

RESEARCH ARTICLE

Galois groups of Mori trinomials and hyperelliptic curves with big monodromy

Yuri G. Zarhin¹

Received: 22 December 2014 / Accepted: 12 April 2015 / Published online: 5 May 2015 © Springer International Publishing AG 2015

Abstract We compute the Galois groups for a certain class of polynomials over the the field of rational numbers that was introduced by Shigefumi Mori and study the monodromy of corresponding hyperelliptic jacobians.

Keywords Abelian varieties · Hyperelliptic curves · Tate modules · Galois groups

Mathematics Subject Classification 14H40 · 14K05 · 11G30 · 11G10

1 Mori polynomials, their reductions and Galois groups

We write \mathbb{Z} , \mathbb{Q} and \mathbb{C} for the ring of integers, the field of rational numbers and the field of complex numbers respectively. If *a* and *b* are nonzero integers then we write (a, b) for its (positive) greatest common divisor. If ℓ is a prime then \mathbb{F}_{ℓ} , \mathbb{Z}_{ℓ} and \mathbb{Q}_{ℓ} stand for the prime finite field of characteristic ℓ , the ring of ℓ -adic integers and the field of ℓ -adic numbers respectively.

This work was partially supported by a grant from the Simons Foundation (#246625 to Yuri Zarkhin). This work was started during author's stay at the Max-Planck-Institut für Mathematik (Bonn, Germany) in September of 2013 and finished during the academic year 2013/2014 when the author was Erna and Jakob Michael Visiting Professor in the Department of Mathematics at the Weizmann Institute of Science (Rehovot, Israel): the hospitality and support of both Institutes are gratefully acknowledged.

[⊠] Yuri G. Zarhin zarhin@math.psu.edu

¹ Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA

We consider the subring $\mathbb{Z}[1/2] \subset \mathbb{Q}$ generated by 1/2 over \mathbb{Z} . We have

$$\mathbb{Z} \subset \mathbb{Z}\left[\frac{1}{2}\right] \subset \mathbb{Q}.$$

If ℓ is an odd prime then the principal ideal $\ell \mathbb{Z}[1/2]$ is maximal in $\mathbb{Z}[1/2]$ and

$$\mathbb{Z}\left[\frac{1}{2}\right] / \ell \mathbb{Z}\left[\frac{1}{2}\right] = \mathbb{Z}/\ell \mathbb{Z} = \mathbb{F}_{\ell}.$$

If *K* is a field then we write \overline{K} for its algebraic closure and denote by Gal(*K*) its absolute Galois group Aut(\overline{K}/K). If $u(x) \in K[x]$ is a degree *n* polynomial with coefficients in *K* and without multiple roots then we write $\mathfrak{R}_u \subset \overline{K}$ for the *n*-element set of its roots, $K(\mathfrak{R}_u)$ the splitting field of u(x) and Gal(u/K) = Gal($K(\mathfrak{R}_u)/K$) the Galois group of u(x) viewed as a certain subgroup of the group Perm($\mathfrak{R}_u) \cong \mathbf{S}_n$ of permutations of \mathfrak{R}_u . As usual, we write \mathbf{A}_n for the *alternating group*, which is the only index 2 subgroup in the *full symmetric group* \mathbf{S}_n .

1.1 Discriminants and alternating groups We write $\Delta(u)$ for the discriminant of *u*. We have

$$0 \neq \Delta(u) \in K, \quad \sqrt{\Delta(u)} \in K(\mathfrak{R}_u).$$

It is well known that

$$\operatorname{Gal}(K(\mathfrak{R}_u)/K(\sqrt{\Delta(u)})) = \operatorname{Gal}(K(\mathfrak{R}_u)/K) \cap \mathbf{A}_n \subset \mathbf{A}_n \subset \mathbf{S}_n = \operatorname{Perm}(\mathfrak{R}_u).$$

In particular, the permutation (sub)group $\operatorname{Gal}(K(\mathfrak{R}_u)/K(\sqrt{\Delta(u)}))$ does not contain transpositions; $\Delta(u)$ is a square in K if and only if $\operatorname{Gal}(u/K)$ lies in the alternating (sub)group $\mathbf{A}_n \subset \mathbf{S}_n$. On the other hand, if $\operatorname{Gal}(u/K) = \mathbf{S}_n$ then $\operatorname{Gal}(K(\mathfrak{R}_u)/K(\sqrt{\Delta(u)})) = \mathbf{A}_n$.

If *n* is odd and char(*K*) \neq 2 then we write *C_u* for the genus (*n* - 1)/2 hyperelliptic curve

$$C_u \colon y^2 = u(x)$$

and $J(C_u)$ for its jacobian, which is an (n - 1)/2-dimensional abelian variety over K. We write $\text{End}(J(C_u))$ for the ring of all \overline{K} -endomorphisms of $J(C_u)$ and $\text{End}_K(J(C_u))$ for the (sub)ring of all its K-endomorphisms. We have

$$\mathbb{Z} \subset \operatorname{End}_K(J(C_u)) \subset \operatorname{End}(J(C_u)).$$

About 40 years ago Shigefumi Mori [8, Proposition 3, p. 107] observed that if n = 2g + 1 is odd and Gal(f/K) is a *doubly transitive* permutation group then End_K $(J(C_u)) = \mathbb{Z}$. He constructed [8, Theorem 1, p. 105] explicit examples (in all dimensions g) of

polynomials (actually, trinomials) f(x) over \mathbb{Q} such that $\operatorname{Gal}(f/\mathbb{Q})$ is doubly transitive and $\operatorname{End}(J(C_f)) = \mathbb{Z}$.

On the other hand, about 15 years ago the following assertion was proven by the author [17].

Theorem 1.2 Suppose that char(K) = 0 and $Gal(u/K) = S_n$. Then $End(J(C_u)) = \mathbb{Z}$.

The aim of this note is to prove that in Mori's examples $\operatorname{Gal}(f/\mathbb{Q}) = \mathbf{S}_{2g+1}$. This gives another proof of the theorem of Mori [8, Theorem 1, p. 105]. Actually, we extend the class of Mori trinomials with $\operatorname{End}(J(C_f)) = \mathbb{Z}$, by dropping one of the congruence conditions imposed by Mori on the coefficients of f(x). We also prove that the images of $\operatorname{Gal}(\mathbb{Q})$ in the automorphism groups of Tate modules of $J(C_f)$ are *almost* as large as possible.

1.3 Mori trinomials Throughout this paper, *g*, *p*, *b*, *c* are integers that enjoy the following properties [8]:

- (i) The number g is a positive integer and p is an odd prime. In addition, there is a positive integer N such that (p − 1)^N/2^N is divisible by g. This means that every prime divisor of g is also a divisor of (p − 1)/2. This implies that (p, g) = (p, 2g) = 1. It follows that if g is even then p is congruent to 1 modulo 4.
- (ii) The residue b mod p is a primitive root of $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$; in particular, (b, p) = 1.
- (iii) The integer c is odd and (b, c) = (b, 2g+1) = (c, g) = 1. This implies that (c, 2g) = 1.

Mori [8] introduced and studied the monic degree 2g + 1 polynomial

$$f(x) = f_{g,p,b,c}(x) = x^{2g+1} - bx - \frac{pc}{4} \in \mathbb{Z}\left[\frac{1}{2}\right][x] \subset \mathbb{Q}[x],$$

which we call a *Mori trinomial*. He proved the following results [8, pp. 106–107].

Theorem 1.4 (Theorem of Mori) Let $f(x) = f_{g,p,b,c}(x)$ be a Mori trinomial. Then:

- (i) The polynomial f(x) is irreducible over \mathbb{Q}_2 and therefore over \mathbb{Q} .
- (ii) The polynomial $f(x) \mod p \in \mathbb{F}_p[x]$ is a product $x(x^{2g} b)$ of a linear factor x and an irreducible (over \mathbb{F}_p) degree 2g polynomial $x^{2g} b$.
- (iii) Let Gal(f) be the Galois group of f(x) over \mathbb{Q} considered canonically as a (transitive) subgroup of the full symmetric group \mathbf{S}_{2g+1} . Then Gal(f) is a doubly transitive permutation group. More precisely, the transitive Gal(f) contains a permutation σ that is a cycle of length 2g.
- (iv) For each odd prime ℓ every root of the polynomial $f(x) \mod \ell \in \mathbb{F}_{\ell}[x]$ is either simple or double.
- (v) Let us consider the genus g hyperelliptic curve

$$C_f \colon y^2 = f(x)$$

and its jacobian $J(C_f)$, which is a g-dimensional abelian variety over \mathbb{Q} . Assume additionally that c is congruent to -p modulo 4. Then C_f is a stable curve

over \mathbb{Z} and $J(C_f)$ has everywhere semistable reduction over \mathbb{Z} . In addition, $\operatorname{End}(J(C_f)) = \mathbb{Z}$.

