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Abstract The goal of this short paper is to give conditions for the completeness of the
Binet–Legendre metric in Finsler geometry. The case of the Funk and Hilbert metrics
in a convex domain are discussed.
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1 Introduction and statement of the main result

Given a Finsler manifold (M, F), there are several natural ways to construct a Rie-
mannian metric g on the manifold M that is associated to the given Finsler metric.
Recently, such constructions were shown to be a useful tool in Finsler geometry, see
for example [24–26,34,35].

Remarkably, in most results of all these papers, only the following two properties
of the constructions were used:
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• The construction is pointwise: the associated Riemannian metric g, restricted to
any tangent space of the manifold M , depends only on the restriction of the Finsler
metric to this tangent space.

• The construction is homogenous: If we multiply the Finsler metric by a conformal
factor λ, the associated Riemannian metric is multiplied by λ2.

In particular, the proofs of most results in the papers [24–26,35] could be based on any
construction of Riemannian metric satisfying the above two conditions, at least when
smooth and strictly convex Finsler metrics are considered. Several such constructions
have been proposed in recent years. One of the oldest construction seems to be that
of Vincze in [36]. The metric in this paper, called the associated Riemannian metric,
also satisfies the above requirements, see [36, Remark 3 (ii)]. We refer to [1,17,37]
for discussions of further examples.

The construction in [26] is called the Binet–Legendre metric1 and has proven to be
a flexible and useful tool in Finsler geometry, its definition will be recalled in Sect. 2.2.

Our goal in the present paper is to relate the completeness, or incompleteness, of
the Binet–Legendre metric to that of the given Finsler metric. Our main result is in
fact the following stronger theorem.

Theorem 1.1 (Main Theorem) Let (M, F) be a continuous Finsler manifold and gBL

be its Binet–Legendre metric, then there exists C1 ∈ R such that for any x ∈ M and
any ξ ∈ Tx M we have √

gBL(ξ, ξ) ≤ C1 · F(x, ξ). (1)

If the Finsler metric F is quasi-reversible, then there exist constants C2, C3 > 0 such
that

C2 · F(x, ξ) ≤ √
gBL(ξ, ξ) ≤ C3 · F(x, ξ),

for all (x, ξ) ∈ T M. In particular gBL and F are bilipshitz equivalent.

Remarks • Our proof will give explicit (though perhaps not optimal) values for
the constants C1, C2, C3. The constants C1 and C3 play the same role, but in the
reversible case we have a better constant (namely C3 ≤ C1/

√
n).

• Our theorem implies that if the Binet–Legendre metric associated to a Finsler
metric F is complete, then the Finsler metric is also complete, see Corollary 4.2.
The converse statement holds in the case of quasi-reversible metric but not in
general. We illustrate this phenomenon by an example in Sect. 5.3.

• The quasi-reversibility hypothesis in the second statement is necessary. For
instance the Funk metric (discussed below) is forward complete but not backward
complete, hence it cannot be bilipschitz equivalent to any Riemannian metric. In
fact it is quite clear from Main Theorem that a Finsler metric is bilipschitz to
a Riemannian metric if and only if it is quasi-reversible (note the “if” direction
follows from Main Theorem, while the “only if” direction is obvious).

1 The construction is slightly older and appeared in [12] but its usefulness was overseen until it was
reinvented in [26].
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Completeness and incompleteness of the Binet–Legendre metric 485

• The associated Riemannian metrics constructed in the papers [24,25,35] involve
the second derivatives of the given Finlser metric and they generally do not satisfy
(1).

The rest of the paper is organized as follows: In Sect. 2 we recall some basic defin-
itions from Finsler geometry and we recall the definition and some basic properties
of the Binet–Legendre metric. In Sect. 3 we discuss another auxiliary Riemannian
metric, based on the John ellipsoid from convex geometry, and we use it as a tool to
prove Theorem 1.1, in Sect. 4, where we also derive some of its simple but important
consequences.

In Sect. 5 we discuss some examples. We first recall in Sect. 5.1 the definition
of Zermelo metrics in Euclidean domains and in particular the Funk and reverse
Funk metrics. In the next Sect. 5.2, we explicitly compute the Binet–Legendre metric
associated to a Zermelo metric and in Sect. 5.3 we construct an example of a complete
Finsler metric with incomplete Binet–Legendre metric. In Sect. 5.4 we discuss the
Hilbert Finslermetric in a convex domain andwe use it to compare theBinet–Legendre
metric to the so-called affine metric, which is another important Riemannian metric
defined in an arbitrary convex domain. In an appendix we show by an example that the
Riemannian metric obtained from the John ellipsoid construction may be nonsmooth,
even if the initial Finsler metric is smooth.

