥ 0, a function κ : Z+ → R+, and an arbitrary long

simple word w ∈ W (G) such that limr→∞ κ(r) = 0 and, for all ŵ ∈ W (G)

satisfying the conditions wŵw ∈ W (G), ŵ 
⊂ w and μ-almost all x ∈ Cwwŵ, the
inequality ∣∣∣∣

μ(Cww′w)

μ(Cw)
− e−sτ̃ (x,Cw)

∣∣∣∣ ≤ κ(|w|)e−sτ̃ (x,Cw)

holds. Each word ŵ satisfying two last conditions will be called w-admissible, we
denote the set of such words by Âw.

Theorem 2.10 Let (X, T ) be an infinite alphabet Markov shift determined by a con-
nected graph G = (V, E) and f be a function with summable variations defined on
X (G) such that f (x) depends on x0, x1, . . . only and f (x) ≥ c > 0. Assume that a
measure μ ∈ I f (T ) satisfies conditions (a)–(d). Then μ is a maximal measure for the
suspension flow (T, f ).

Remark 2.11 This theorem is close to [2, Theorem 2.2]. In particular, the conclusions
of these theorems coincide. But their assumptions are different: instead of the equality
s = hμ f (T, f ), we assume that Hμ(ξ) < ∞. The second assumption seems to be
much less restrictive and purely technical. It is quite possible that it can be rejected.
As to the first assumption, we derive it from the other assumptions of Theorem 2.10.
Moreover, there is good reason to believe that the sufficient conditions on the maximal
measure stated in the theorem are close to necessary ones.

Theorem 2.10 will be proved in Sect 4. In Sect. 3 we state and in part prove some
auxiliary facts.
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550 B. Gurevich

3 Main lemmas

Lemma 3.1 Let (T, f ) be a suspension flow over an infinite alphabet topological
Bernoulli shift (X, T ), where f (x) depends only on x0, i.e., there exists a function
f0 : V → [c,∞), c > 0, such that f (x) = f0(x0), x ∈ X. Let

F f0(β) =
∑

v∈V
exp (−β f0(v)), β > 0.

Then

(i) htop(T, f ) is the unique solution to the equation Ff0(β) = 1 if this equation is
solvable, otherwise

htop(T, f ) = sup {β ≥ 0 : Ff0(β) = ∞}.

(ii) (T, f ) has a maximal measure μmax if and only if there exists a number β0 > 0
such that

Ff0(β0) = 1, |F ′
f0(β0)| < ∞.

This measure is unique and is the Bernoulli measure such that μmax(Cv) =
exp (−β0 f0(v)), v ∈ V .

Statement (i) is [2, Lemma 2.7] (see also [5]), statement (ii) can be derived from (i)
or from [11, Theorem 3].

Lemma 3.2 Let (T, f ) be a suspension flow as in Lemma 3.1 and h = htop(T, f ).
Then, for the function g(x) = f (x) − h−1 ln Ff0(h),

Fg(h) = 1, htop(T, g) = h (2)

(g0 corresponds to g in the same way as f0 corresponds to f ).

Proof From Lemma 3.1 (i) it follows that either Ff0(h) = 1 or Ff0(h) < 1. Clearly in
both cases (2) holds. ��
Lemma 3.3 Let (T, f ) be a suspension flow over an infinite alphabet topological
Bernoulli shift (X, T ) and inf x∈X f (x) ≥ c > 0. Assume that for every v ∈ V , every
pair x, x ′ ∈ Cv , and some δ ∈ [0, c/2], we have

| f (x) − f (x ′)| ≤ δ.

Then there exists a function g : X → [0,∞) such that

(α) g(x) = g0(x0) for some function g0 : V → [0,∞);
(β) |g(x) − f (x)| ≤ δ, x ∈ X;
(γ ) htop(T, f ) = htop(T, g).
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On a measure with maximal entropy for a suspension... 551

Proof Let

f +(x) = sup
x ′∈X
x ′
0=x0

f (x ′), f −(x) = inf
x ′∈X
x ′
0=x0

f (x ′), x ∈ X.

Clearly
f −(x) ≤ f (x) ≤ f +(x), 0 ≤ f +(x) − f −(x) ≤ δ.

