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1 Mori polynomials, their reductions and Galois groups

We write Z,Q and C for the ring of integers, the field of rational numbers and the
field of complex numbers respectively. If a and b are nonzero integers then we write
(a, b) for its (positive) greatest common divisor. If � is a prime then F�,Z� and Q�

stand for the prime finite field of characteristic �, the ring of �-adic integers and the
field of �-adic numbers respectively.
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We consider the subring Z[1/2] ⊂ Q generated by 1/2 over Z. We have

Z ⊂ Z

[
1

2

]
⊂ Q.

If � is an odd prime then the principal ideal �Z[1/2] is maximal in Z[1/2] and

Z

[
1

2

]/
�Z

[
1

2

]
= Z/�Z = F�.

If K is a field then we write K for its algebraic closure and denote by Gal(K ) its
absolute Galois group Aut(K/K ). If u(x) ∈ K [x] is a degree n polynomial with
coefficients in K and without multiple roots then we writeRu ⊂ K for the n-element
set of its roots, K (Ru) the splitting field of u(x) and Gal(u/K ) = Gal(K (Ru)/K )

the Galois group of u(x) viewed as a certain subgroup of the group Perm(Ru) ∼= Sn
of permutations of Ru . As usual, we write An for the alternating group, which is the
only index 2 subgroup in the full symmetric group Sn .

1.1 Discriminants and alternating groupsWe write �(u) for the discriminant of u.
We have

0 �= �(u) ∈ K ,
√

�(u) ∈ K (Ru).

It is well known that

Gal
(
K (Ru)/K

(√
�(u)

)) = Gal(K (Ru)/K ) ∩ An ⊂ An ⊂ Sn = Perm(Ru).

In particular, the permutation (sub)group Gal
(
K (Ru)/K

(√
�(u)

))
does not con-

tain transpositions; �(u) is a square in K if and only if Gal(u/K ) lies in the
alternating (sub)group An ⊂ Sn . On the other hand, if Gal(u/K ) = Sn then
Gal

(
K (Ru)/K

(√
�(u)

)) = An .

If n is odd and char(K ) �= 2 then we write Cu for the genus (n−1)/2 hyperelliptic
curve

Cu : y2 = u(x)

and J (Cu) for its jacobian, which is an (n − 1)/2-dimensional abelian variety
over K . We write End(J (Cu)) for the ring of all K -endomorphisms of J (Cu) and
EndK (J (Cu)) for the (sub)ring of all its K -endomorphisms. We have

Z ⊂ EndK (J (Cu)) ⊂ End(J (Cu)).

About 40 years agoShigefumiMori [8, Proposition 3, p. 107] observed that if n = 2g+
1 is odd and Gal( f/K ) is a doubly transitive permutation group then EndK (J (Cu)) =
Z. He constructed [8, Theorem 1, p. 105] explicit examples (in all dimensions g) of
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362 Yu. G. Zarhin

polynomials (actually, trinomials) f (x) overQ such thatGal( f/Q) is doubly transitive
and End(J (C f )) = Z.

On the other hand, about 15 years ago the following assertion was proven by the
author [17].

Theorem 1.2 Suppose that char(K ) = 0 and Gal(u/K ) = Sn. Then End(J (Cu)) =
Z.

The aim of this note is to prove that in Mori’s examples Gal( f/Q) = S2g+1. This
gives another proof of the theorem ofMori [8, Theorem 1, p. 105]. Actually, we extend
the class ofMori trinomialswith End(J (C f )) = Z, by dropping one of the congruence
conditions imposed byMori on the coefficients of f (x). We also prove that the images
of Gal(Q) in the automorphism groups of Tate modules of J (C f ) are almost as large
as possible.

1.3 Mori trinomials Throughout this paper, g, p, b, c are integers that enjoy the
following properties [8]:

(i) The number g is a positive integer and p is an odd prime. In addition, there
is a positive integer N such that (p − 1)N/2N is divisible by g. This means
that every prime divisor of g is also a divisor of (p − 1)/2. This implies that
(p, g) = (p, 2g) = 1. It follows that if g is even then p is congruent to 1 modulo
4.

(ii) The residue b mod p is a primitive root of Fp = Z/pZ; in particular, (b, p) = 1.
(iii) The integer c is odd and (b, c) = (b, 2g+1) = (c, g) = 1. This implies that

(c, 2g) = 1.

Mori [8] introduced and studied the monic degree 2g + 1 polynomial

f (x) = fg,p,b,c(x) = x2g+1 − bx − pc

4
∈ Z

[
1

2

]
[x] ⊂ Q[x],

which we call aMori trinomial. He proved the following results [8, pp. 106–107].

Theorem 1.4 (Theorem of Mori) Let f (x) = fg,p,b,c(x) be a Mori trinomial. Then:

(i) The polynomial f (x) is irreducible over Q2 and therefore over Q.
(ii) The polynomial f (x) mod p ∈ Fp[x] is a product x(x2g − b) of a linear factor

x and an irreducible (over Fp) degree 2g polynomial x2g − b.
(iii) Let Gal( f ) be the Galois group of f (x) over Q considered canonically as a

(transitive) subgroup of the full symmetric group S2g+1. ThenGal( f ) is a doubly
transitive permutation group. More precisely, the transitive Gal( f ) contains a
permutation σ that is a cycle of length 2g.

(iv) For each odd prime � every root of the polynomial f (x) mod � ∈ F�[x] is either
simple or double.

(v) Let us consider the genus g hyperelliptic curve

C f : y2 = f (x)

and its jacobian J (C f ), which is a g-dimensional abelian variety overQ. Assume
additionally that c is congruent to −p modulo 4. Then C f is a stable curve
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over Z and J (C f ) has everywhere semistable reduction over Z. In addition,
End(J (C f )) = Z.

Remark 1.5 (I) The 2-adic Newton polygon of Mori trinomial f (x) consists of one
segment that connects (0,−2) and (2g+1, 0), which are its only integer points.
Now the irreducibility of f (x) follows fromEisenstein–DumasCriterion [9,Corol-
lary 3.6, p. 316], [4, p. 502]. It also follows that the field extension Q(R f )/Q is
ramified at 2.