- *Remark 1.5* (I) The 2-adic Newton polygon of Mori trinomial f(x) consists of one *segment* that connects (0, -2) and (2g+1, 0), which are its only integer points. Now the irreducibility of f(x) follows from Eisenstein–Dumas Criterion [9, Corollary 3.6, p. 316], [4, p. 502]. It also follows that the field extension $\mathbb{Q}(\mathfrak{R}_f)/\mathbb{Q}$ is *ramified* at 2.
- (II) If g = 1 then 2g + 1 = 3 and the only doubly transitive subgroup of S_3 is S_3 itself. Concerning the double transitivity of the Galois group of trinomials of arbitrary degree, see [2, Theorem 4.2, p. 9 and Note 2, p. 10].
- (III) The additional congruence condition in Theorem 1.4 (v) guarantees that C_f has stable (even good) reduction at 2 [8, p. 106]. Mori's proof of the last assertion of Theorem 1.4 (v) is based on results of [12] and the equality $\operatorname{End}_{\mathbb{Q}}(J(C_f)) = \mathbb{Z}$; the latter follows from the double transitivity of Galois groups of Mori trinomials.

Remark 1.6 Since a cycle of *even* length 2g is an *odd* permutation, it follows from Theorem 1.4(iii) that Gal(f) is *not* contained in A_{2g+1} . In other words, $\Delta(f)$ is *not* a square in \mathbb{Q} .

Our first main result is the following statement.

Theorem 1.7 Let $f(x) = f_{g,p,b,c}(x)$ be a Mori trinomial.

- (i) If l is an odd prime then the polynomial f(x) mod l ∈ F_l[x] has, at most, one double root and this root (if exists) lies in F_l.
- (ii) There exists an odd prime ℓ ≠ p such that f(x) mod ℓ ∈ 𝔽_ℓ[x] has a double root α ∈ 𝔽_ℓ. All other roots of f(x) mod ℓ (in an algebraic closure of 𝔽_ℓ) are simple.
- (iii) The Galois group $\operatorname{Gal}(f)$ of f(x) over \mathbb{Q} coincides with the full symmetric group \mathbf{S}_{2g+1} . The Galois (sub)group $\operatorname{Gal}(\mathbb{Q}(\mathfrak{R}_f)/\mathbb{Q}(\sqrt{\Delta(f)}))$ coincides with the alternating group \mathbf{A}_{2g+1} .
- (iii') The Galois extension $\mathbb{Q}(\mathfrak{R}_f)/\mathbb{Q}(\sqrt{\Delta(f)})$ is ramified at all prime divisors of 2. It is unramified at all prime divisors of every odd prime ℓ .
- (iv) Suppose that g > 1. Then $\operatorname{End}(J(C_f)) = \mathbb{Z}$.

Remark 1.8 Theorem 1.7 (iv) was proven by Mori under an additional assumption that c is congruent to -p modulo 4, see Theorem 1.4 (v) above.

Remark 1.9 Thanks to Theorem 1.2, Theorem 1.7(iv) follows readily from Theorem 1.7(iii).

Remark 1.10 Let g > 1 and suppose we know that Gal(f) contains a transposition. Now the double transitivity implies that Gal(f) coincides with S_{2g+1} , see [15, Lemma 4.4.3, p. 40].

Let K be a field of characteristic zero and $u(x) \in K[x]$ be a degree 2g + 1 polynomial without multiple roots. Then the jacobian $J(C_u)$ is a g-dimensional abelian

variety over *K*. For every prime ℓ let $T_{\ell}(J(C_u))$ be the ℓ -adic Tate module of $J(C_u)$, which is a free \mathbb{Z}_{ℓ} -module of rank 2*g* provided with the canonical continuous action

$$\rho_{\ell,u}$$
: Gal $(K) \to \operatorname{Aut}_{\mathbb{Z}_{\ell}}(T_{\ell}(J(C_u)))$

of Gal(K) [10, 14, 20]. There is a *Riemann form*

$$e_{\ell} \colon T_{\ell}(J(C_u)) \times T_{\ell}(J(C_u)) \to \mathbb{Z}_{\ell}$$

that corresponds to the canonical principal polarization on $J(C_u)$ ([10, Section 20], [21, Section 1]) and is a nondegenerate (even perfect) alternating \mathbb{Z}_{ℓ} -bilinear form that satisfies

$$e_{\ell}(\sigma(x), \sigma(y)) = \chi_{\ell}(\sigma)e_{\ell}(\sigma(x), \sigma(y)).$$

This implies that the image

$$\rho_{\ell,u}(\operatorname{Gal}(K)) \subset \operatorname{Aut}_{\mathbb{Z}_\ell}(T_\ell(J(C_u)))$$

lies in the (sub)group

$$\operatorname{Gp}(T_{\ell}(J(C_u)), e_{\ell}) \subset \operatorname{Aut}_{\mathbb{Z}_{\ell}}(T_{\ell}(J(C_u)))$$

of symplectic similitudes of e_{ℓ} [18, 19, 21].

Using results of Chris Hall [5] and the author [21], we deduce from Theorem 1.7 the following statement. (Compare it with [18, Theorem 2.5] and [19, Theorem 8.3].)

Theorem 1.11 Let $K = \mathbb{Q}$ and $f(x) = f_{g,p,b,c}(x) \in \mathbb{Q}[x]$ be a Mori trinomial. Suppose that g > 1. Then:

- (i) For all primes ℓ the image ρ_{ℓ,f}(Gal(Q)) is an open subgroup of finite index in Gp(T_ℓ(J(C_f)), e_ℓ).
- (ii) Let L be a number field and Gal(L) be its absolute Galois group, which we view as an open subgroup of finite index in Gal(\mathbb{Q}). Then for all but finitely many primes ℓ the image $\rho_{\ell,f}$ (Gal(L)) coincides with Gp $(T_{\ell}(J(C_f)), e_{\ell})$.

The paper is organized as follows. In Sect. 2 we deduce Theorem 1.11 from Theorem 1.7. In Sect. 3 we discuss a certain class of trinomials that is related to Mori polynomials. Section 4 deals with discriminants of Mori polynomials. We prove Theorem 1.7 in Sect. 5.

2 Monodromy of hyperelliptic jacobians

Proof of Theorem 1.11 (*modulo Theorem* 1.7) By Theorem 1.7 (iii), $\operatorname{Gal}(f/\mathbb{Q})$ coincides with the full symmetric group S_{2g+1} . By Theorem 1.7 (iv), $\operatorname{End}(J(C_f)) = \mathbb{Z}$. It follows from Theorem 1.7 (i) that there is an odd prime ℓ such that $J(C_f)$ has at ℓ a semistable reduction with *toric dimension* 1 [5]. Now the assertion (i) follows from [21, Theorem 4.3]. The assertion (ii) follows from [5, Theorem 1].

3 Reduction of certain trinomials

In order to prove Theorem 1.7 (i), we will use the following elementary statement that was inspired by [15, Remark 2, p.42] and [8, p. 106].

Lemma 3.1 (key lemma) Let

$$u(x) = u_{n,B,C}(x) = x^n + Bx + C \in \mathbb{Z}[x]$$

be a monic polynomial of degree n > 1 such that $B \neq 0$ and $C \neq 0$.

- (I) If u(x) has a multiple root then n divides B and n 1 divides C.
- (II) Let ℓ be a prime that enjoys the following properties:
 - (i) (B, C) is not divisible by ℓ ,
 - (ii) (n, B) is not divisible by ℓ ,

(iii) (n - 1, C) is not divisible by ℓ . Suppose that u(x) has no multiple roots. Let us consider the polynomial

$$\overline{u}(x) = u(x) \mod \ell \in \mathbb{F}_{\ell}[x].$$

Then:

- (a) $\overline{u}(x)$ has, at most, one multiple root in an algebraic closure of \mathbb{F}_{ℓ} .
- (b) If such a multiple root say, γ, does exist, then l does not divide n(n-1)BC and γ is a double root of u(x). In addition, γ is a nonzero element of F_l.
- (c) If such a multiple root does exist then either the field extension $\mathbb{Q}(\mathfrak{R}_u)/\mathbb{Q}$ is unramified at ℓ or a corresponding inertia subgroup at ℓ in

 $\operatorname{Gal}(\mathbb{Q}(\mathfrak{R}_u)/\mathbb{Q}) = \operatorname{Gal}(u/\mathbb{Q}) \subset \operatorname{Perm}(\mathfrak{R}_u)$

is generated by a transposition. In both cases the Galois extension $\mathbb{Q}(\mathfrak{R}_u)/\mathbb{Q}(\sqrt{\Delta(u)})$ is unramified at all prime divisors of ℓ .

Remark 3.2 The discriminant $\text{Discr}(n, B, C) = \Delta(u_{n,B,C})$ of $u_{n,B,C}(x)$ is given by the formula [3, Example 834]

Discr
$$(n, B, C) = (-1)^{n(n-1)/2} n^n C^{n-1} + (-1)^{(n-1)(n-2)/2} (n-1)^{n-1} B^n.$$

Remark 3.3 In the notation of Lemma 3.1, assume that $\overline{u}(x)$ has *no* multiple roots, i.e., $\Delta(u)$ is *not* divisible by ℓ . Then obviously $\mathbb{Q}(\mathfrak{R}_u)/\mathbb{Q}$ is *unramified* at ℓ . This implies that $\mathbb{Q}(\mathfrak{R}_u)/\mathbb{Q}(\sqrt{\Delta(u)})$ is *unramified* at all prime divisors of ℓ .