Hence
htop(T, f +) ≤ htop(T, f ) ≤ htop(T, f +− δ). (3)

Moreover,
| f +(x) − t − f (x)| ≤ δ, x ∈ X, t ∈ [0, δ]. (4)

We want to show that the function t → htop(T, f +− t) is continuous in t ∈ [0, c/2].
For t ′ ∈ [0, c/4], we obviously have

0 ≤ htop(T, f +− t − t ′) − htop(T, f +− t)

= sup
μ∈I(T )

hμ(T )

μ( f +) − t − t ′
− sup

μ∈I(X,T )

hμ(T )

μ( f +) − t

≤ sup
μ∈I(T )

hμ(T )

[
1

μ( f +) − t − t ′
− 1

μ( f +) − t

]
(5)

≤ t ′ sup
μ∈I(T )

hμ(T )

(μ( f +) − t − t ′)(μ( f +) − t)

≤ t ′ sup
μ∈I(T )

hμ(T )
8

3cμ( f )
= t ′ 8

3c
htop(T, f ).

In the same way and for the same t, t ′, we obtain

0 ≤ htop(T, f +− t) − htop(T, f +− t + t ′) ≤ 4t ′

c
htop(T, f ). (6)

From (5) and (6) the continuity required follows.
Now, using (3), (4) and the assumption δ ≤ c/2, we can find a point t0 ∈ [0, δ]

such that

htop(T, f +− t0) = htop(T, f ), sup
x∈X

| f +(x) − t0 − f (x)| ≤ δ.

It is evident that the function g(x) = f +(x) − t0, x ∈ X , satisfies conditions (α)–(γ )

above. ��
The following lemma (see [6]) will be used in the end of the next section.
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552 B. Gurevich

Lemma 3.4 Let {μn, n ≥ 0} be a sequence of T -invariant probability measures on
X = X (G), see Introduction. Assume that there exist two sequences, rn and αn, rn ∈
N, αn ∈ R+, n ∈ N, and a constant h ≥ 0 such that

lim
n→∞ rn = ∞, lim

n→∞ αn = 0, lim
n→∞ hμn (T ) = h,

|μ0(C) − μn(C)| ≤ αnμn(C)

for all cylinders C ⊂ X of the form C = Cw̃, where w̃ is a word in G of length
|w̃| = rn. Then hμ0(T ) ≥ h.

4 Proof of Theorem 2.10

We divide the proof into several steps.

1. For a simple word w ∈ W (G), we set

C∞
w =

{
x ∈ X :

∞∑

i=0

1Cw(T−i x) =
∞∑

i=0

1Cw(T i x) = ∞
}
, (7)

i.e., C∞
w is the set of the points x ∈ X that approaches Cw infinitely many times under

the action of both T and T−1. This set is clearly measurable and T -invariant. So one
can consider the restriction T |C∞

w
and the suspension flow

(
T |C∞

w
, f |C∞

w

)
.

Let C ′
w = C∞

w ∩ Cw and TC ′
w
be the transformation induced by T on C ′

w (the first
return map).

The following statements are rather simple and essentially known (see Lemma 2.8
and the proof of Theorem 2.2 in [2]).

Proposition 4.1 The dynamical system (C ′
w, TC ′

w
) is isomorphic to the Bernoulli shift

with alphabet Aw, consisting of all words wŵw ∈ W (G), where w 
⊂ ŵ.

Proof Taking into account the simplicity of w, one sees that every point x ∈ C ′
w is

a sequence (xi )i∈Z such that, for each k ∈ Z, there exists ik = ik(x) ∈ Z with the
following properties: 1) i0 = 0, 2) ik+1 ≥ ik + |w|, 3) (xik , . . . , xik+|w|−1) = w,

4) (xik+|w|−1, . . . , xik+1) = ŵ. It is clear, that TC ′
w
x is the left shift of x by |w| +

|ŵk | − 2 = ik+1 − ik − 1 steps. We assign the sequence �wx = (wŵkw)k∈Z to x
and observe that �w is a continuous one-to-one map from C ′

w to (Aw)Z. Moreover,
�wTC ′

w
x = T |w|+|ŵk |−2�wx . ��

Let

fw(x) =
τ(x,Cw)−1∑

i=0

f (T i x), x ∈ C ′
w.