2 A brief review of Finsler geometry

2.1 Basic definitions: Finsler manifolds, completeness and quasi-reversibility

A Finsler metric on a smooth manifold M is a continuous function F : T M → [0,∞)

such that for every point x ∈ M the restriction Fx = F|Tx M is a Minkowski norm, that
is, for any ξ, η ∈ Tx M it satisfies the following properties:

• Fx (ξ) > 0 if ξ �= 0,
• Fx (ξ + η) ≤ Fx (ξ) + Fx (η),
• Fx (λξ) = λFx (ξ) for all λ ≥ 0.

The Finsler metric is said to be c-quasi-reversible, 1 ≤ c < ∞, if F(x,−ξ) ≤
c · F(x, ξ) for any (x, ξ) ∈ T M . It is called reversible if it is 1-quasi-reversible, clearly
F is reversible if and only if Fx is a norm in every tangent space. Classical books
introducing to Finsler geometry are [4,16,23]; note however that these references
assume further restrictions on the Finsler metric F , namely that it is smooth on the
complement of the zero section of T M and that the vertical Hessian of F2 is positive
definite. The results in the present paper do not require these conditions and our
approach is more similar to that in [8] or [30, Chapter 3].

The distance d(x, y) between two points x and y on a Finsler manifold (M, F) is
defined to be the infimum of the length

�(γ ) =
∫ 1

0
F(γ (t), γ̇ (t)) dt.
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486 V. S. Matveev, M. Troyanov

of all smooth curves γ : [0, 1] → M joining these two points. This distance satisfies
the axioms of a metric, except perhaps the symmetry. In fact the condition d(x, y) =
d(y, x) is satisfied if and only if the Finsler metric is reversible. Together with the
distance comes the notion of completeness: the Finsler manifold (M, F) is said to be
forward complete if every forward Cauchy sequence converges. A sequence {xi } ⊆ M
is forward Cauchy if for any ε > 0, there exists an integer N such that d(xi , xi+k) < ε

for any i ≥ N and k ≥ 0 (we similarly define backward Cauchy sequences by the
condition d(xi+k, xi ) < ε, and the corresponding notion of backward completeness).
For a quasi-reversible Finsler metric, forward completeness is evidently equivalent to
backward completeness and will simply be called completeness.

A Finsler manifold is equipped with a natural measure: Recall first that a density
on the differentiable manifold M is a Borel measure dν such that on any coordinate
chart φ : U ⊂ M → R

n , the measure φ∗dν is absolutely continuous with respect to
the Lebesgue measure, that is it can be written as

φ∗dν = a(x)dx1dx2 . . . dxn, (2)

where x1, x2, . . . , xn are the coordinates defined by the chart φ and a(x) is a positive
measurable function.

A density on themanifold M naturally induces a Lebesguemeasure dτx on (almost)
each tangent space Tx M , this measure is given by

dτx = a(x)dξ1dξ2 . . . dξn,

where ξ1, ξ2, . . . , ξn are the natural coordinates on Tx M associated to x1, x2, . . . , xn

and a(x) is given by (2).
The Busemann measure dμF on the Finsler manifold (Mn, F) is then defined to

be the unique density on M such that for every x ∈ M the volume of the Finsler unit
ball �x ⊂ Tx M coincides with the volume of the standard n-dimensional Euclidean
unit ball, which we denote by ωn . It can be calculated from the formula

dμF = ωn

ν(�x )
dν,

where dν is an arbitrary continuous density on M . It is obvious that the Busemann
measure dμF is independent of the chosen density dν. It is also clear that in the special
case where F = √

g for some Riemannian metric g, the Busemann measure coincides
with the Riemannian volume measure, that is dμF = dvolg .

It is also known, but somewhat delicate to prove, that if F is a reversible Finsler
metric on M , then dμF coincides with the n-dimensional Hausdorff measure of the
metric space associated to the Finsler structure, see [2,8–10].