Proof of Lemma 3.1 (I) Since u(x) has a multiple root, its discriminant

$$\Delta(u) = (-1)^{n(n-1)/2} n^n C^{n-1} + (-1)^{(n-1)(n-2)/2} (n-1)^{n-1} B^n = 0.$$

This implies that

$$n^n C^{n-1} = \pm (n-1)^{n-1} B^n.$$

Since *n* and n - 1 are relatively prime, $n^n | B^n$ and $(n - 1)^{n-1} | C^{n-1}$. This implies that n | B and (n - 1) | C.

(II) We have

$$\overline{u}(x) = x^n + \overline{B}x + \overline{C} \in \mathbb{F}_{\ell}[x]$$

where

$$\overline{B} = B \mod \ell \in \mathbb{F}_{\ell}, \quad \overline{C} = C \mod \ell \in \mathbb{F}_{\ell}$$

The condition (i) implies that either $\overline{B} \neq 0$ or $\overline{C} \neq 0$. The condition (ii) implies that if $\overline{B} = 0$ then $n \neq 0$ in \mathbb{F}_{ℓ} . The condition (iii) implies that if n - 1 = 0 in \mathbb{F}_{ℓ} then $\overline{C} \neq 0$ and $n \neq 0$ in \mathbb{F}_{ℓ} . We have

$$\Delta(\overline{u}) = (-1)^{n(n-1)/2} n^n \overline{C}^{n-1} + (-1)^{(n-1)(n-2)/2} (n-1)^{n-1} \overline{B}^n = 0$$

and therefore

$$n^{n}\overline{C}^{n-1} = \pm (n-1)^{n-1}\overline{B}^{n}.$$
(1)

This implies that if n-1 = 0 in \mathbb{F}_{ℓ} then $\overline{C} = 0$, which is not the case. This proves that $n-1 \neq 0$ in \mathbb{F}_{ℓ} . On the other hand, if $\overline{B} = 0$ then $\overline{C} \neq 0$ and $n \neq 0$ in \mathbb{F}_{ℓ} . Then (1) implies that $\overline{C} = 0$ and we get a contradiction that proves that $\overline{B} \neq 0$. If n = 0 in \mathbb{F}_{ℓ} then $n-1 \neq 0$ in \mathbb{F}_{ℓ} and (1) implies that $\overline{B} = 0$, which is not the case. The obtained contradiction proves that $n \neq 0$ in \mathbb{F}_{ℓ} . If $\overline{C} = 0$ then (1) implies that $\overline{B} = 0$, which is not the case. The obtained contradiction proves that $n \neq 0$ in \mathbb{F}_{ℓ} . If $\overline{C} = 0$ then (1) implies that $\overline{B} = 0$, which is not the case. This proves that ℓ does *not* divide n(n-1)BC.

The derivative of $\overline{u}(x)$ is $\overline{u}'(x) = nx^{n-1} + \overline{B}$. We have

$$x \cdot \overline{u}'(x) - n \cdot \overline{u}(x) = -(n-1)\overline{B}x - n\overline{C}.$$
(2)

Suppose $\overline{u}(x)$ has a multiple root γ in an algebraic closure of \mathbb{F}_{ℓ} . Then

$$\overline{u}(\gamma) = 0, \quad \overline{u}'(\gamma) = 0, \quad n \cdot \gamma \cdot \overline{u}'(\gamma) - n \cdot \overline{u}(\gamma) = 0.$$

Using (2), we conclude that

$$0 = \gamma \cdot \overline{u}'(\gamma) - n \cdot \overline{u}(\gamma) = -(n-1)\overline{B}\gamma - n\overline{C}, \qquad \gamma = -\frac{nC}{(n-1)\overline{B}} \in \mathbb{F}_{\ell}.$$

This implies that $\gamma \neq 0$.

Notice that the second derivative $\overline{u}''(x) = n(n-1)x^{n-2}$. This implies that

$$\overline{u}''(\gamma) = n(n-1)\gamma^{n-2} \neq 0.$$

It follows that γ is a *double* root of $\overline{u}(x)$. This ends the proof of (a) and (b).

In order to prove (c), notice that there exists a monic degree n - 2 polynomial $\overline{h}(x) \in \mathbb{F}_{\ell}[x]$ such that

$$\overline{u}(x) = (x - \gamma)^2 \cdot \overline{h}(x).$$

Clearly, γ is *not* a root of $\overline{h}(x)$ and therefore $\overline{h}(x)$ has no multiple roots and is relatively prime to $(x - \gamma)^{2,1}$ By Hensel's Lemma, there exist monic polynomials

$$h(x), v(x) \in \mathbb{Z}_{\ell}[x], \quad \deg h = n - 2, \quad \deg v = 2$$

such that

$$u(x) = v(x)h(x)$$

and

$$\overline{h}(x) = h(x) \mod \ell$$
, $(x - \gamma)^2 = v(x) \mod \ell$.

This implies that the splitting field $\mathbb{Q}_{\ell}(\mathfrak{R}_h)$ of h(x) (over \mathbb{Q}_{ℓ}) is an unramified extension of \mathbb{Q}_{ℓ} while the splitting field $\mathbb{Q}_{\ell}(\mathfrak{R}_u)$ of u(x) (over \mathbb{Q}_{ℓ}) is obtained from $\mathbb{Q}_{\ell}(\mathfrak{R}_h)$ by adjoining to it two (distinct) roots say, α_1 and α_2 of quadratic v(x). Clearly, $\mathbb{Q}_{\ell}(\mathfrak{R}_u)$ either coincides with $\mathbb{Q}_{\ell}(\mathfrak{R}_h)$ or with a certain quadratic extension of $\mathbb{Q}_{\ell}(\mathfrak{R}_h)$, ramified or unramified. It follows that the inertia subgroup I of

$$\operatorname{Gal}(\mathbb{Q}_{\ell}(\mathfrak{R}_u)/\mathbb{Q}_{\ell}) \subset \operatorname{Perm}(\mathfrak{R}_u)$$

is either trivial or is generated by the *transposition* that permutes α_1 and α_2 (and leaves invariant every root of h(x)). In the former case $\mathbb{Q}(\mathfrak{R}_u)/\mathbb{Q}$ is unramified at ℓ while in the latter one an inertia subgroup in

 $\operatorname{Gal}(\mathbb{Q}(\mathfrak{R}_u)/\mathbb{Q}) \subset \operatorname{Perm}(\mathfrak{R}_u)$

that corresponds to ℓ is generated by a transposition. However, the permutation subgroup Gal $(\mathbb{Q}(\mathfrak{R}_u)/\mathbb{Q}(\sqrt{\Delta(u)}))$ does not contain transpositions (see 1.1). This implies that $\mathbb{Q}(\mathfrak{R}_u)/\mathbb{Q}(\sqrt{\Delta(u)})$ is *unramified* at all prime divisors of ℓ .

Example 3.4 Let us consider the polynomial

$$u(x) = u_{n,-1,-1}(x) = x^n - x - 1 \in \mathbb{Q}[x]$$

over the field $K = \mathbb{Q}$. Here B = C = -1 and the conditions of Lemma 3.1 hold for all primes ℓ . It is known that u(x) is irreducible [13], its Galois group over \mathbb{Q} is S_n [11, Corollary 3, p. 233] and there exists a prime ℓ such that $u(x) \mod \ell$ acquires a multiple root [15, Remark 2, p. 42]. Clearly, the discriminant $\Delta(u) = \text{Discr}(n, -1, -1)$ of

367

¹ Compare with [11, Lemma 1, p. 231].

u(x) is an *odd* integer and therefore such an ℓ is *odd*. It follows from Lemma 3.1 that $u(x) \mod \ell$ has exactly one multiple root and its multiplicity is 2.

Let n = 2g + 1 be an odd integer greater than or equal to 5 and

$$u(x) = u_{2g+1,-1,-1}(x) = x^{2g+1} - x - 1 \in \mathbb{Q}[x].$$

Let us consider the *g*-dimensional jacobian $J(C_u)$ of the hyperelliptic curve C_u : $y^2 = x^{2g+1} - x - 1$. Since $\text{Gal}(u/\mathbb{Q}) = \mathbb{S}_{2g+1}$, Theorem 1.2 tells us that $\text{End}(J(C_u)) = \mathbb{Z}$. Now the same arguments as in Sect. 2 prove that

(i) For all primes ℓ the image

$$\rho_{\ell,u}(\operatorname{Gal}(\mathbb{Q})) \subset \operatorname{Gp}(T_{\ell}(J(C_u)), e_{\ell})$$

is an open subgroup of finite index in $\text{Gp}(T_{\ell}(J(C_u)), e_{\ell})$.

(ii) Let *L* be a number field and Gal(L) be its absolute Galois group, which we view as an open subgroup of finite index in $Gal(\mathbb{Q})$. Then for all but finitely many primes ℓ the image

$$\rho_{\ell,u}(\operatorname{Gal}(L)) \subset \operatorname{Gp}(T_{\ell}(J(C_u)), e_{\ell})$$

coincides with $\operatorname{Gp}(T_{\ell}(J(C_u)), e_{\ell})$.