(See (1) for the definition of τ(x,Cw).)
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On a measure with maximal entropy for a suspension... 553

Proposition 4.2 If wŵw ∈ Aw and x, x ′ ∈ Cwŵw, then

| fw(x) − fw(x ′)| ≤
∞∑

n=|w|
var+n ( f ). (8)

Proposition 4.3 The suspension flows
(
T |C∞

w
, f |C∞

w

)
and (TC ′

w
, fw) are isomorphic.

Proof ByDefinition 2.3 the flow
(
T |C∞

w
, f |C∞

w

)
acts on the space (C∞

w ) f that consists
of the pairs (x, u), where x ∈ C∞

w , 0 ≤ u < f (x). For every such a pair, we set

m(x) = min{i ≥ 0 : T−i x ∈ Cw}, x ′ = T−m(x)x,

u′ =

⎧
⎪⎪⎨

⎪⎪⎩

u if m(x) = 0,

u +
m(x)−1∑

k=0

f (T kx) if m(x) ≥ 1.

It is easy to see that �̃w : (x, u) → (x ′, u′) is a bi-measurable one-to-one map of
(C∞

w ) f to (C ′
w) f that takes

(
T |C∞

w
, f |C∞

w

)
to (TC ′

w
, fw). ��

Corollary 4.4 htop
(
T |C∞

w
, f |C∞

w

) = htop(TC ′
w
, fw) = htop(T, f ).

Proof The first equality is obvious, the second one follows from the fact that the
supremum in Definition 2.6 can be taken over I+f (T ), see, e.g., [2, Lemma 2.9]. ��

Denote the sequence space (Aw)Z by Yw, its elements by y = (yi )i∈Z, and the one
step left shift on Yw by σ . Proposition 4.1 implies that the suspension flow (TC ′

w
, fw)

is isomorphic to the suspension flow (σ, ϕw), where

ϕw(y) = fw(�−1y), y ∈ Yw. (9)

Denote the right hand side of (8) by δw. By (8) and (9)

|ϕw(y) − ϕw(y′)| ≤ δw

for all y, y′ ∈ Yw with y0 = y′
0.

2. Let W(G) be the set of simple words for which condition (d) on the measure μ

(see Introduction) is satisfied. For each w ∈ W(G), we will introduce two probability
measures, μw and νw, on Yw. To define μw we note that μ(Cw) > 0 (see condition (a)
onμ) and henceμ(C ′

w) > 0. Now denoteμw = �w ◦μ ′
w whereμ ′

w is the normalized
restriction of μ to C ′

w.
To define νw, we first observe that by the definition of the functions fw and ϕw the

condition (d) on μ can be rewritten in the form
∣∣μw(Ca) − e−sϕw(y)

∣∣ ≤ κ(|w|)e−sϕw(y) (10)

for all a ∈ Aw and μw-almost all y ∈ Ca .
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554 B. Gurevich

Now choose w ∈ W(G) such that

δw <
c

2
≤ 1

2
inf
y∈Yw

ϕw(y)

(the latter inequality follows from the definition of ϕw). Thenwe can apply Lemma 3.3
to find a function ψw on Yw such that:

(αw) ψw(y) = ψw
0 (y0) for some function ψw

0 : Aw → [0,∞);
(βw) |ψw(y) − ϕw(y)| ≤ δw, y ∈ Yw;
(γw) htop(σ, ϕw) = htop(σ, ψw).

The next proposition is a statement of [2, Theorem 2.2 (i)], one can observe that only
conditions (a), (b) and (d) on the measure μ are used in its proof.

Proposition 4.5 Under the conditions of Theorem 2.10 the equation s = htop(T, f )
holds.

We now perturb a little the function ψw to add one useful property to (αw)–(γw).