(II) If g = 1 then 2g + 1 = 3 and the only doubly transitive subgroup of S3 is S3
itself. Concerning the double transitivity of the Galois group of trinomials of
arbitrary degree, see [2, Theorem 4.2, p. 9 and Note 2, p. 10].

(III) The additional congruence condition in Theorem 1.4 (v) guarantees that C f has
stable (even good) reduction at 2 [8, p. 106]. Mori’s proof of the last assertion of
Theorem 1.4 (v) is based on results of [12] and the equality EndQ(J (C f )) = Z;
the latter follows from the double transitivity of Galois groups ofMori trinomials.

Remark 1.6 Since a cycle of even length 2g is an odd permutation, it follows from
Theorem 1.4 (iii) that Gal( f ) is not contained in A2g+1. In other words, �( f ) is not
a square in Q.

Our first main result is the following statement.

Theorem 1.7 Let f (x) = fg,p,b,c(x) be a Mori trinomial.

(i) If � is an odd prime then the polynomial f (x) mod � ∈ F�[x] has, at most, one
double root and this root (if exists) lies in F�.

(ii) There exists an odd prime � �= p such that f (x) mod � ∈ F�[x] has a double
root α ∈ F�. All other roots of f (x) mod � (in an algebraic closure of F�) are
simple.

(iii) The Galois group Gal( f ) of f (x) over Q coincides with the full symmetric
group S2g+1. The Galois (sub)group Gal

(
Q(R f )/Q

(√
�( f )

))
coincides with

the alternating group A2g+1.
(iii’) The Galois extension Q(R f )/Q

(√
�( f )

)
is ramified at all prime divisors of 2.

It is unramified at all prime divisors of every odd prime �.
(iv) Suppose that g > 1. Then End(J (C f )) = Z.

Remark 1.8 Theorem 1.7 (iv) was proven byMori under an additional assumption that
c is congruent to −p modulo 4, see Theorem 1.4 (v) above.

Remark 1.9 Thanks to Theorem 1.2, Theorem 1.7 (iv) follows readily from Theo-
rem 1.7 (iii).

Remark 1.10 Let g > 1 and suppose we know that Gal( f ) contains a transposi-
tion. Now the double transitivity implies that Gal( f ) coincides with S2g+1, see [15,
Lemma 4.4.3, p. 40].

Let K be a field of characteristic zero and u(x) ∈ K [x] be a degree 2g + 1
polynomialwithoutmultiple roots. Then the jacobian J (Cu) is a g-dimensional abelian

123



364 Yu. G. Zarhin

variety over K . For every prime � let T�(J (Cu)) be the �-adic Tate module of J (Cu),
which is a free Z�-module of rank 2g provided with the canonical continuous action

ρ�,u : Gal(K ) → AutZ�

(
T�(J (Cu))

)

of Gal(K ) [10,14,20]. There is a Riemann form

e� : T�(J (Cu))×T�(J (Cu)) → Z�

that corresponds to the canonical principal polarization on J (Cu) ([10, Section 20],
[21, Section 1]) and is a nondegenerate (even perfect) alternating Z�-bilinear form
that satisfies

e�(σ (x), σ (y)) = χ�(σ )e�(σ (x), σ (y)).

This implies that the image

ρ�,u(Gal(K )) ⊂ AutZ�

(
T�(J (Cu))

)

lies in the (sub)group

Gp
(
T�(J (Cu)), e�

) ⊂ AutZ�

(
T�(J (Cu))

)

of symplectic similitudes of e� [18,19,21].
Using results of Chris Hall [5] and the author [21], we deduce from Theorem 1.7

the following statement. (Compare it with [18, Theorem 2.5] and [19, Theorem 8.3].)

Theorem 1.11 Let K = Q and f (x) = fg,p,b,c(x) ∈ Q[x] be a Mori trinomial.
Suppose that g > 1. Then:

(i) For all primes � the image ρ�, f (Gal(Q)) is an open subgroup of finite index in
Gp

(
T�(J (C f )), e�

)
.

(ii) Let L be a number field andGal(L) be its absolute Galois group, which we view as
an open subgroup of finite index in Gal(Q). Then for all but finitely many primes
� the image ρ�, f (Gal(L)) coincides with Gp

(
T�(J (C f )), e�

)
.

The paper is organized as follows. In Sect. 2 we deduce Theorem 1.11 from The-
orem 1.7. In Sect. 3 we discuss a certain class of trinomials that is related to Mori
polynomials. Section 4 deals with discriminants of Mori polynomials. We prove The-
orem 1.7 in Sect. 5.

2 Monodromy of hyperelliptic jacobians

Proof of Theorem 1.11 (modulo Theorem 1.7) By Theorem 1.7 (iii), Gal( f/Q) coin-
cides with the full symmetric group S2g+1. By Theorem 1.7 (iv), End(J (C f )) = Z.
It follows from Theorem 1.7 (i) that there is an odd prime � such that J (C f ) has at �
a semistable reduction with toric dimension 1 [5]. Now the assertion (i) follows from
[21, Theorem 4.3]. The assertion (ii) follows from [5, Theorem 1]. 	
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3 Reduction of certain trinomials

In order to prove Theorem 1.7 (i), we will use the following elementary statement that
was inspired by [15, Remark 2, p. 42] and [8, p. 106].

Lemma 3.1 (key lemma) Let

u(x) = un,B,C (x) = xn + Bx + C ∈ Z[x]

be a monic polynomial of degree n > 1 such that B �= 0 and C �= 0.

(I) If u(x) has a multiple root then n divides B and n − 1 divides C.
(II) Let � be a prime that enjoys the following properties:

(i) (B,C) is not divisible by �,
(ii) (n, B) is not divisible by �,
(iii) (n − 1,C) is not divisible by �.
Suppose that u(x) has no multiple roots. Let us consider the polynomial

u(x) = u(x) mod � ∈ F�[x].