Corollary 3.5 (Corollary to Lemma 3.1) Let

$$u(x) = u_{n,B,C}(x) = x^n + Bx + C \in \mathbb{Z}[x]$$

be a monic polynomial of degree n > 1 without multiple roots such that both B and C are nonzero integers that enjoy the following properties:

- (B, C) is either 1 or a power of 2,
- (n, B) is either 1 or a power of 2,
- (n-1, C) is either 1 or a power of 2.

Suppose that the discriminant $D = \text{Discr}(n, B, C) = 2^{2M} \cdot D_0$ where M is a nonnegative integer and D_0 is an integer such that $D_0 \equiv 1 \mod 4$. Assume also that D is not a square. Then:

- (a) The quadratic extension $\mathbb{Q}(\sqrt{D})/\mathbb{Q}$ is unramified at 2. For all odd primes ℓ the Galois extension $\mathbb{Q}(\mathfrak{R}_u)/\mathbb{Q}(\sqrt{D})$ is unramified at every prime divisor of ℓ .
- (b) There exists an odd prime ℓ that enjoys the following properties:
 - (i) ℓ divides D_0 and $u(x) \mod \ell \in \mathbb{F}_{\ell}[x]$ has exactly one multiple root and its multiplicity is 2. In addition, this root lies in \mathbb{F}_{ℓ} .
 - (ii) The field extension $\mathbb{Q}(\mathfrak{R}_u)/\mathbb{Q}$ is ramified at ℓ and the Galois group

 $\operatorname{Gal}(\mathbb{Q}(\mathfrak{R}_u)/\mathbb{Q}) = \operatorname{Gal}(u/\mathbb{Q}) \subset \operatorname{Perm}(\mathfrak{R}_u)$

contains a transposition. In particular, if $Gal(u/\mathbb{Q})$ is doubly transitive then

$$\operatorname{Gal}(u/\mathbb{Q}) = \operatorname{Perm}(\mathfrak{R}_f) \cong \mathbf{S}_n$$

and

$$\operatorname{Gal}\left(\mathbb{Q}(\mathfrak{R}_u)/\mathbb{Q}(\sqrt{D})\right) = \mathbf{A}_n.$$

Proof Clearly, D_0 is not a square and

$$\mathbb{Q}(\sqrt{D}) = \mathbb{Q}(\sqrt{D_0})$$

is a quadratic field. Since D_0 is congruent to 1 modulo 4, the quadratic extension $\mathbb{Q}(\sqrt{D_0})/\mathbb{Q}$ is *unramified* at 2, which proves the first assertion of (a). The conditions of Lemma 3.1 (II) hold for all odd primes ℓ . Now the second assertion of (a) follows from Remark 3.3 and Lemma 3.1 (II)(c).

Let us start to prove (b). There are nonzero integers S and S_0 such that $D_0 = S^2 S_0$ and S_0 is square-free. Clearly, both S and S_0 are odd. Since

$$D = 2^{2M} \cdot D_0 = 2^{2M} \cdot S^2 S_0 = (2^M S)^2 S_0$$

is *not* a square, $S_0 \neq 1$. Since *S* is odd, $S^2 \equiv 1 \mod 4$. Since $D_0 \equiv 1 \mod 4$, we obtain that $S_0 \equiv 1 \mod 4$. It follows that $S_0 \neq -1$. We already know that $S_0 \neq 1$. This implies that there is a prime ℓ that divides S_0 . Since S_0 is odd and square-free, ℓ is also odd and ℓ^2 does not divide S_0 . Let *T* be the nonnegative integer such that $\ell^T || S$. Then $\ell^{2T+1} || 2^{2M} S^2 S_0$, and therefore $\ell^{2T+1} || D$. This implies that the quadratic field extension $\mathbb{Q}(\sqrt{D})/\mathbb{Q}$ is *ramified* at ℓ . Since

$$\mathbb{Q} \subset \mathbb{Q}(\sqrt{D}) \subset \mathbb{Q}(\mathfrak{R}_u),$$

the field extension $\mathbb{Q}(\mathfrak{R}_u)/\mathbb{Q}$ is also ramified at ℓ . Since $\ell \mid D$, the polynomial $u(x) \mod \ell \in \mathbb{F}_{\ell}[x]$ has a multiple root. Now the result follows from Lemma 3.1 combined with Remark 1.10.

4 Discriminants of Mori trinomials

Let

$$f(x) = f_{g,p,b,c}(x) = x^{2g+1} - bx - \frac{pc}{4}$$

be a Mori trinomial. Following Mori [8], let us consider the polynomial

$$\mathbf{u}(x) = 2^{2g+1} f\left(\frac{x}{2}\right) = x^{2g+1} - 2^{2g} bx - 2^{2g-1} pc = u_{n,B,C}(x) \in \mathbb{Z}[x] \subset \mathbb{Q}[x]$$

with n = 2g + 1, $B = -2^{2g}b$, $C = -2^{2g-1}pc$.

🖉 Springer

Remark 4.1 • Clearly, f(x) and $\mathbf{u}(x)$ have the same splitting field and Galois group. It is also clear that

$$\Delta(\mathbf{u}) = 2^{(2g+1)2g} \cdot \Delta(f) = \left[2^{(2g+1)g}\right]^2 \cdot \Delta(f).$$

In particular, $\Delta(\mathbf{u})$ is *not* a square, thanks to Remark 1.6.

- By Theorem 1.4(i, iii), the polynomial f(x) is irreducible over \mathbb{Q} and its Galois group is *doubly transitive*. This implies that $\mathbf{u}(x)$ is irreducible over \mathbb{Q} and its Galois group over \mathbb{Q} is also *doubly transitive*. (See also Theorem 6.6(i, ii) below.)
- For all g the hyperelliptic curves C_f and $C_{\mathbf{u}}$ are biregularly isomorphic over $\mathbb{Q}(\sqrt{2})$. It follows that the jacobians $J(C_{\mathbf{u}})$ and $J(C_f)$ are also isomorphic over $\mathbb{Q}(\sqrt{2})$. In particular, $\operatorname{End}(J(C_{\mathbf{u}})) = \operatorname{End}(J(C_f))$.

Clearly, the conditions of Lemma 3.1 hold for $u(x) = \mathbf{u}(x)$ for all odd primes ℓ . The discriminant $\Delta(\mathbf{u})$ of $\mathbf{u}(x)$ coincides with

Discr
$$(n, B, C) = (-1)^{(2g+1)2g/2} (2g+1)^{2g+1} [-2^{2g-1}pc]^{2g} + (-1)^{2g(2g-1)/2} (2g)^{2g} [-2^{2g}b]^{2g+1}.$$

It follows that

$$\Delta(\mathbf{u}) = (-1)^g 2^{2g(2g-1)} [(2g+1)^{2g+1} (pc)^{2g} - 2^{6g} g^{2g} b^{2g+1}].$$

This implies that

$$\Delta(\mathbf{u}) = 2^{2[g(2g-1)]} D_0,\tag{3}$$

where

$$D_0 = (-1)^g \{ (2g+1) [(2g+1)^g (pc)^g]^2 - 2^{6g} g^{2g} b^{2g+1} \}.$$

Clearly, D_0 is an *odd* integer that is *not* divisible by p. It is also clear that D_0 is congruent to $(-1)^g (2g+1)$ modulo 4 (because every odd square is congruent to 1 modulo 4). This implies that

$$D_0 \equiv 1 \mod 4 \tag{4}$$

for all g.

5 Proof of Theorem 1.7

Let us apply Lemma 3.1 (II) to

$$\mathbf{u}(x) = 2^{2g+1} f\left(\frac{x}{2}\right) = x^{2g+1} - 2^{2g} bx - 2^{2g-1} pc.$$

We obtain that for each odd prime ℓ the polynomial $\mathbf{u}(x) \mod \ell \in \mathbb{F}_{\ell}[x]$ has, at most, one multiple root; in addition, this root is double and lies in \mathbb{F}_{ℓ} . Applying to $\mathbf{u}(x)$

Corollary 3.5 combined with formulas (3) and (4) of Sect. 4, we conclude that there exists an odd $\ell \neq p$ such that $\mathbf{u}(x) \mod \ell$ has exactly one multiple root; this root is double and lies in \mathbb{F}_{ℓ} . In addition, $\text{Gal}(\mathbf{u}/\mathbb{Q})$ coincides with \mathbf{S}_{2g+1} , because it is doubly transitive. Now the assertions (i) and (ii) follow readily from the equality

$$f(x) \mod \ell = \frac{\mathbf{u}(2x)}{2^{2g+1}} \mod \ell$$

that holds for all odd primes ℓ .