2.2 The Binet–Legendre metric

The Binet–Legendre metric is a canonical Riemannian metric attached to any Finsler
metric on a smooth manifold, it has been invented and studied in [12,26]. Let us recall
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Completeness and incompleteness of the Binet–Legendre metric 487

the construction: Given a Finsler manifold (M, F) and a point x in M , we denote by
�x = {ξ ∈ Tx M : F(x, ξ) < 1} the F-unit tangent ball at x . We then define a scalar
product on the cotangent space T ∗

x (M) by

g∗
BL(θ, ϕ) = n + 2

λ(�x )

∫

�x

θ(η) ·ϕ(η) dλ(η),

whereλ is aLebesguemeasure on Tx M . Note that this is (up to a constant) the L2-scalar
product of the linear functions θ and φ restricted to �x .

Definition 2.1 The Binet–Legendre metric gBL associated to the Finsler metric F is
the Riemannian metric dual to the the scalar product g∗

BL defined above on T ∗
x (M).

The Binet–Legendre metric enjoys a number of important properties, let us state in
particular the following theorem.

Theorem 2.2 If (M, F) is a Finsler manifold and gBL is its associated Binet–Legendre
metric, then

(a) If F is of class Ck on the complement of the zero section of T M, then gBL is a
Riemannian metric of class Ck.

(b) If ϕ is an isometry of (M, F), then it is also an isometry of (M, gBL).
(c) If F1, F2 are two Finsler metrics on M such that (1/λ) · F1 ≤ F2 ≤ λ · F1 for some

function λ : M → R+, then the corresponding Binet–Legendre metrics satisfy

1

λ2n
·gBL1 ≤ gBL2 ≤ λ2n ·gBL1.

(d) If the Finsler metric F is derived from a Riemannian metric g, that is F = √
g,

then gBL = g.

We refer to [26, Theorem 2.4] for the first statement, which is in fact proven for the
wider class of partially smooth Finsler metrics. The second statement is obvious and
the third and fourth statements are proved in [26, Proposition 12.1].

3 The John metric on a Finsler manifold

The proof of Theorem 1.1 will use another auxiliary Riemannian metric, which we
call the John metric, that is also associated to a Finsler metric F on the manifold M .
To explain this metric, recall that any open bounded convex domain � ⊂ R

n contains
a unique ellipsoid of largest volume [18]. This is called the John ellipsoid and we
denoted it by J [�] ⊆ �. A careful study of the uniqueness proof shows that the John
ellipsoid depends continuously on the convex body �. If � is symmetric with respect
to the origin (that is −� = �), then J [�] is centered at the origin and we have

J [�] ⊆ � ⊆ √
n · J [�], (3)

see [3], [6, p. 214] or [33, Section 3.3].
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488 V. S. Matveev, M. Troyanov

The center of the John ellipsoid is called the John point of � and denoted by Q�,
we then define the centered John ellipsoid of � as

J0[�] = J [�] − Q�.

It was proved by John in [18, Theorem III], that for an arbitrary open bounded convex
set � ⊆ R

n , we have
� − Q� ⊆ n · J0[�], (4)

see also [6, p. 210]. Recall that� contains the origin, thus the above inclusion together
with the fact that J0[�] is centrally symmetric implies

Q� ∈ n · J0[�].

It follows from (4) that

� ⊆ Q� + n · J0[�] ⊆ 2n · J0[�]. (5)

The centered John ellipsoid allows us to construct a natural continuous Riemannian
metric on any Finsler manifold. More precisely we have the following result.

Proposition 3.1 Any Finsler manifold (M, F) carries a well-defined Riemannian met-
ric gJohn of class C0 whose unit ball at any point x ∈ M is the centered John ellipsoid
J0[�x ] ⊆ Tx M of the Finsler unit ball �x ⊆ Tx M. Furthermore the following
inequality holds:

1

2n

√
gJohn(ξ, ξ) ≤ F(x, ξ) (6)

for any (x, ξ) ∈ T M. If the Finsler metric F is reversible, then we have the better
estimates

1√
n

√
gJohn(ξ, ξ) ≤ F(x, ξ) ≤ √

gJohn(ξ, ξ). (7)

In particular a reversible Finsler metric F is bilipschitz equivalent to the Riemannian
metric gJohn.

This Riemannian metric gJohn will be called the John metric associated to the Finsler
metric, it is a natural construction and appeared in the papers [31,32]. Note that the
John metric may fail to be C1, even if the Finsler metric F is analytic, an example is
given in Appendix.