Then:
(a) u(x) has, at most, one multiple root in an algebraic closure of F�.
(b) If such a multiple root say, γ , does exist, then � does not divide n(n−1)BC

and γ is a double root of u(x). In addition, γ is a nonzero element of F�.
(c) If such a multiple root does exist then either the field extension Q(Ru)/Q is

unramified at � or a corresponding inertia subgroup at � in

Gal(Q(Ru)/Q) = Gal(u/Q) ⊂ Perm(Ru)

is generated by a transposition. In both cases the Galois extension Q(Ru)/

Q
(√

�(u)
)
is unramified at all prime divisors of �.

Remark 3.2 The discriminant Discr(n, B,C) = �(un,B,C ) of un,B,C (x) is given by
the formula [3, Example 834]

Discr(n, B,C) = (−1)n(n−1)/2nnCn−1+ (−1)(n−1)(n−2)/2(n − 1)n−1Bn.

Remark 3.3 In the notation of Lemma 3.1, assume that u(x) has nomultiple roots, i.e.,
�(u) is not divisible by �. Then obviously Q(Ru)/Q is unramified at �. This implies
that Q(Ru)/Q

(√
�(u)

)
is unramified at all prime divisors of �.

Proof of Lemma 3.1 (I) Since u(x) has a multiple root, its discriminant

�(u) = (−1)n(n−1)/2nnCn−1+ (−1)(n−1)(n−2)/2(n − 1)n−1Bn = 0.

This implies that

nnCn−1 = ±(n − 1)n−1Bn.
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366 Yu. G. Zarhin

Since n and n − 1 are relatively prime, nn | Bn and (n − 1)n−1 |Cn−1. This implies
that n | B and (n − 1) |C .

(II) We have

u(x) = xn + Bx + C ∈ F�[x]

where

B = B mod � ∈ F�, C = C mod � ∈ F�.

The condition (i) implies that either B �= 0 or C �= 0. The condition (ii) implies that
if B = 0 then n �= 0 in F�. The condition (iii) implies that if n − 1 = 0 in F� then
C �= 0 and n �= 0 in F�. We have

�(u) = (−1)n(n−1)/2nnC
n−1+ (−1)(n−1)(n−2)/2(n − 1)n−1 B

n = 0

and therefore
nnC

n−1= ±(n − 1)n−1 B
n
. (1)

This implies that if n−1 = 0 in F� then C = 0, which is not the case. This proves that
n − 1 �= 0 in F�. On the other hand, if B = 0 then C �= 0 and n �= 0 in F�. Then (1)
implies that C = 0 and we get a contradiction that proves that B �= 0. If n = 0 in F�

then n − 1 �= 0 in F� and (1) implies that B = 0, which is not the case. The obtained
contradiction proves that n �= 0 in F�. If C = 0 then (1) implies that B = 0, which is
not the case. This proves that � does not divide n(n − 1)BC .

The derivative of u(x) is u ′(x) = nxn−1 + B. We have

x ·u ′(x) − n ·u(x) = −(n − 1)Bx − nC . (2)

Suppose u(x) has a multiple root γ in an algebraic closure of F�. Then

u(γ ) = 0, u ′(γ ) = 0, n · γ · u ′(γ ) − n ·u(γ ) = 0.

Using (2), we conclude that

0 = γ ·u ′(γ ) − n ·u(γ ) = −(n − 1)Bγ − nC, γ = − nC

(n − 1)B
∈ F�.

This implies that γ �= 0.
Notice that the second derivative u ′′(x) = n(n − 1)xn−2. This implies that

u ′′(γ ) = n(n − 1)γ n−2 �= 0.

It follows that γ is a double root of u(x). This ends the proof of (a) and (b).
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In order to prove (c), notice that there exists a monic degree n − 2 polynomial
h(x) ∈ F�[x] such that

u(x) = (x − γ )2·h(x).

Clearly, γ is not a root of h(x) and therefore h(x) has nomultiple roots and is relatively
prime to (x − γ )2.1 By Hensel’s Lemma, there exist monic polynomials

h(x), v(x) ∈ Z�[x], deg h = n − 2, deg v = 2

such that

u(x) = v(x)h(x)

and

h(x) = h(x) mod �, (x − γ )2 = v(x) mod �.

This implies that the splittingfieldQ�(Rh)of h(x) (overQ�) is an unramified extension
of Q� while the splitting field Q�(Ru) of u(x) (over Q�) is obtained from Q�(Rh) by
adjoining to it two (distinct) roots say, α1 and α2 of quadratic v(x). Clearly, Q�(Ru)

either coincideswithQ�(Rh) orwith a certain quadratic extension ofQ�(Rh), ramified
or unramified. It follows that the inertia subgroup I of

Gal(Q�(Ru)/Q�) ⊂ Perm(Ru)

is either trivial or is generated by the transposition that permutes α1 and α2 (and leaves
invariant every root of h(x)). In the former case Q(Ru)/Q is unramified at � while in
the latter one an inertia subgroup in

Gal(Q(Ru)/Q) ⊂ Perm(Ru)

that corresponds to � is generated by a transposition. However, the permutation sub-
group Gal

(
Q(Ru)/Q

(√
�(u)

))
does not contain transpositions (see 1.1). This implies

that Q(Ru)/Q
(√

�(u)
)
is unramified at all prime divisors of �. 	


Example 3.4 Let us consider the polynomial

u(x) = un,−1,−1(x) = xn − x − 1 ∈ Q[x]

over the field K = Q. Here B = C = −1 and the conditions of Lemma 3.1 hold for
all primes �. It is known that u(x) is irreducible [13], its Galois group overQ is Sn [11,
Corollary 3, p. 233] and there exists a prime � such that u(x)mod � acquires a multiple
root [15, Remark 2, p. 42]. Clearly, the discriminant �(u) = Discr(n,−1,−1) of

1 Compare with [11, Lemma 1, p. 231].
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u(x) is an odd integer and therefore such an � is odd. It follows from Lemma 3.1 that
u(x) mod � has exactly one multiple root and its multiplicity is 2.