By Remark 4.1, Gal $(f/\mathbb{Q}) = \text{Gal}(\mathbf{u}/\mathbb{Q})$ and therefore also coincides with \mathbf{S}_{2g+1} , which implies (in light of 1.1) that $\text{Gal}(\mathbb{Q}(\mathfrak{R}_f)/\mathbb{Q}(\sqrt{\Delta(f)})) = \mathbf{A}_{2g+1}$. This proves (iii). Now Remark 1.9 implies that $\text{End}(J(C_f)) = \mathbb{Z}$. This proves (iv). In order to prove (iii'), first notice that the Galois extension $\mathbb{Q}(\mathfrak{R}_f)/\mathbb{Q}$ is ramified at 2, Remark 1.5 (I), while $\mathbb{Q}(\sqrt{\Delta(f)}) = \mathbb{Q}(\sqrt{\Delta(u)})$ is unramified at 2 over \mathbb{Q} in light of formulas (3) and (4) in Sect. 4 (and Corollary 3.5 (a)). This implies that $\mathbb{Q}(\mathfrak{R}_f)/\mathbb{Q}(\sqrt{\Delta(f)})$ is ramified at some prime divisor of 2. Since all the field extensions involved are Galois, $\mathbb{Q}(\mathfrak{R}_f)/\mathbb{Q}(\sqrt{\Delta(f)})$ is actually ramified at *all* prime divisors of 2. This proves the first assertion of (iii'). The second assertion of (iii') follows from Corollary 3.5 (a). This proves (iii').

6 Variants and complements

Throughout this section, *K* is a number field. We write O for the ring of integers in *K*. If b is a maximal ideal in O then we write k(b) for the (finite) residue field O/b. As usual, we call char(k(b)) the residual characteristic of b. We write K_b for the b-adic completion of *K* and

$$\mathcal{O}_{\mathfrak{b}} \subset K_{\mathfrak{b}}$$

for the ring of b-adic integers in the field K_b . We consider the subring $\mathcal{O}[1/2] \subset K$ generated by 1/2 over \mathcal{O} . We have

$$\mathfrak{O} \subset \mathfrak{O}\left[\frac{1}{2}\right] \subset K$$

If $\mathfrak{b} \subset \mathfrak{O}$ is a maximal ideal in \mathfrak{O} with odd residual characteristic then

$$\mathfrak{O}\subset\mathfrak{O}\left[\frac{1}{2}\right]\subset\mathfrak{O}_{\mathfrak{b}},$$

the ideal $\mathfrak{bO}[1/2]$ is a maximal ideal in $\mathfrak{O}[1/2]$ and

$$k(\mathfrak{b}) = \mathfrak{O}/\mathfrak{b} = \mathfrak{O}\left[\frac{1}{2}\right]/\mathfrak{b}\mathfrak{O}\left[\frac{1}{2}\right] = \mathfrak{O}_{\mathfrak{b}}/\mathfrak{b}\mathfrak{O}_{\mathfrak{b}}.$$

Lemma 3.1 (II) and its proof admit the following straightforward generalization.

🖉 Springer

Lemma 6.1 Let

$$u(x) = u_{n,B,C}(x) = x^n + Bx + C \in \mathcal{O}[x]$$

be a monic polynomial of degree n > 1 such that $B \neq 0$ and $C \neq 0$. Let \mathfrak{b} be a maximal ideal in 0 that enjoys the following properties:

(i) $BO + CO + \mathfrak{b} = O$, (ii) $nO + BO + \mathfrak{b} = O$, (iii) $(n-1)O + CO + \mathfrak{b} = O$.

Suppose that u(x) has no multiple roots. Let us consider the polynomial

$$\overline{u}(x) = u(x) \mod \mathfrak{b} \in k(\mathfrak{b})[x].$$

Then:

- (a) $\overline{u}(x)$ has, at most, one multiple root in an algebraic closure of $k(\mathfrak{b})$.
- (b) If such a multiple root say, γ, does exist, then n(n − 1)BC ∉ b and γ is a double root of u(x). In addition, γ is a nonzero element of k(b).
- (c) If such a multiple root does exist then either the field extension $K(\mathfrak{R}_u)/K$ is unramified at b or a corresponding inertia subgroup at b in

$$\operatorname{Gal}(K(\mathfrak{R}_u)/K) = \operatorname{Gal}(u/K) \subset \operatorname{Perm}(\mathfrak{R}_u)$$

is generated by a transposition. In both cases the Galois extension $K(\mathfrak{R}_u)/K(\sqrt{\Delta(u)})$ is unramified at all prime divisors of \mathfrak{b} .

Remark 6.2 In the notation of Lemma 6.1, suppose that $\overline{u}(x)$ has *no* multiple roots, i.e., $\Delta(u) \notin \mathfrak{b}$. Then clearly the Galois extension $K(\mathfrak{R}_u)/K$ is unramified at \mathfrak{b} .

Proof We have

$$\overline{u}(x) = x^n + \overline{B}x + \overline{C} \in k(\mathfrak{b})[x],$$

where

$$\overline{B} = B \mod \mathfrak{b} \in k(\mathfrak{b}), \quad \overline{C} = C \mod \mathfrak{b} \in k(\mathfrak{b}).$$

The condition (i) implies that either $\overline{B} \neq 0$ or $\overline{C} \neq 0$. The condition (ii) implies that if $\overline{B} = 0$ then $n \neq 0$ in $k(\mathfrak{b})$. It follows that if $\overline{B} = 0$ then $n\overline{C} \neq 0$.

The condition (iii) implies that if n - 1 = 0 in k(b) then $\overline{C} \neq 0$ (and, of course, $n \neq 0$ in k(b)). On the other hand, if $\overline{C} = 0$ then $n - 1 \neq 0$ in k(b).

Suppose $\overline{u}(x)$ has a multiple root γ in an algebraic closure of $k(\mathfrak{b})$. Then as in the proof of Lemma 3.1 (II),

$$\Delta(\overline{u}) = (-1)^{n(n-1)/2} n^n \overline{C}^{n-1} + (-1)^{(n-1)(n-2)/2} (n-1)^{n-1} \overline{B}^n = 0.$$

This implies that

$$n^{n}\overline{C}^{n-1} = \pm (n-1)^{n-1}\overline{B}^{n}.$$
(5)

This implies that if n - 1 = 0 in k(b) then $\overline{C} = 0$, which is not the case. This proves that $n - 1 \neq 0$ in k(b). On the other hand, if $\overline{B} = 0$ then $\overline{C} \neq 0$ and $n \neq 0$ in k(b). Then (5) implies that $\overline{C} = 0$ and we get a contradiction that proves that $\overline{B} \neq 0$. If n = 0 in k(b) then $n - 1 \neq 0$ in k(b) and (5) implies that $\overline{B} = 0$, which is not the case. The obtained contradiction proves that $n \neq 0$ in k(b). If $\overline{C} = 0$ then (5) implies that $\overline{B} = 0$, which is not the case. This proves that the maximal ideal b does *not* contain n(n - 1)BC.

On the other hand, we have as in the proof of Lemma 3.1 (II) that

$$x \cdot \overline{u}'(x) - n \cdot \overline{u}(x) = -(n-1)\overline{B}x - n\overline{C}$$

and therefore $-(n-1)\overline{B}\gamma - n\overline{C} = 0$. It follows that

$$\gamma = -\frac{n\overline{C}}{(n-1)\overline{B}}$$

is a *nonzero* element of k(b). The second derivative $\overline{u}''(x) = n(n-1)x^{n-2}$ and

$$\overline{u}''(\gamma) = n(n-1)\gamma^{n-2} \neq 0.$$

It follows that γ is a *double* root of $\overline{u}(x)$. This proves (a) and (b).

In order to prove (c), notice that as in the proof of Lemma 3.1 (II)(c), there exists a monic degree n - 2 polynomial $\overline{h}(x) \in k(\mathfrak{b})[x]$ such that

$$\overline{u}(x) = (x - \gamma)^2 \cdot \overline{h}(x)$$

and $\overline{h}(x)$ and $(x - \gamma)^2$ are relatively prime. By Hensel's Lemma, there exist monic polynomials

$$h(x), v(x) \in \mathcal{O}_{\mathfrak{b}}[x], \quad \deg h = n - 2, \quad \deg v = 2$$

such that

$$u(x) = v(x)h(x)$$

and

$$\overline{h}(x) = h(x) \mod \mathfrak{b}, \qquad (x - \gamma)^2 = v(x) \mod \mathfrak{b}.$$

This implies that the splitting field $K_{\mathfrak{b}}(\mathfrak{R}_h)$ of h(x) (over $K_{\mathfrak{b}}$) is an unramified extension of $K_{\mathfrak{b}}$ while the splitting field $K_{\mathfrak{b}}(\mathfrak{R}_u)$ of u(x) (over $K_{\mathfrak{b}}$) is obtained from $K_{\mathfrak{b}}(\mathfrak{R}_h)$ by adjoining to it two (distinct) roots say, α_1 and α_2 of quadratic v(x). The field $K_{\mathfrak{b}}(\mathfrak{R}_u)$

coincides either with $K_{\mathfrak{b}}(\mathfrak{R}_h)$ or with a certain quadratic extension of $K_{\mathfrak{b}}(\mathfrak{R}_h)$, ramified or unramified. It follows that the inertia subgroup *I* of

$$\operatorname{Gal}(K_{\mathfrak{b}}(\mathfrak{R}_u)/K_{\mathfrak{b}}) \subset \operatorname{Perm}(\mathfrak{R}_u)$$

is either trivial or is generated by the *transposition* that permutes α_1 and α_2 (and leaves invariant every root of h(x)). In the former case $K(\mathfrak{R}_u)/K$ is unramified at \mathfrak{b} while in the latter one an inertia subgroup in

$$\operatorname{Gal}(K(\mathfrak{R}_u)/K) \subset \operatorname{Perm}(\mathfrak{R}_u)$$

that corresponds to b is generated by a transposition. In both cases the Galois (sub)group $\operatorname{Gal}\left(K(\mathfrak{R}_u)/K\left(\sqrt{\Delta(u)}\right)\right)$ does not contain transpositions (see 1.1). This implies that $K(\mathfrak{R}_u)/K\left(\sqrt{\Delta(u)}\right)$ is *unramified* at all prime divisors of b.