Proof Let �x ⊂ Tx M be the Finsler tangent unit ball at x ∈ M , and let us denote
by J0[�x ] ⊆ Tx M the corresponding centered John ellipsoid. This ellipsoid is the
unit ball of a uniquely defined positive symmetric definite bilinear form on Tx M . By
continuity of the John ellipsoid, these bilinear forms give us a C0-Riemannian metric
gJohn on M , that is naturally associated to the Finsler metric F .

Inclusion (5) gives us�x ⊂ 2n · J0[�x ], which immediately implies inequality (6).
In the reversible case, �x ⊆ Tx M is symmetric around the origin and from (3) we
have the inclusions J [�x ] ⊆ �x ⊆ √

n · J [�x ]which are equivalent to (7). The proof
of the last assertion is straightforward. �
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Our next result says that the volume form of the John metric is comparable to the
Busemann measure of the Finsler metric F .

Proposition 3.2 Let (M, F) be a Finsler manifold with Busemann measure μF . Then
the following inequalities hold:

dμF ≤ dμJohn ≤ nn ·dμF ,

where dμJohn is the Riemannian density of the John metric gJohn associated to the Finsler
metric.

Proof Choose dν = dμJohn as initial density. Since J [�x ] ⊂ �x ⊂ Tx M for any point
x in M , we have

ωn = μJohn(J0[�x ]) = μJohn(J [�x ]) ≤ μJohn(�x ). (8)

Conversely, using (4), we have

μJohn(�x ) = μJohn(�x − Qx ) ≤ μJohn(n · J0[�x ]) = nnμJohn(J0[�x ]) = nnωn,

where Qx is the John point of �x . We just proved the inequalities ωn ≤ μJohn(�x ) ≤
nnωn , which are equivalent to (8). �

Remark 3.3 Note that, due to (3), the second inequality in (8) can be improved as
follows in the case of a reversible Finsler metric:

μJohn ≤ nn/2 ·dμF .

4 Proof of Main Theorem and some consequences

We first prove inequality (1). Recall that by definition the dual of the Binet–Legendre
metric g∗

BL is given at any point x ∈ M by the formula

∫

�

θ2(ξ) dλ(ξ) ≥
∫

J0[�]+Q�

θ2(ξ) dλ(ξ)

=
∫

J0[�]
θ2(ξ + Q�) dλ(ξ)

=
∫

J0[�]
θ2(ξ) dλ(ξ) + 2 ·θ(Q�)

∫

J0[�]
θ(ξ) dλ(ξ) +

∫

J0[�]
θ2(Q�) dλ(ξ)

≥
∫

J0[�]
θ2(ξ) dλ(ξ).

The last inequality follows from the fact that the ellipsoid J0[�] is centered at the
origin, which implies that

∫

J0[�]
θ(ξ) dλ(ξ) = θ

(∫

J0[�]
ξ dλ(ξ)

)
= 0.
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On the other hand, inequality (4) implies λ(�) ≤ nnλ(J0[�]) and we obtain

g∗
BL(θ, θ) = n + 2

λ(�)

∫

�

θ2(ξ) dλ(ξ) ≥ n + 2

nnλ(J0[�])
∫

J0[�]
θ2(ξ) dλ(ξ). (9)

Because the ellipsoid J0[�] is the unit ball of the John metric, we have

n + 2

λ(J0[�])
∫

J0[�]
θ2(ξ) dλ(ξ) = g∗

John(θ, θ). (10)

Dualizing inequalities (9) and (10), and using (6) from Proposition 3.1, we obtain

√
gBL(ξ, ξ) ≤ nn/2

√
gJohn(ξ, ξ) ≤ 2n1+n/2F(x, ξ), (11)

as desired.
We now prove the second part of Main Theorem. Assume first that the Finsler

metric F is reversible and recall inequalities (7) from Proposition 3.1,

1√
n

√
gJohn ≤ F ≤ √

gJohn. (12)

Since gJohn is Riemannian, it is its own Binet–Legendre metric and we conclude from
(12) and Theorem 2.2 (c) that

1

nn
gJohn ≤ gBL ≤ nngJohn. (13)

From (12) and (13) we obtain

1

nn/2 F ≤ √
gBL ≤ n(n+1)/2F. (14)

Assume now more generally that F is c-quasi-reversible, that is F(x,−ξ) ≤
c · F(x, ξ) for any (x, ξ) ∈ T M . Let us set

F ′(x, ξ) = 1

2
(F(x, ξ) + F(x,−ξ)). (15)