Proposition 4.6 If |w| is large enough, then there exists a number rw such that

0 ≤ rw ≤ − 1

s
log

e−sδw

1 + κ(w)
, (11)

htop(σ, ϕw) = htop(σ, ψw−rw), (12)
∑

a∈Aw

exp[−sψw
0 (a) − rw] = 1. (13)

Proof For every a ∈ Aw, we can choose a point ya ∈ Ca such that

∣∣μw(Ca) − e−sϕw(ya)
∣∣ ≤ κ(|w|)e−sϕw(ya)

(see (10)) and hence

e−sϕw(ya) ≥ μw(Ca)

1 + κ(|w|) . (14)

By (αw), (βw) and (14)

exp [−sψw
0 (a)] = exp

[−s
(
ϕw(ya) + ψw

0 (a) − ϕw(ya)
)]

(15)
≥ e−sϕw(ya)esδw ≥ esδwμw(Ca)

1 + κ(|w|) .

Summing up (15) over a and taking into account Lemmas 3.1, 3.2, Proposition 4.4
and the fact that μw is a probability measure, we obtain

e−sδw

1 + κ(|w|) ≤
∑

a∈Aw

e−sψw
0 (a) ≤ 1.
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On a measure with maximal entropy for a suspension... 555

If we now set

rw = − 1

s
log

∑

a∈Aw

e−sψw
0 (a),

then (11)–(13) will clearly hold. ��
Corollary 4.7 For any ε > 0, there exists a word w = wε ∈ W(G) so long that one
can find a function ψw : Yw → (0,∞) with the following properties:

ψw(y) = ψw
0 (y0) for some function ψw

0 : Aw → [0,∞);
|ψw(y) − ϕw(y)| ≤ ε for all y ∈ Yw; (16)

htop(σ, ϕw) = htop(σ, ψw); (17)
∑

a∈Aw

exp[−sψw
0 (a)] = 1.

This follows immediately from Proposition 4.6 due to the properties of the function
ψw there (see (αw)–(γw) above) and the fact that

lim|w|→∞δw = lim|w|→∞κ(|w|) = 0

(for the new function we use the same notation ψw).
From now on we assume that ε and w = wε as in Corollary 4.7 are fixed, unless

otherwise stated.
We define νw to be the Bernoulli measure on Yw with

νw(Ca) = exp
[−sψw

0 (a)
]
, a ∈ Aw. (18)

Let us show that the measures μw and νw are in some sense close to each other. From
(10) and the definition of νw, for every a ∈ Aw, one obtains

|μw(Ca) − νw(Ca)| ≤ ∣∣μw(Ca) − e−sϕw(ya)
∣∣ + ∣∣e−sϕw(ya) − e−sψw

0 (a)
∣∣

≤ e−sϕw(ya)
(
κ(|w|) + ∣∣1 − e−s(ψw

0 (a)−ϕw(ya))
∣∣) (19)

≤ νw(Ca)e
−s(ϕw(ya)−ψw

0 (a))
(
κ(|w|) + ∣∣1 − es(ϕ

w(ya)−ψw
0 (a))

∣∣).

Taking w still longer if necessary, from (19), (16) and the condition on κ(|w|) we
obtain

|νw(Ca) − μw(Ca)| ≤ ενw(Ca), a ∈ Aw. (20)

From (16) and (20) we see that νw(ψw) < ∞. Hence Lemma 3.1 and Proposition 4.5
combined with (18) show that νw is the maximal measure for the suspension flow
(σ, ψw).
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3. We now carry over the measures νw and μw to X with the help of the map �−1
w

(see the proof of Proposition 4.1). So we set

ν′
w = �−1

w ◦νw.

We also have μw = �−1
w ◦μw (see step 2 of this proof).

From the definition of �w it follows that ν′
w is a probability measure on C ′

w, and
(20) can be rewritten, for every ŵ ∈ Âw, as

∣∣ν′
w

(
C ′

w ∩ Cwŵw

) − μ ′
w(Cwŵw)

∣∣ ≤ εν′
w

(
C ′

w ∩ Cwŵw

)
. (21)

The next goal is to extend ν′
w to the whole X . We first observe that

C ′
w =

⊔

ŵ∈ Âw

(
C ′

w ∩ Cwŵw

)
. (22)

Moreover, the sets T i
(
C ′

w ∩ Cwŵw

)
do not intersect each other when ŵ ∈ Âw and

i = 0, 1, . . . , |w| + |ŵ| − 3. It is easy to check that

C∞
w =

⊔

ŵ∈ Âw

|w|+|ŵ|−3⊔

i=0

T i (C ′
w ∩ Cwŵw

)
,

where C∞
w is defined in (7).