Corollary 3.5 admits the following partial generalization.

Lemma 6.3 Let K be a number field and O be its ring of integers. Let

$$u(x) = u_{n,B,C}(x) = x^n + Bx + C \in \mathcal{O}[x]$$

be a monic polynomial without multiple roots of degree n > 1 such that both B and C are not zeros. Suppose that there is a nonnegative integer N such that

 $2^N \mathcal{O} \subset B\mathcal{O} + C\mathcal{O}, \quad 2^N \mathcal{O} \subset n\mathcal{O} + B\mathcal{O}, \quad 2^N \mathcal{O} \subset (n-1)\mathcal{O} + C\mathcal{O}.$

Suppose that there is a nonnegative integer M such that the discriminant $D = \Delta(u) = 2^{2M} \cdot D_0$ with $D_0 \in \mathbb{O}$. Assume also that D, D_0 and K enjoy the following properties:

- (i) *D* is not a square in *K* and $D_0 1 \in 40$.
- (ii) The class number of K is odd (e.g., O is a principal ideal domain).
- (iii) Either K is totally imaginary, i.e., it does not admit an embedding into the field of real numbers or K is totally real and D_0 is totally positive.

Then:

- (a) The quadratic extension $K(\sqrt{\Delta(u)})/K$ is unramified at every prime divisor of 2. The Galois extension $K(\mathfrak{R}_u)/K(\sqrt{\Delta(u)})$ is unramified at every prime ideal b of odd residual characteristic.
- (b) There exists a maximal ideal b ⊂ 0 with residue field k(b) of odd characteristic that enjoys the following properties:
 - $D_0 \in \mathfrak{b}$, the polynomial $u(x)\mathfrak{b} \mod \in k(\mathfrak{b})[x]$ has exactly one multiple root and its multiplicity is 2. In addition, this root lies in $k(\mathfrak{b})$.
 - The field extension $K(\mathfrak{R}_u)/K$ is ramified at \mathfrak{b} and the Galois group

$$\operatorname{Gal}(K(\mathfrak{R}_u)/K) = \operatorname{Gal}(u/K) \subset \operatorname{Perm}(\mathfrak{R}_u)$$

Deringer

contains a transposition. In particular, if Gal(u/K) is doubly transitive then

$$\operatorname{Gal}(u/\mathrm{K}) = \operatorname{Perm}(\mathfrak{R}_f) \cong \mathbf{S}_n$$

and

$$\operatorname{Gal}\left(K(\mathfrak{R}_u)/K\left(\sqrt{\Delta(u)}\right)\right) = \mathbf{A}_n.$$

Proof Let us prove (a). Clearly,

$$E = K\left(\sqrt{D_0}\right) = K\left(\sqrt{D}\right) = K\left(\sqrt{\Delta(u)}\right) \subset K(\mathfrak{R}_u)$$

is a quadratic extension of K. Notice that $\theta = (1 + \sqrt{D_0})/2 \in E$ is a root of the quadratic equation

$$v_2(x) = x^2 - x + \frac{1 - D_0}{4} \in \mathcal{O}[x]$$

and therefore is an algebraic integer. In addition, $E = K(\theta)$.

If a maximal ideal b₂ in O has residual characteristic 2 then the quadratic polynomial

$$v_2(x) \mod \mathfrak{b}_2 = x^2 - x + \left(\frac{1 - D_0}{4}\right) \mod \mathfrak{b}_2 \in k(\mathfrak{b}_2)[x]$$

has no multiple roots, because its derivative is a nonzero constant -1. This implies that E/K is unramified at all prime divisors of 2. On the other hand, the conditions of Lemma 6.1 hold for all maximal ideals b of \mathcal{O} with *odd* residual characteristic. Now Remark 6.2 and Lemma 6.1 (c) imply that the Galois extension $K(\mathfrak{R}_u)/K(\sqrt{\Delta(u)})$ is unramified at every b of odd residual characteristic. This proves (a).

In order to prove (b), notice that the condition (iii) implies that either all archimedean places of both *E* and *K* are complex or all archimedean places of both *E* and *K* are real. This implies that E/K is unramified at all infinite primes. Since the class number of *K* is odd, the classical results about Hilbert class fields [6, Chapter 2, Section 1.2] imply that there is a maximal ideal $\mathfrak{b} \subset \mathfrak{O}$ such that $E/K = K(\sqrt{D})/K$ is *ramified* at all prime divisors of 2, the residual characteristic of \mathfrak{b} is *odd*, i.e., $2 \notin \mathfrak{b}$. This implies that

$$\Delta(u) = D \in \mathfrak{b}.$$

Since $D = 2^{2M} \cdot D_0$ and b is a prime (actually, maximal) ideal in \mathcal{O} , we have $D_0 \in \mathfrak{b}$. It also follows that

$$u(x) \mod \mathfrak{b} \in k(\mathfrak{b})[x]$$

has a multiple root. Now we are in a position to apply Lemma 6.1. Since $K(\mathfrak{R}_u) \supset E$, the field extension $K(\mathfrak{R}_u)/K$ is *ramified* at b. Applying Lemma 6.1, we conclude

that u(x) mod b has exactly one multiple root, this root is double and lies in k(b). In addition,

$$\operatorname{Gal}(K(\mathfrak{R}_u)/K) \subset \operatorname{Perm}(\mathfrak{R}_u)$$

contains a transposition. This implies that if $\operatorname{Gal}(K(\mathfrak{R}_u)/K)$ is doubly transitive then $\operatorname{Gal}(K(\mathfrak{R}_u)/K)$ coincides with $\operatorname{Perm}(\mathfrak{R}_u) \cong \mathbf{S}_n$. Of course, this implies that $\operatorname{Gal}(K(\mathfrak{R}_u)/K(\sqrt{\Delta(u)})) = \mathbf{A}_n$.

6.4 Generalized Mori quadruples Let us consider a quadruple $(g, \mathfrak{p}, \mathbf{b}, \mathbf{c})$ where g is a positive integer, \mathfrak{p} is a maximal ideal in \mathfrak{O} while \mathbf{b} and \mathbf{c} are elements of \mathfrak{O} that enjoy the following properties:

- The residue field k(p) = 0/p is a finite field of *odd* characteristic. If q is the cardinality of k(p) then every prime divisor of g is also a divisor of (q 1)/2. In particular, if g is even then q 1 is divisible by 4.
- The residue **b** mod **p** is a primitive element of k(p), i.e., it has multiplicative order q 1. In particular,

$$\mathbf{b}\mathbb{O} + \mathbf{p} = \mathbb{O}.$$

The conditions (i) and (ii) imply that for each prime divisor d of g the residue **b** mod p is *not* a *d*th power in k(p). Since q - 1 is even, **b** mod p is *not* a square in k(p). So, if d is a prime divisor of 2g then **b** mod p is *not* a *d*th power in k(p). If 2g is divisible by 4 then g is even and q - 1 is divisible by 4, i.e., -1 is a square in k(p). It follows that $-4b \mod p$ is *not* a square in k(p). Thanks to [7, Thereom 9.1, Chapter VI, Section 9], the last two assertions imply that the polynomial

$$x^{2g} - \mathbf{b} \mod \mathfrak{p} \in k(\mathfrak{p})[x]$$

is irreducible over k(p). This implies that its Galois group over (the finite field) k(p) is an order 2g cyclic group.

• $\mathbf{c} \in \mathbf{p}, \mathbf{c} - 1 \in 20$ and

$$\mathcal{O} = \mathbf{b}\mathcal{O} + \mathbf{c}\mathcal{O} = \mathbf{b}\mathcal{O} + (2g+1)\mathcal{O} = 2g\mathcal{O} + \mathbf{c}\mathcal{O}.$$

We call such a quadruple a *generalized Mori quadruple* (in *K*).