Clearly, F ′ is reversible and satisfies 2F ′/(1+c) ≤ F ≤ (1+c)F ′/2. If g′
BL is the

Binet–Legendre metric for F ′, we have from Theorem 2.2 (c) that

(
2

1 + c

)2n

· g′
BL ≤ gBL ≤

(
1 + c

2

)2n

· g′
BL. (16)

Inequalities (14) applied to the reversible Finslermetric F ′ say that n−n/2F ′ ≤ √
g′
BL ≤

n(n+1)/2F ′, combining this with (16) we finally obtain
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√
gBL ≤

(
1 + c

2

)n

·√g′
BL ≤ n(n+1)/2

(
1 + c

2

)n

· F ′ ≤ n(n+1)/2
(
1 + c

2

)1+n

· F.

Similarly

√
gBL ≥

(
2

1 + c

)n

·√g′
BL ≥ 1

nn/2

(
2

1 + c

)n

· F ′ ≥ 1

nn/2

(
2

1 + c

)1+n

· F.

We rewrite the last two inequalities

1

nn/2

(
2

1 + c

)1+n

· F ≤ √
gBL ≤ n(n+1)/2

(
1 + c

2

)1+n

· F.

The theorem is proved.

Remark 4.1 Disregarding the exact constants, we can sketch the proof for the sec-
ond statement as follows: let us denote by BL[F] the Binet–Legendre metric of the
Finsler metric F , by F ′ the (reversible) Finsler metric (15) and by ∼ the bilipschitz
equivalence. Then, we have consequently shown that

BL[F | ∼ BL[F ′] ∼ BL[g′
John] = g′

John ∼ F ′ ∼ F.

Let us now state some simple consequences of Main Theorem.

Corollary 4.2 Let (M, F) be an arbitrary Finsler manifold. If the Binet–Legendre
metric gBL is complete, then F is both forward and backward complete.

Proof Let {x j } be a forward Cauchy sequence for the metric F , then the first statement
fromMain Theorem implies that {x j } is a Cauchy sequence for the Riemannian metric
gBL. It is therefore a convergent sequence by hypothesis. The proof for a backward
Cauchy sequence is the same. �

Corollary 4.3 Let (M, F) be a quasi-reversible Finsler manifold, then

(a) The Binet–Legendre metric gBL is complete if and only if the given Finsler metric
F is complete.

(b) The Riemannian volume density of gBL is comparable to the Busemann density
dμF .

(c) Two quasi-reversible Finsler manifolds are quasi-isometric if and only if the asso-
ciated Riemannian manifold with their respective Binet–Legendre metrics are
quasi-isometrics.

Recall that the Finsler manifolds (M1, F1) and (M2, F2) are quasi-isometric if there
exists a map f : M1 → M2 and a constant A such that for any p, q ∈ M1 we have
dF2( f (p), f (q)) ≤ A ·(dF1(p, q)+1) and for any y ∈ M2 there exists x ∈ M1 with
dF2( f (x), y) ≤ A.

Proof The property (a) is an immediate consequence of Main Theorem since com-
pleteness is a property which is stable under bilipschitz equivalence.
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Property (b) is also a consequence of Main Theorem: Let us denote by dμBL the
Riemannian volume density of gBL. Then the Busemann density is

dμF = ωn

μBL(�x )
dμBL,

where �x is the unit ball in Tx M for the Finsler metric F . Because gBL is bilipschitz
equivalent to F , we have (1/k) · Bx ⊂ �x ⊂ k · Bx for some constant k where Bx ⊆
Tx M is the unit ball for the metric gBL. It follows at once that

ωnk−n dμBL ≤ dμF ≤ ωnkn dμBL. (17)

In order to prove (c), recall that quasi-isometry is an equivalence relation amongmetric
spaces, see e.g. [8, Section 8.3], and bilipschitz equivalence is clearly a special case
of quasi-isometry. The claim follows thus immediately from Main Theorem. �

Remark 4.4 The first inequality in (17) can be improved: it is known that the Rie-
mannian volume is in fact always smaller or equal to the Busemann measure, that is
dμBL ≤ dμF , and the equality holds if and only if F is Riemannian. This fact also
holds without the reversibility assumption and follows, e.g. from [22, Theorem 1], see
also [12, Theorem 3.2].