Let n = 2g + 1 be an odd integer greater than or equal to 5 and

u(x) = u2g+1,−1,−1(x) = x2g+1 − x − 1 ∈ Q[x].

Let us consider the g-dimensional jacobian J (Cu) of the hyperelliptic curveCu : y2 =
x2g+1 − x −1. Since Gal(u/Q) = S2g+1, Theorem 1.2 tells us that End(J (Cu)) = Z.
Now the same arguments as in Sect. 2 prove that

(i) For all primes � the image

ρ�,u(Gal(Q)) ⊂ Gp
(
T�(J (Cu)), e�

)

is an open subgroup of finite index in Gp
(
T�(J (Cu)), e�

)
.

(ii) Let L be a number field and Gal(L) be its absolute Galois group, which we view
as an open subgroup of finite index in Gal(Q). Then for all but finitely many
primes � the image

ρ�,u(Gal(L)) ⊂ Gp
(
T�(J (Cu)), e�

)

coincides with Gp
(
T�(J (Cu)), e�

)
.

Corollary 3.5 (Corollary to Lemma 3.1) Let

u(x) = un,B,C (x) = xn + Bx + C ∈ Z[x]

be a monic polynomial of degree n > 1 without multiple roots such that both B and
C are nonzero integers that enjoy the following properties:

• (B,C) is either 1 or a power of 2,
• (n, B) is either 1 or a power of 2,
• (n−1,C) is either 1 or a power of 2.

Suppose that the discriminant D = Discr(n, B,C) = 22M·D0 where M is a nonneg-
ative integer and D0 is an integer such that D0 ≡ 1 mod 4. Assume also that D is not
a square. Then:

(a) The quadratic extension Q
(√

D
)
/Q is unramified at 2. For all odd primes � the

Galois extension Q(Ru)/Q
(√

D
)
is unramified at every prime divisor of �.

(b) There exists an odd prime � that enjoys the following properties:
(i) � divides D0 and u(x) mod � ∈ F�[x] has exactly one multiple root and its

multiplicity is 2. In addition, this root lies in F�.
(ii) The field extension Q(Ru)/Q is ramified at � and the Galois group

Gal(Q(Ru)/Q) = Gal(u/Q) ⊂ Perm(Ru)
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contains a transposition. In particular, if Gal(u/Q) is doubly transitive then

Gal(u/Q) = Perm(R f ) ∼= Sn

and

Gal
(
Q(Ru)/Q

(√
D

)) = An .

Proof Clearly, D0 is not a square and

Q
(√

D
) = Q

(√
D0

)

is a quadratic field. Since D0 is congruent to 1 modulo 4, the quadratic extension
Q

(√
D0

)
/Q is unramified at 2, which proves the first assertion of (a). The conditions

of Lemma 3.1 (II) hold for all odd primes �. Now the second assertion of (a) follows
from Remark 3.3 and Lemma 3.1 (II)(c).

Let us start to prove (b). There are nonzero integers S and S0 such that D0 = S2S0
and S0 is square-free. Clearly, both S and S0 are odd. Since

D = 22M·D0 = 22M·S2S0 = (
2MS

)2
S0

is not a square, S0 �= 1. Since S is odd, S2 ≡ 1 mod 4. Since D0 ≡ 1 mod 4, we
obtain that S0 ≡ 1 mod 4. It follows that S0 �= −1.We already know that S0 �= 1. This
implies that there is a prime � that divides S0. Since S0 is odd and square-free, � is
also odd and �2 does not divide S0. Let T be the nonnegative integer such that �T || S.
Then �2T+1|| 22MS2S0, and therefore �2T+1|| D. This implies that the quadratic field
extension Q

(√
D

)
/Q is ramified at �. Since

Q ⊂ Q
(√

D
) ⊂ Q(Ru),

the field extension Q(Ru)/Q is also ramified at �. Since � | D, the polynomial
u(x) mod � ∈ F�[x] has a multiple root. Now the result follows from Lemma 3.1
combined with Remark 1.10. 	


4 Discriminants of Mori trinomials

Let

f (x) = fg,p,b,c(x) = x2g+1 − bx − pc

4

be a Mori trinomial. Following Mori [8], let us consider the polynomial

u(x) = 22g+1 f

(
x

2

)
= x2g+1 − 22gbx − 22g−1pc = un,B,C (x) ∈ Z[x] ⊂ Q[x]

with n = 2g + 1, B = −22gb, C = −22g−1pc.
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Remark 4.1 • Clearly, f (x) and u(x) have the same splitting field andGalois group.
It is also clear that

�(u) = 2(2g+1)2g·�( f ) = [
2(2g+1)g]2·�( f ).

In particular, �(u) is not a square, thanks to Remark 1.6.
• By Theorem 1.4 (i, iii), the polynomial f (x) is irreducible over Q and its Galois
group is doubly transitive. This implies that u(x) is irreducible over Q and its
Galois group overQ is also doubly transitive. (See also Theorem 6.6 (i, ii) below.)

• For all g the hyperelliptic curves C f and Cu are biregularly isomorphic over
Q

(√
2
)
. It follows that the jacobians J (Cu) and J (C f ) are also isomorphic over

Q
(√

2
)
. In particular, End(J (Cu)) = End(J (C f )).

Clearly, the conditions of Lemma 3.1 hold for u(x) = u(x) for all odd primes �. The
discriminant �(u) of u(x) coincides with

Discr(n, B,C) = (−1)(2g+1)2g/2(2g+1)2g+1[−22g−1pc
]2g

+ (−1)2g(2g−1)/2(2g)2g
[−22gb

]2g+1
.

It follows that

�(u) = (−1)g 22g(2g−1)[(2g+1)2g+1(pc)2g − 26gg2gb2g+1].
This implies that

�(u) = 22[g(2g−1)]D0, (3)

where

D0 = (−1)g
{
(2g+1)

[
(2g+1)g(pc)g

]2 − 26gg2gb2g+1}.
Clearly, D0 is an odd integer that is not divisible by p. It is also clear that D0 is
congruent to (−1)g(2g+1) modulo 4 (because every odd square is congruent to 1
modulo 4). This implies that

D0 ≡ 1 mod 4 (4)

for all g.