Example 6.5 Suppose that *K* and *g* are given. By Dirichlet's Theorem about primes in arithmetic progressions, there is a prime *p* that does *not* divide 2g + 1 and is congruent to 1 modulo 2g. (In fact, there are infinitely many such primes.) Clearly, *p* is *odd*. Let us choose a maximal ideal \mathfrak{p} of \mathfrak{O} that contains *p* and denote by *q* the cardinality of the finite residue field $k(\mathfrak{p})$. Then char $(k(\mathfrak{p})) = p$ and *q* is a power of *p*. This implies that q - 1 is divisible by p - 1 and therefore is divisible by 2g. Let us choose a generator $\widetilde{\mathbf{b}} \in k(\mathfrak{p})$ of the multiplicative cyclic group $k(\mathfrak{p})^*$. Let *r* be a nonzero integer that is

relatively prime to 2g + 1. (E.g., $r = \pm 1, \pm 2$.) Using Chinese Remainder Theorem, one may find $\mathbf{b} \in \mathbb{O}$ such that

$$\mathbf{b} \mod \mathbf{p} = \mathbf{b}, \quad \mathbf{b} - r \in (2g+1)\mathbb{O}.$$

(Clearly, $\mathbf{b} \notin \mathfrak{p}$.) Now the same theorem allows us to find $\mathbf{c} \in \mathfrak{p} \subset \mathfrak{O}$ such that $\mathbf{c} - 1 \in 2g\mathbf{b}\mathfrak{O}$. Then $(g, \mathfrak{p}, \mathbf{b}, \mathbf{c})$ is a generalized Mori quadruple in K.

Let us consider the polynomials

$$F(x) = F_{g,\mathbf{p},\mathbf{b},\mathbf{c}}(x) = x^{2g+1} - \mathbf{b}x - \frac{\mathbf{c}}{4} \in \mathcal{O}\left[\frac{1}{2}\right][x] \subset K[x]$$

and

$$U(x) = 2^{2g+1} F\left(\frac{x}{2}\right) = x^{2g+1} - 2^{2g} \mathbf{b} x - 2^{2g-1} \mathbf{c} \in \mathcal{O}[x] \subset K[x].$$

Theorem 6.6 Let $(g, \mathfrak{p}, \mathbf{b}, \mathbf{c})$ be a generalized Mori quadruple in K. Assume also that there exists a maximal ideal $\mathfrak{b}_2 \subset \mathfrak{O}$ of residual characteristic 2 such that the ramification index $e(\mathfrak{b}_2)$ of \mathfrak{b}_2 (over 2) in K/\mathbb{Q} is relatively prime to 2g + 1. Then:

- (i) The polynomial $F(x) = F_{g,\mathbf{p},\mathbf{b},\mathbf{c}}(x) \in K[x]$ is irreducible over $K_{\mathfrak{b}_2}$ and therefore over K. In addition, the Galois extension $K(\mathfrak{R}_F)/K$ is ramified at \mathfrak{b}_2 .
- (ii) The transitive Galois group

$$\operatorname{Gal}(F/K) = \operatorname{Gal}(K(\mathfrak{R}_F)/K) \subset \operatorname{Perm}(\mathfrak{R}_F) = \mathbf{S}_{2g+1}$$

contains a cycle of length 2g. In particular, Gal(F/K) is doubly transitive and is not contained in A_{2g+1} , and $\Delta(F)$ is not a square in K.

- (iii) Assume that K is a totally imaginary number field with odd class number. Then $\operatorname{Gal}(F/K) = \operatorname{Perm}(\mathfrak{R}_F)$. If, in addition, g > 1 then $\operatorname{End}(J(C_F)) = \mathbb{Z}$.
- (iv) Assume that K is a totally imaginary number field with odd class number and g > 1. Then:
 - For all primes ℓ the image ρ_{ℓ,F}(Gal(K)) is an open subgroup of finite index in Gp(T_ℓ(J(C_F)), e_ℓ).
 - Let L be a number field that contains K and Gal(L) be the absolute Galois group of L, which we view as an open subgroup of finite index in Gal(L). Then for all but finitely many primes ℓ the image $\rho_{\ell,F}(\text{Gal}(L))$ coincides with $\operatorname{Gp}(T_{\ell}(J(C_F)), e_{\ell})$.

Remark 6.7 If *K* is a quadratic field then for every maximal ideal $\mathfrak{b}_2 \subset \mathfrak{O}$ (with residual characteristic 2) the ramification index $e(\mathfrak{b}_2)$ of \mathfrak{b}_2 in K/\mathbb{Q} is either 1 or 2: in both cases it is relatively prime to odd 2g+1. This implies that if *K* is an *imaginary quadratic field* with *odd class number* then all conclusions of Theorem 6.6 hold for every generalized Mori quadruple $(g, \mathfrak{p}, \mathbf{b}, \mathbf{c})$. In particular, the Galois extension $K(\mathfrak{R}_F)/K$ is *ramified* at *every* \mathfrak{b}_2 .

One may find the list of imaginary quadratic fields with *small*, ≤ 23 , odd class number in [1, pp. 322–324]; see also [16, Table 4, p. 936].

Proof of Theorem 6.6 The b_2 -adic Newton polygon of F(x) consists of one *segment* that connects the points $(0, -2e(b_2))$ and (2g+1, 0), which are its only integer points, because $e(b_2)$ and 2g + 1 are relatively prime and therefore $2e(b_2)$ and 2g + 1 are relatively prime. Now the irreducibility of F(x) over K_{b_2} follows from Eisenstein–Dumas Criterion [9, Corollary 3.6, p. 316], [4, p. 502]. This proves (i). It also proves that the Galois extension $K(\mathfrak{R}_F)/K$ is *ramified* at b_2 .

In order to prove (ii), let us consider the reduction

$$\widetilde{F}(x) = F(x) \mod \mathfrak{pO}\left[\frac{1}{2}\right] = x^{2g+1} - \widetilde{\mathbf{b}}x \in k(\mathfrak{p})[x]$$

where $\widetilde{\mathbf{b}} = \mathbf{b} \mod \mathfrak{p} \in k(\mathfrak{p})$. So,

$$\widetilde{F}(x) = x(x^{2g} - \widetilde{\mathbf{b}}) \in k(\mathfrak{p})[x].$$

We have already seen in 6.4 that $x^{2g} - \tilde{\mathbf{b}}$ is irreducible over $k(\mathfrak{p})$ and its Galois group is an order 2g cyclic group. We also know that $\tilde{\mathbf{b}} \neq 0$ and therefore the polynomials x and $x^{2g} - \tilde{\mathbf{b}}$ are relatively prime. This implies that $K(\mathfrak{R}_F)/K$ is unramified at \mathfrak{p} and a corresponding *Frobenius element* in Gal($K(\mathfrak{R}_F)/K$) \subset Perm(\mathfrak{R}_F) is a cycle of length 2g. This proves (ii). (Compare with arguments on [8, p. 107].)

The map $\alpha \mapsto 2\alpha$ is a Gal(*K*)-equivariant bijection between the sets of roots \mathfrak{R}_F and \mathfrak{R}_U , which induces a group isomorphism between permutation groups $\operatorname{Gal}(\mathfrak{R}_F) \subset \operatorname{Perm}(\mathfrak{R}_F)$ and $\operatorname{Gal}(\mathfrak{R}_U) \subset \operatorname{Perm}(\mathfrak{R}_U)$. In particular, the double transitivity of $\operatorname{Gal}(\mathfrak{R}_F)$ implies the double transitivity of $\operatorname{Gal}(\mathfrak{R}_U)$. On the other hand,

$$\Delta(U) = 2^{(2g+1)2g} \Delta(F) = \left[2^{(2g+1)g}\right]^2 \Delta(F).$$

This implies that $\Delta(U)$ is *not* a square in *K* as well. The discriminant $\Delta(U)$ is given by the formula, Remark 3.2,

$$D = \Delta(U) = (-1)^{(2g+1)2g/2} (2g+1)^{2g+1} [-2^{2g-1}\mathbf{c}]^{2g} + (-1)^{2g(2g-1)/2} (2g)^{2g} [-2^{2g}\mathfrak{b}]^{2g+1} = (-1)^g 2^{2g(2g-1)} [(2g+1)^{2g+1} \mathbf{c}^{2g} - 2^{6g} g^{2g} \mathfrak{b}^{2g+1}] = 2^{2[g(2g-1)]} \{ (-1)^g [(2g+1)^{2g+1} \mathbf{c}^{2g} - 2^{6g} g^{2g} \mathfrak{b}^{2g+1}] \}.$$

We have $D = 2^{2M} D_0$, where M = g(2g - 1) is a positive integer and

$$D_0 = (-1)^g \big[(2g+1)^{2g+1} \mathbf{c}^{2g} - 2^{6g} g^{2g} \mathfrak{b}^{2g+1} \big] \in \mathcal{O}.$$

Since $\mathbf{c} - 1 \in 20$, we have $\mathbf{c}^2 - 1 \in 40$ and

$$D_0 \equiv (-1)^g (2g+1)^{2g+1} \mod 40$$

Since $(2g+1)^{2g} = [(2g+1)^2]^g \equiv 1 \mod 4$, we conclude $D_0 \equiv (-1)^g (2g+1) \mod 40$. This implies that

$$D_0 - 1 \in 40$$
.