Taking into account (22), we introduce a measure ν∞
w on C∞

w by

ν∞
w |T i (C ′

w∩Cwŵw) = T i ◦ν′
w|C ′

w∩Cwŵw
, ŵ ∈ Âw, 0 ≤ i ≤ |w| + |ŵ| − 3. (23)

It is clear that the measure ν∞
w is thus well-defined (as a measure on X ) and T -

invariant. Besides, replacing ν′
w byμ ′

w on the right hand side of (23) yields themeasure
μ∞

w = μ/μ(C ′
w) on the left hand side.

Compare μ∞
w (C∞

w ) and ν∞
w (C∞

w ). Since μ is an ergodic measure and C∞
w is a

T -invariant set of positive measure, we have μ(C∞
w ) = 1, i.e.,

∑

ŵ∈ Âw

|w|+|ŵ|−3∑

i=0

μ
(
T i (C ′

w ∩ Cwŵw

)) =
∑

ŵ∈ Âw

(|w| + |ŵ| − 2)μ
(
C ′

w ∩ Cwŵw

) = 1.

Hence, by (21), (23), and the definition of μ ′
w,

(1 − ε)ν∞
w (C∞

w ) ≤ μw
∞(C∞

w ) = 1

μ(C ′
w)

≤ (1 + ε)ν∞
w (C∞

w ). (24)

We denote the normalized version of ν∞
w by νw, i.e., νw = ν∞

w /ν∞
w (C∞

w ).
Our next goal is to show that somefinite-dimensional distributions of theT -invariant

probability measures νw and μ are close to each other.
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By the definition of νw and ν∞
w

νw(T i (C ′
w ∩ Cwŵw))

μ(T i (C ′
w ∩ Cwŵw))

= νw(C ′
w ∩ Cwŵw)

μ(C ′
w ∩ Cwŵw)

= ν′
w(C ′

w ∩ Cwŵw)μ(C ′
w)

ν∞
w (C∞

w )μ(C ′
w)μ(C ′

w ∩ Cwŵw)
.

Since μ is an ergodic measure, one can everywhere replace μ(C ′
w) by μ(Cw) and

μ(C ′
w ∩ Cwŵw) by μ(Cwŵw). From this, using (21) and (24), we obtain

1 − ε

1 + ε
≤ μ(T i (C ′

w ∩ Cwŵw))

νw(T i (C ′
w ∩ Cwŵw))

≤ 1 + ε

1 − ε
, ŵ ∈ Âw. (25)

Notice that νw is also an ergodic measure. Indeed, by Proposition 4.1 the dynam-
ical system (C ′

w, TC ′
w
, ν′

w) is isomorphic to the Bernoulli shift (Yw, σ, νw) and
hence ergodic. But (X, T, νw) is by construction an integral automorphism over
(C ′

w, TC ′
w
, ν′

w), which is known to be ergodic together with the automorphism in the
base. Therefore (25) can be rewritten in the form

1 − ε

1 + ε
≤ μ(T iCwŵw)

νw(T iCwŵw)
≤ 1 + ε

1 − ε
, ŵ ∈ Âw. (26)

Consider an arbitrary word w̃ in G and denote the set of pairs (ŵ, i) such that

ŵ ∈ Âw, 0 ≤ i ≤ |w| + |ŵ| − 3, Cw̃ ∩ T iCwŵw 
= ∅

by Âw,w̃. Since μ(C∞
w ) = 1, μ-almost every point x of the cylinder Cw̃ belongs to

C∞
w . For such x , there exists a unique pair (ŵ, i) ∈ Âw,w̃ such that x ∈ T iCwŵw.

Thus the cylinders Cw̃ ∩ T iCwŵw with (ŵ, i) ∈ Âw,w̃ constitute a μ-mod 0 partition
of Cw̃. Assume that |w̃| ≤ |w|. Then either Cw̃ ∩ T iCwŵw = ∅, or T iCwŵw ⊂ Cw̃.
Hence

μ(Cw̃) =
∑

(ŵ,i)∈ Âw,w̃

μ
(
Cw̃ ∩ T iCwŵw

)
.