5 Proof of Theorem 1.7

Let us apply Lemma 3.1 (II) to

u(x) = 22g+1 f

(
x

2

)
= x2g+1 − 22gbx − 22g−1pc.

We obtain that for each odd prime � the polynomial u(x) mod � ∈ F�[x] has, at most,
one multiple root; in addition, this root is double and lies in F�. Applying to u(x)
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Corollary 3.5 combined with formulas (3) and (4) of Sect. 4, we conclude that there
exists an odd � �= p such that u(x) mod � has exactly one multiple root; this root
is double and lies in F�. In addition, Gal(u/Q) coincides with S2g+1, because it is
doubly transitive. Now the assertions (i) and (ii) follow readily from the equality

f (x) mod � = u(2x)

22g+1 mod �

that holds for all odd primes �.
By Remark 4.1, Gal( f/Q) = Gal(u/Q) and therefore also coincides with S2g+1,

which implies (in light of 1.1) that Gal
(
Q(R f )/Q

(√
�( f )

)) = A2g+1. This proves
(iii). NowRemark 1.9 implies that End(J (C f )) = Z. This proves (iv). In order to prove
(iii′), first notice that the Galois extension Q(R f )/Q is ramified at 2, Remark 1.5 (I),
while Q

(√
�( f )

) = Q
(√

�(u)
)
is unramified at 2 over Q in light of formulas (3)

and (4) in Sect. 4 (and Corollary 3.5 (a)). This implies that Q(R f )/Q
(√

�( f )
)
is

ramified at some prime divisor of 2. Since all the field extensions involved are Galois,
Q(R f )/Q

(√
�( f )

)
is actually ramified at all prime divisors of 2. This proves the first

assertion of (iii′). The second assertion of (iii′) follows from Corollary 3.5 (a). This
proves (iii′).

6 Variants and complements

Throughout this section, K is a number field. We writeO for the ring of integers in K .
If b is a maximal ideal in O then we write k(b) for the (finite) residue field O/b. As
usual, we call char(k(b)) the residual characteristic of b. We write Kb for the b-adic
completion of K and

Ob ⊂ Kb

for the ring of b-adic integers in the field Kb. We consider the subring O[1/2] ⊂ K
generated by 1/2 over O. We have

O ⊂ O

[
1

2

]
⊂ K .

If b ⊂ O is a maximal ideal in O with odd residual characteristic then

O ⊂ O

[
1

2

]
⊂ Ob,

the ideal bO[1/2] is a maximal ideal in O[1/2] and

k(b) = O/b = O

[
1

2

]/
bO

[
1

2

]
= Ob/bOb.

Lemma 3.1 (II) and its proof admit the following straightforward generalization.
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Lemma 6.1 Let

u(x) = un,B,C (x) = xn + Bx + C ∈ O[x]

be a monic polynomial of degree n > 1 such that B �= 0 and C �= 0. Let b be a
maximal ideal in O that enjoys the following properties:

(i) BO + CO + b = O,
(ii) nO + BO + b = O,
(iii) (n−1)O + CO + b = O.

Suppose that u(x) has no multiple roots. Let us consider the polynomial

u(x) = u(x) mod b ∈ k(b)[x].

Then:

(a) u(x) has, at most, one multiple root in an algebraic closure of k(b).
(b) If such a multiple root say, γ , does exist, then n(n − 1)BC /∈ b and γ is a double

root of u(x). In addition, γ is a nonzero element of k(b).
(c) If such a multiple root does exist then either the field extension K (Ru)/K is

unramified at b or a corresponding inertia subgroup at b in

Gal(K (Ru)/K ) = Gal(u/K) ⊂ Perm(Ru)

is generated by a transposition. In both cases the Galois extension K (Ru)/

K
(√

�(u)
)
is unramified at all prime divisors of b.

Remark 6.2 In the notation of Lemma 6.1, suppose that u(x) has no multiple roots,
i.e., �(u) /∈ b. Then clearly the Galois extension K (Ru)/K is unramified at b.

Proof We have

u(x) = xn + Bx + C ∈ k(b)[x],

where

B = B mod b ∈ k(b), C = C mod b ∈ k(b).

The condition (i) implies that either B �= 0 or C �= 0. The condition (ii) implies that
if B = 0 then n �= 0 in k(b). It follows that if B = 0 then nC �= 0.

The condition (iii) implies that if n − 1 = 0 in k(b) then C �= 0 (and, of course,
n �= 0 in k(b)). On the other hand, if C = 0 then n − 1 �= 0 in k(b).

Suppose u(x) has a multiple root γ in an algebraic closure of k(b). Then as in the
proof of Lemma 3.1 (II),

�(u) = (−1)n(n−1)/2nnC
n−1+ (−1)(n−1)(n−2)/2 (n − 1)n−1 B

n = 0.
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This implies that

nnC
n−1= ±(n − 1)n−1B

n
. (5)

This implies that if n − 1 = 0 in k(b) then C = 0, which is not the case. This proves
that n − 1 �= 0 in k(b). On the other hand, if B = 0 then C �= 0 and n �= 0 in k(b).
Then (5) implies that C = 0 and we get a contradiction that proves that B �= 0. If
n = 0 in k(b) then n−1 �= 0 in k(b) and (5) implies that B = 0, which is not the case.
The obtained contradiction proves that n �= 0 in k(b). If C = 0 then (5) implies that
B = 0, which is not the case. This proves that the maximal ideal b does not contain
n(n − 1)BC .

On the other hand, we have as in the proof of Lemma 3.1 (II) that

x ·u ′(x) − n ·u(x) = −(n − 1)Bx − nC

and therefore −(n − 1)Bγ − nC = 0. It follows that

γ = − nC

(n − 1)B

is a nonzero element of k(b). The second derivative u ′′(x) = n(n − 1)xn−2 and

u ′′(γ ) = n(n − 1)γ n−2 �= 0.