Applying Lemma 6.3 to

$$n = 2g + 1, \qquad B = -2^{2g}\mathbf{b}, \qquad C = -2^{2g-1}\mathbf{c},$$

$$u(x) = U(x), \qquad M = g(2g-1), \qquad N = 2g,$$

we conclude that doubly transitive $\operatorname{Gal}(U/K)$ coincides with $\operatorname{Perm}(\mathfrak{R}_U)$ and therefore $\operatorname{Gal}(F/K)$ coincides with $\operatorname{Perm}(\mathfrak{R}_F) \cong S_{2g+1}$. If g > 1 then Theorem 1.2 tells us that $\operatorname{End}(J(C_F)) = \mathbb{Z}$. This proves (iii). We also obtain that there exists a maximal ideal $\mathfrak{b} \subset \mathfrak{O}$ with odd residual characteristic such that $U(x) \mod \mathfrak{b} \in k(\mathfrak{b})[x]$ has exactly one multiple root, this root is double and lies in $k(\mathfrak{b})$. Since

$$F(x) = \frac{U(2x)}{2^{2g+1}},$$

we obtain that

$$F(x) \mod \mathfrak{bO}\left[\frac{1}{2}\right] = \frac{U(2x)}{2^{2g+1}} \mod \mathfrak{b} \in k(\mathfrak{b})[x].$$

This implies that the polynomial $F(x) \mod \mathfrak{bO}[1/2] \in k(\mathfrak{b})[x]$ has exactly one multiple root, this root is double and lies in $k(\mathfrak{b})$. The properties of $F(x) \mod \mathfrak{bO}[1/2]$ imply that $J(C_F)$ has a *semistable reduction* at \mathfrak{b} with *toric dimension* 1. Now it follows from [21, Theorem 4.3] that for for all primes ℓ the image $\rho_{\ell,F}(\operatorname{Gal}(K))$ is an open subgroup of finite index in $\operatorname{Gp}(T_{\ell}(J(C_F)), e_{\ell})$. It follows from [5, Theorem 1] that if *L* is a number field containing *K* then for all but finitely many primes ℓ the image $\rho_{\ell,F}(\operatorname{Gal}(L))$ coincides with $\operatorname{Gp}(T_{\ell}(J(C_F)), e_{\ell})$. This proves (iv).

Corollary 6.8 *We keep the notation of Theorem* 6.6. *Let* K *be an imaginary quadratic field with odd class number. Let* $(g, \mathfrak{p}, \mathbf{b}, \mathbf{c})$ *be a generalized Mori quadruple in* K *and* $F(x) = F_{g,\mathfrak{p},\mathbf{b},\mathbf{c}}(x) \in K[x]$. *Then*

$$\operatorname{Gal}\left(K(\mathfrak{R}_F)/K(\sqrt{\Delta(F)})\right) = \mathbf{A}_{2g+1}$$

and the Galois extension $K(\mathfrak{R}_F)/K(\sqrt{\Delta(F)})$ is unramified everywhere outside 2 and ramified at all prime divisors of 2.

Proof As above, let us consider the polynomial

$$U(x) = 2^{2g+1} F\left(\frac{x}{2}\right) = x^{2g+1} - 2^{2g} \mathbf{b} x - 2^{2g-1} \mathbf{c} \in \mathcal{O}[x] \subset K[x].$$

We have $K(\mathfrak{R}_F) = K(\mathfrak{R}_U), K(\sqrt{\Delta(F)}) = K(\sqrt{\Delta(U)})$. Since

$$\mathbf{S}_{2g+1} = \operatorname{Perm}(\mathfrak{R}_U) = \operatorname{Gal}(U/K) = \operatorname{Gal}(K(\mathfrak{R}_U)/K),$$

we have

$$\operatorname{Gal}\left(K(\mathfrak{R}_U)/K\left(\sqrt{\Delta(U)}\right)\right) = \mathbf{A}_{2g+1}.$$

It follows from Remark 6.7 that the Galois extension $K(\mathfrak{R}_U)/K$ is *ramified* at every prime divisor of 2 (in *K*). On the other hand, Lemma 6.3 (a) (applied to u(x) = U(x)) tells us that the quadratic extension $K(\sqrt{\Delta(U)})/K$ is *unramified* at every prime divisor of 2 (in *K*). Since all the field extensions involved are Galois, $K(\mathfrak{R}_U)/K(\sqrt{\Delta(U)})$ is *ramified* at every prime divisor of 2 (in $K(\sqrt{\Delta(U)})$).

Since *K* is purely imaginary, $K(\sqrt{\Delta(U)})$ is also purely imaginary and therefore (its every field extension, including) $K(\mathfrak{R}_U)$ is unramified at all infinite places (in $K(\sqrt{\Delta(U)})$).

Remark 6.2 and Lemma 6.3 (a) (applied to u(x) = U(x)) imply that the field extension $K(\mathfrak{R}_U)/K(\sqrt{\Delta(U)})$ is *unramified* at all maximal ideals \mathfrak{b} in \mathfrak{O} with odd residual characteristic.

7 Corrigendum to [20]

- Page 660, the 6th displayed formula: insert \subset between $\operatorname{End}_{\operatorname{Gal}(K)}V_{\ell}(X)$ and $\operatorname{End}_{\mathbb{Q}_{\ell}}V_{\ell}(X)$.
- Page 662, Theorem 2.6, line 3: r_1 should be r_2 .
- Page 664, Remark 2.16: The reference to [23, Theorem 1.5] should be replaced by [23, Theorem 1].
- Page 664, Theorem 2.20: The following additional condition on ℓ was inadvertently omitted:
- "(iii) If C is the center of End(X) then $C/\ell C$ is the center of $End(X)/\ell End(X)$." In addition, "be" on the last line should be "is".
- Page 666, Theorem. 3.3, line 2: ℓ should be assumed to be in *P*, i.e. one should read "*Then for all but finitely many* $\ell \in P \dots$ ". In addition, X_n should be X_ℓ throughout lines 3–6.
- Page 668, Lemma 3.9, line 1: $Isog_P$ should be Is_P .
- Page 668, Theorem 3.10, line 1: replace $\text{Isog}_P((X \times X^t)^8, K, 1)$ by $\text{Is}_P((X \times X^t)^4, K, 1)$.
- Page 670, Section 5.1, the first displayed formula: *t* should be *g*.
- Page 672, line 9: X'_{ℓ} should be X_{ℓ} .

(The author is grateful to Kestutis Cesnavicius for sending this list of typos.)

Acknowledgments The author is grateful to the referee, whose comments helped to improve the exposition.

References

- Arno, S., Robinson, M.L., Wheeler, F.S.: Imaginary quadratic fields with small odd class number. Acta Arith. 83(4), 295–330 (1998)
- Cohen, S.D., Movahhedi, A., Salinier, A.: Double transitivity of Galois groups of trinomials. Acta Arith. 82(1), 1–15 (1997)
- 3. Faddeev, D.K., Sominsky, I.S.: Problems in Higher Algebra, 5th edn. Mir, Moscow (1972)
- Gao, Sh: Absolute irreducibility of polynomials via Newton polytopes. J. Algebra 237(2), 501–520 (2001)
- Hall, Ch.: An open-image theorem for a general class of abelian varieties. Bull. Lond. Math. Soc. 43(4), 703–711 (2011)
- 6. Koch, H.: Number Theory II. Encyclopaedia of Mathematical Sciences, vol. 62. Springer, Berlin (1992)
- 7. Lang, S.: Algebra, 3rd edn. Addison-Wesley, Reading (1993)
- 8. Mori, Sh.: The endomorphism rings of some abelian varieties II. Jpn. J. Math. 3(1), 105–109 (1977)
- Mott, J.L.: Eisenstein-type irreducibility criteria. In: Anderson, D.F., Dobbs, D.E. (eds.) Zero-Dimensional Commutative Rings (Knoxville, 1994). Lecture Notes in Pure and Applied Mathematics, vol. 171, pp. 307–329. Marcel Dekker, New York (1995)
- Mumford, D.: Abelian Varieties. Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, 2nd edn. Oxford University Press, Oxford (1974)
- 11. Osada, H.: The Galois groups of the polynomials $X^n + aX^l + b$. J. Number Theory **25**(2), 230–238 (1987)
- Ribet, K.A.: Endomorphisms of semi-stable abelian varieties over number fields. Ann. Math. 101(3), 555–562 (1975)
- 13. Selmer, E.S.: On the irreducibility of certain trinomials. Math. Scand. 4, 287–302 (1956)
- 14. Serre, J.-P.: Abelian *l*-Adic Representations and Elliptic Curves. Advanced Book Classics, vol. 2, 2nd edn. Addison-Wesley, Redwood City (1989)
- Serre, J.-P.: Topics in Galois Theory. Research Notes in Mathematics, vol. 1. Jones and Bartlett, Boston (1992)
- 16. Watkins, M.: Class numbers of imaginary quadratic fields. Math. Comp. 73(246), 907–938 (2004)
- Zarhin, Yu.G.: Hyperelliptic jacobians without complex multiplication. Math. Res. Lett. 7(1), 123–132 (2000)
- Zarhin, Yu.G.: Very simple 2-adic representations and hyperelliptic jacobians. Mosc. Math. J. 2(2), 403–431 (2002)
- Zarhin, Yu.G.: Families of absolutely simple hyperelliptic jacobians. Proc. Lond. Math. Soc. 100(1), 24–54 (2010)
- Zarhin, Yu.G.: Abelian varieties over fields of finite characteristic. Cent. Eur. J. Math. 12(5), 659–674 (2014)
- Zarhin, Yu.G.: Two-dimensional families of hyperelliptic jacobians with big monodromy. Trans. Amer. Math. Soc. (to appear). arXiv:1310.6532