For the same reasons a similar formula holds for the measure νw in place of μ.
Moreover, in both sums on the right hand side the same terms equal zero, while the
non-zero terms equalμ(Cwŵw) and νw(Cwŵw), respectively. Hence by (26), for every
w̃ with |w̃| ≤ |w|,

1 − 2ε ≤ 1 − ε

1 + ε
≤ μ(Cw̃)

νw(Cw̃)
≤ 1 + ε

1 − ε
≤ 1 + 3ε, (27)

where the last inequality holds when ε ≤ 1/3.

4. Now we are going to compare the integrals νw( f ) and μ( f ). Using properties of
f , one can find a number n(ε) ∈ N and a function fε such that fε(x) depends on
x0, . . . , xn(ε) only and | f (x) − fε(x)| ≤ ε for all x ∈ X . Then
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558 B. Gurevich

|μ( f ) − νw( f )| = ∣∣μ( f ) − μ( fε) + μ( fε)

− νw( fε) + νw( fε) − νw( f )
∣
∣

≤ μ(| f − fε|) + νw(| f − fε|) + |μ( fε) − νw( fε)|
≤ 2ε + |μ( fε) − νw( fε)|.

(28)

The function fε is chosen so that it is constant on every cylinder of the form Cw̃,
where |w̃| = n(ε). We number these cylinders: Cw̃1 ,Cw̃2 , . . . , and denote the value
of fε on Cw̃i by fε,i , i = 1, 2, . . . Now, by (27), (28), and the definition of fε,

|μ( f ) − νw( f )| ≤ 2ε +
∑

i

∣∣μ(Cw̃i ) − νw(Cw̃i )
∣∣ fε,i

≤ 2ε + 3ε
∑

i

μ(Cw̃i ) fε,i

≤ 3ε(1 + μ( fε)) ≤ 3ε(1 + μ( f ) + ε),

which can be made arbitrary small by choosing a small ε.
By the definition of the measure νw it is a maximal measure for the suspension flow

(σ, ψw), i.e.,

hνw (σ )

νw(ψw)
= htop(σ, ψw) = htop(σ, ϕw).

(For the last equality see (17).) Using (16), we obtain

∣∣∣
∣
hνw (σ )

νw(ϕw)
− hνw (σ )

νw(ψw)

∣∣∣
∣ ≤ εhνw (σ )

νw(ϕw)νw(ψw)
≤ 2ε

c
htop(σ, ϕw).

(For the definition of ψw see step 3 of this proof.) Hence

∣∣∣
∣
hνw (σ )

νw(ϕw)
− htop(σ, ϕw)

∣∣∣
∣ ≤ 2ε

c
htop(σ, ϕw). (29)

By Propositions 4.1 and 4.3 the suspension flows (σ, ϕw) and (TC ′
w
, fw) are isomor-

phic. From this it follows that

htop(σ, ϕw) = htop
(
T |C∞

w
, f |C∞

w

)

and that the suspension flows with invariant measures (σ, ϕw, νw) and (T, f, νw) are
isomorphic as well (see the definition of the measure νw). The latter fact together with
(29) imply that ∣∣∣

∣
hνw (T )

νw( f )
− htop(T, f )

∣∣∣
∣ ≤ 2ε

c
htop(T, f ). (30)

5. It remains to estimate hμ(T ) from below.
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We take an arbitrary sequence of positive numbers ε(n) ≤ 1/3, n ≥ 1, such that
limn→∞ ε(n) = 0 and denote wn = wε(n) (see Corollary 4.7). Let also

rn = |wn|, αn = 3ε(n), μ0 = μ, μn = νwn , h = μ( f )htop(T, f ).

Without loss of generality we can assume that |wn| → ∞ as n → ∞. Using (28),
(27), and (30) with ε = ε(n), it is easy to check that the assumptions of Lemma 3.4
are satisfied. By this lemma hμ0(T ) ≥ μ( f )htop(T, f ), so that

hμ(T )

μ( f )
≥ htop(T, f ).

But the opposite inequality holds for every measure from I f (T ). Thus the proof is
completed.
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