It follows that γ is a double root of u(x). This proves (a) and (b).
In order to prove (c), notice that as in the proof of Lemma 3.1 (II)(c), there exists a

monic degree n − 2 polynomial h(x) ∈ k(b)[x] such that

u(x) = (x − γ )2·h(x)

and h(x) and (x − γ )2 are relatively prime. By Hensel’s Lemma, there exist monic
polynomials

h(x), v(x) ∈ Ob[x], deg h = n − 2, deg v = 2

such that

u(x) = v(x)h(x)

and

h(x) = h(x) mod b, (x − γ )2 = v(x) mod b.

This implies that the splitting field Kb(Rh) of h(x) (over Kb) is an unramified exten-
sion of Kbwhile the splitting field Kb(Ru) of u(x) (over Kb) is obtained fromKb(Rh)

by adjoining to it two (distinct) roots say,α1 andα2 of quadratic v(x). Thefield Kb(Ru)
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coincides either with Kb(Rh) or with a certain quadratic extension of Kb(Rh), rami-
fied or unramified. It follows that the inertia subgroup I of

Gal(Kb(Ru)/Kb) ⊂ Perm(Ru)

is either trivial or is generated by the transposition that permutes α1 and α2 (and leaves
invariant every root of h(x)). In the former case K (Ru)/K is unramified at b while in
the latter one an inertia subgroup in

Gal(K (Ru)/K ) ⊂ Perm(Ru)

that corresponds to b is generated by a transposition. In both cases the Galois
(sub)group Gal

(
K (Ru)/K

(√
�(u)

))
does not contain transpositions (see 1.1). This

implies that K (Ru)/K
(√

�(u)
)
is unramified at all prime divisors of b. 	


Corollary 3.5 admits the following partial generalization.

Lemma 6.3 Let K be a number field and O be its ring of integers. Let

u(x) = un,B,C (x) = xn + Bx + C ∈ O[x]

be a monic polynomial without multiple roots of degree n > 1 such that both B and
C are not zeros. Suppose that there is a nonnegative integer N such that

2NO ⊂ BO + CO, 2NO ⊂ nO + BO, 2NO ⊂ (n − 1)O + CO.

Suppose that there is a nonnegative integer M such that the discriminant D = �(u) =
22M·D0 with D0 ∈ O. Assume also that D, D0 and K enjoy the following properties:

(i) D is not a square in K and D0 − 1 ∈ 4O.
(ii) The class number of K is odd (e.g., O is a principal ideal domain).
(iii) Either K is totally imaginary, i.e., it does not admit an embedding into the field

of real numbers or K is totally real and D0 is totally positive.

Then:

(a) The quadratic extension K
(√

�(u)
)
/K is unramified at every prime divisor of 2.

The Galois extension K (Ru)/K
(√

�(u)
)
is unramified at every prime ideal b of

odd residual characteristic.
(b) There exists a maximal ideal b ⊂ O with residue field k(b) of odd characteristic

that enjoys the following properties:
• D0 ∈ b, the polynomial u(x)b mod∈ k(b)[x] has exactly one multiple root

and its multiplicity is 2. In addition, this root lies in k(b).
• The field extension K (Ru)/K is ramified at b and the Galois group

Gal(K (Ru)/K ) = Gal(u/K) ⊂ Perm(Ru)
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contains a transposition. In particular, if Gal(u/K) is doubly transitive then

Gal(u/K) = Perm(R f ) ∼= Sn

and

Gal
(
K (Ru)/K

(√
�(u)

)) = An .

Proof Let us prove (a). Clearly,

E = K
(√

D0
) = K

(√
D

) = K
(√

�(u)
) ⊂ K (Ru)

is a quadratic extension of K . Notice that θ = (
1+√

D0
)
/2 ∈ E is a root of the

quadratic equation

v2(x) = x2 − x + 1 − D0

4
∈ O[x]

and therefore is an algebraic integer. In addition, E = K (θ).
If amaximal idealb2 inOhas residual characteristic 2 then the quadratic polynomial

v2(x) mod b2 = x2 − x +
(
1 − D0

4

)
mod b2 ∈ k(b2)[x]

has no multiple roots, because its derivative is a nonzero constant −1. This implies
that E/K is unramified at all prime divisors of 2. On the other hand, the conditions of
Lemma 6.1 hold for all maximal ideals b of O with odd residual characteristic. Now
Remark 6.2 and Lemma 6.1 (c) imply that the Galois extension K (Ru)/K

(√
�(u)

)
is

unramified at every b of odd residual characteristic. This proves (a).
In order to prove (b), notice that the condition (iii) implies that either all archimedean

places of both E and K are complex or all archimedean places of both E and K are
real. This implies that E/K is unramified at all infinite primes. Since the class number
of K is odd, the classical results about Hilbert class fields [6, Chapter 2, Section 1.2]
imply that there is a maximal ideal b ⊂ O such that E/K = K

(√
D

)
/K is ramified

at b. Since E/K is unramified at all prime divisors of 2, the residual characteristic of
b is odd, i.e., 2 /∈ b. This implies that

�(u) = D ∈ b.

Since D = 22M·D0 and b is a prime (actually, maximal) ideal in O, we have D0 ∈ b.
It also follows that

u(x) mod b ∈ k(b)[x]

has a multiple root. Now we are in a position to apply Lemma 6.1. Since K (Ru) ⊃ E ,
the field extension K (Ru)/K is ramified at b. Applying Lemma 6.1, we conclude
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that u(x) mod b has exactly one multiple root, this root is double and lies in k(b). In
addition,

Gal(K (Ru)/K ) ⊂ Perm(Ru)

contains a transposition. This implies that if Gal(K (Ru)/K ) is doubly transitive
then Gal(K (Ru)/K ) coincides with Perm(Ru) ∼= Sn . Of course, this implies that
Gal

(
K (Ru)/K

(√
�(u)

)) = An . 	


6.4 Generalized Mori quadruples Let us consider a quadruple (g, p,b, c) where g
is a positive integer, p is a maximal ideal in O while b and c are elements of O that
enjoy the following properties:

• The residue field k(p) = O/p is a finite field of odd characteristic. If q is the
cardinality of k(p) then every prime divisor of g is also a divisor of (q − 1)/2. In
particular, if g is even then q − 1 is divisible by 4.

• The residue bmod p is a primitive element of k(p), i.e., it has multiplicative order
q − 1. In particular,

bO + p = O.

The conditions (i) and (ii) imply that for each prime divisor d of g the residue
bmod p is not a dth power in k(p). Since q − 1 is even, bmod p is not a square in
k(p). So, if d is a prime divisor of 2g then b mod p is not a dth power in k(p). If
2g is divisible by 4 then g is even and q −1 is divisible by 4, i.e., −1 is a square in
k(p). It follows that−4bmod p is not a square in k(p). Thanks to [7, Thereom 9.1,
Chapter VI, Section 9], the last two assertions imply that the polynomial

x2g − b mod p ∈ k(p)[x]

is irreducible over k(p). This implies that its Galois group over (the finite field)
k(p) is an order 2g cyclic group.

• c ∈ p, c − 1 ∈ 2O and

O = bO + cO = bO + (2g+1)O = 2gO + cO.

We call such a quadruple a generalized Mori quadruple (in K ).

Example 6.5 Suppose that K and g are given. By Dirichlet’s Theorem about primes in
arithmetic progressions, there is a prime p that does not divide 2g+1 and is congruent
to 1 modulo 2g. (In fact, there are infinitely many such primes.) Clearly, p is odd. Let
us choose a maximal ideal p ofO that contains p and denote by q the cardinality of the
finite residue field k(p). Then char(k(p)) = p and q is a power of p. This implies that
q − 1 is divisible by p − 1 and therefore is divisible by 2g. Let us choose a generator
b̃ ∈ k(p) of the multiplicative cyclic group k(p)∗. Let r be a nonzero integer that is
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relatively prime to 2g + 1. (E.g., r = ±1,±2.) Using Chinese Remainder Theorem,
one may find b ∈ O such that

b mod p = b̃, b − r ∈ (2g+1)O.

(Clearly, b /∈ p.) Now the same theorem allows us to find c ∈ p ⊂ O such that
c − 1 ∈ 2gbO. Then (g, p,b, c) is a generalized Mori quadruple in K .

Let us consider the polynomials

F(x) = Fg,p,b,c(x) = x2g+1 − bx − c
4

∈ O

[
1

2

]
[x] ⊂ K [x]

and

U (x) = 22g+1F

(
x

2

)
= x2g+1 − 22gbx − 22g−1c ∈ O[x] ⊂ K [x].

Theorem 6.6 Let (g, p,b, c) be a generalized Mori quadruple in K . Assume also
that there exists a maximal ideal b2 ⊂ O of residual characteristic 2 such that the
ramification index e(b2) of b2 (over 2) in K/Q is relatively prime to 2g + 1. Then:

(i) The polynomial F(x) = Fg,p,b,c(x) ∈ K [x] is irreducible over Kb2 and therefore
over K . In addition, the Galois extension K (RF )/K is ramified at b2.

(ii) The transitive Galois group

Gal(F/K) = Gal(K (RF )/K ) ⊂ Perm(RF ) = S2g+1

contains a cycle of length 2g. In particular, Gal(F/K) is doubly transitive and is
not contained in A2g+1, and �(F) is not a square in K .

(iii) Assume that K is a totally imaginary number field with odd class number. Then
Gal(F/K ) = Perm(RF ). If, in addition, g > 1 then End(J (CF )) = Z.

(iv) Assume that K is a totally imaginary number field with odd class number and
g > 1. Then:
• For all primes � the image ρ�,F (Gal(K )) is an open subgroup of finite index
in Gp

(
T�(J (CF )), e�

)
.

• Let L be a number field that contains K and Gal(L) be the absolute Galois
group of L, which we view as an open subgroup of finite index in Gal(L).
Then for all but finitely many primes � the image ρ�,F (Gal(L)) coincides with
Gp

(
T�(J (CF )), e�

)
.

Remark 6.7 If K is a quadratic field then for everymaximal idealb2 ⊂ O (with residual
characteristic 2) the ramification index e(b2) of b2 in K/Q is either 1 or 2: in both cases
it is relatively prime to odd 2g+1. This implies that if K is an imaginary quadratic field
with odd class number then all conclusions of Theorem 6.6 hold for every generalized
Mori quadruple (g, p,b, c). In particular, the Galois extension K (RF )/K is ramified
at every b2.
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One may find the list of imaginary quadratic fields with small, ≤23, odd class
number in [1, pp. 322–324]; see also [16, Table 4, p. 936].

Proof of Theorem 6.6 The b2-adic Newton polygon of F(x) consists of one segment
that connects the points (0,−2e(b2)) and (2g+1, 0), which are its only integer points,
because e(b2) and 2g + 1 are relatively prime and therefore 2e(b2) and 2g + 1 are
relatively prime. Now the irreducibility of F(x) over Kb2 follows from Eisenstein–
Dumas Criterion [9, Corollary 3.6, p. 316], [4, p. 502]. This proves (i). It also proves
that the Galois extension K (RF )/K is ramified at b2.

In order to prove (ii), let us consider the reduction

F̃(x) = F(x) mod pO

[
1

2

]
= x2g+1 − b̃x ∈ k(p)[x]

where b̃ = b mod p ∈ k(p). So,

F̃(x) = x
(
x2g − b̃

) ∈ k(p)[x].

We have already seen in 6.4 that x2g − b̃ is irreducible over k(p) and its Galois group
is an order 2g cyclic group. We also know that b̃ �= 0 and therefore the polynomials
x and x2g − b̃ are relatively prime. This implies that K (RF )/K is unramified at p
and a corresponding Frobenius element in Gal(K (RF )/K ) ⊂ Perm(RF ) is a cycle
of length 2g. This proves (ii). (Compare with arguments on [8, p. 107].)

The map α �→ 2α is a Gal(K )-equivariant bijection between the sets of roots
RF and RU , which induces a group isomorphism between permutation groups
Gal(RF ) ⊂ Perm(RF ) and Gal(RU ) ⊂ Perm(RU ). In particular, the double transi-
tivity of Gal(RF ) implies the double transitivity of Gal(RU ). On the other hand,

�(U ) = 2(2g+1)2g�(F) = [
2(2g+1)g]2�(F).

This implies that �(U ) is not a square in K as well. The discriminant �(U ) is given
by the formula, Remark 3.2,

D = �(U ) = (−1)(2g+1)2g/2(2g + 1)2g+1[−22g−1c
]2g

+ (−1)2g(2g−1)/2(2g)2g
[−22gb

]2g+1

= (−1)g22g(2g−1)[(2g + 1)2g+1c2g − 26gg2gb2g+1]
= 22[g(2g−1)]{(−1)g

[
(2g + 1)2g+1c2g − 26gg2gb2g+1]}.

We have D = 22MD0, where M = g(2g − 1) is a positive integer and

D0 = (−1)g
[
(2g + 1)2g+1c2g − 26gg2gb2g+1] ∈ O.

Since c − 1 ∈ 2O, we have c2 − 1 ∈ 4O and

D0 ≡ (−1)g(2g + 1)2g+1 mod 4O.
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Since (2g+1)2g = [
(2g+1)2

]g ≡ 1 mod 4, we conclude D0 ≡ (−1)g(2g+1)
mod 4O. This implies that

D0 − 1 ∈ 4O.

Applying Lemma 6.3 to

n = 2g + 1, B = −22gb, C = −22g−1c,

u(x) = U (x), M = g(2g−1), N = 2g,

we conclude that doubly transitive Gal(U/K ) coincides with Perm(RU ) and therefore
Gal(F/K ) coincides with Perm(RF ) ∼= S2g+1. If g > 1 then Theorem 1.2 tells us
that End(J (CF )) = Z. This proves (iii). We also obtain that there exists a maximal
ideal b ⊂ O with odd residual characteristic such that U (x) mod b ∈ k(b)[x] has
exactly one multiple root, this root is double and lies in k(b). Since

F(x) = U (2x)

22g+1 ,

we obtain that

F(x) mod bO

[
1

2

]
= U (2x)

22g+1 mod b ∈ k(b)[x].

This implies that the polynomial F(x) mod bO[1/2] ∈ k(b)[x] has exactly one multi-
ple root, this root is double and lies in k(b). The properties of F(x)mod bO[1/2] imply
that J (CF ) has a semistable reduction at b with toric dimension 1. Now it follows
from [21, Theorem 4.3] that for for all primes � the image ρ�,F (Gal(K )) is an open
subgroup of finite index in Gp

(
T�(J (CF )), e�

)
. It follows from [5, Theorem 1] that

if L is a number field containing K then for all but finitely many primes � the image
ρ�,F (Gal(L)) coincides with Gp(T�(J (CF )), e�). This proves (iv). 	

Corollary 6.8 We keep the notation of Theorem 6.6. Let K be an imaginary quadratic
field with odd class number. Let (g, p,b, c) be a generalized Mori quadruple in K and
F(x) = Fg,p,b,c(x) ∈ K [x]. Then

Gal
(
K (RF )/K

(√
�(F)

)) = A2g+1

and the Galois extension K (RF )/K
(√

�(F)
)
is unramified everywhere outside 2 and

ramified at all prime divisors of 2.

Proof As above, let us consider the polynomial

U (x) = 22g+1F

(
x

2

)
= x2g+1 − 22gbx − 22g−1c ∈ O[x] ⊂ K [x].
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We have K (RF ) = K (RU ), K
(√

�(F)
) = K

(√
�(U )

)
. Since

S2g+1 = Perm(RU ) = Gal(U/K ) = Gal(K (RU )/K ),

we have

Gal
(
K (RU )/K

(√
�(U )

)) = A2g+1.

It follows from Remark 6.7 that the Galois extension K (RU )/K is ramified at every
prime divisor of 2 (in K ). On the other hand, Lemma 6.3 (a) (applied to u(x) = U (x))
tells us that the quadratic extension K

(√
�(U )

)
/K is unramified at every prime divisor

of 2 (in K ). Since all the field extensions involved are Galois, K (RU )/K
(√

�(U )
)
is

ramified at every prime divisor of 2
(
in K

(√
�(U )

))
.

Since K is purely imaginary, K
(√

�(U )
)
is also purely imaginary and therefore

(its every field extension, including) K (RU ) is unramified at all infinite places
(
in

K
(√

�(U )
))
.

Remark 6.2 and Lemma 6.3 (a) (applied to u(x) = U (x)) imply that the field
extension K (RU )/K

(√
�(U )

)
is unramified at all maximal ideals b in O with odd

residual characteristic. 	


7 Corrigendum to [20]

• Page 660, the 6th displayed formula: insert ⊂ between EndGal(K )V�(X) and
EndQ�

V�(X).
• Page 662, Theorem 2.6, line 3: r1 should be r2.
• Page 664, Remark 2.16: The reference to [23, Theorem 1.5] should be replaced
by [23, Theorem 1].

• Page664,Theorem2.20:The following additional conditionon �was inadvertently
omitted:

“ (iii) If C is the center of End(X) then C/�C is the center of End(X)/�End(X).”
In addition, “be” on the last line should be “is”.

• Page 666, Theorem. 3.3, line 2: � should be assumed to be in P , i.e. one should
read “Then for all but finitely many � ∈ P . . . ”. In addition, Xn should be X�

throughout lines 3–6.
• Page 668, Lemma 3.9, line 1: IsogP should be IsP .
• Page 668, Theorem3.10, line 1: replace IsogP ((X×Xt )8, K , 1) by IsP ((X×Xt )4,

K , 1).
• Page 670, Section 5.1, the first displayed formula: t should be g.
• Page 672, line 9: X ′

� should be X�.

(The author is grateful to Kestutis Cesnavicius for sending this list of typos.)

Acknowledgments The author is grateful to the referee, whose comments helped to improve the exposi-
tion.
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