5 Examples and applications

5.1 Zermelo metrics in a domain

Let us consider a bounded convex domain � in R
n and a Ck-map u : U → � where

U ⊂ R
n is an arbitrary domain (one may, but need not, assume that U = �). The

Finsler metric Fu on U whose associated tangent unit ball at x ∈ U is the domain �

centered at u(x) is called the Zermelo metric associated to the map u : U → �. Note
that in this definition we use the canonical identification TxU ≡ R

n . The Finslerian
unit tangent ball at x ∈ U is thus given by

�x = � − u(x) = {ξ ∈ R
n : ξ + u(x) ∈ �}.

The Finsler metric F is then given by

Fu(x, ξ) = inf
{

t > 0 : ξ ∈ t (� + u(x))
} = inf

{
t > 0 : ξ

t
+ u(x) ∈ �

}
.

Equivalently, for any ξ �= 0,

Fu(x, ξ) > 0 and
ξ

Fu(x, ξ)
+ u(x) ∈ ∂�.

We refer to [5] and [16, Section 1.4] for a discussion of the Zermelo metric and the
relation with Zermelo’s navigation problem.2

2 Note that [16] has an opposite sign convention for the vector field u.
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Completeness and incompleteness of the Binet–Legendre metric 493

Fig. 1 A Zermelo metric in the domain U, the Finlser unit ball at x is given by � with u(x) as origin

Examples (a) If u(x) = c ∈ � is constant, then the corresponding Zermelo metric is
invariant by translation. It is thus the Minkowski metric whose unit ball is given by
� − c (Fig. 1).
(b) IfU = � and u(x) = x is the identity map, then the corresponding Zermelo metric
is called the Funk metric and denoted by FFunk. The Finsler unit ball at the point x ∈ �

is the convex domain� itself, but with the point x as its center (this metric is therefore
also called the tautological Finsler structure).
(c) The reverse of a Zermelo metric is also a Zermelo metric. Recall that the reverse
of a Finsler metric F is the Finsler metric r F given by r F(x, ξ) = F(x,−ξ). In the
case of the Zermelo metric Fu associated to the map u : U → � we easily check that
the reverse metric r Fu is the Zermelo metric associated to the map −u : U → −�,
that is we have the identity

r Fu(x, ξ) = F−u(x, ξ) = Fu(x,−ξ).

(d) In particular the reverse of the Funk metric, which is denoted by FRFunk, is the
Zermelo metric in U = � associated to the map u : � → −� given by u(x) = −x .
TheFinsler unit ball is the symmetric image of�with respect to the center of symmetry
at x .

We refer to [16], [30, Chapters 2 and 3] for some background on Funk and reverse
Funk geometry. In particular, the following formula for the distance is well known: if
p and q are distinct points in � and a, b are the two points lying on the intersection of
the line through p and q with the boundary ∂� and if a, q, p, b appear in that order
on that line then

dFunk(p, q) = log
|a − p|
|a − q| and dRFunk(p, q) = log

|b − q|
|b − p| . (18)

The following facts are classical.

Proposition 5.1 Let � ⊂ R
n be a bounded convex domain, then

• The reverse Funk metric satisfies FRFunk(x, ξ) = FFunk(x,−ξ). They are both invari-
ant under affine transformations preserving �.

• The Funk metric in � is forward complete but not backward complete. The reverse
Funk metric is backward complete and not forward complete.
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494 V. S. Matveev, M. Troyanov

• Both metrics are projective, meaning that the Euclidean straight lines are geodes-
ics.

• If the bounded convex domain � ⊂ R
n has a boundary of class Ck, then FFunk and

FRFunk are also of class Ck (on the complement of the zero section).

The first statement is obvious and second and third statements are proved in [16] for
domains with smooth and strongly convex domains and in [30, Chapters 2 and 3]. The
last statement follows from the implicit function theorem.

5.2 Computation of the Binet–Legendre metric for a Zermelo metric

Since the Funk metric is not backward complete, it follows from Corollary 4.2 that its
associated Binet–Legendre metric is incomplete. In this section we provide another
proof for the incompleteness. More generally we compute the Binet–Legendre metric
for a general Zermelo metric in a domain U and show that it is never complete unless
U = R

n .
We will in fact consider a more general situation. A Borel probability μ measure

on Rn is said to have finite quadratic moment if

∫

Rn
|x |2dμ(x) < ∞, (19)

where |x | is the Euclidean norm. The probabilityμ is said to be affinely nondegenerate
if for any nonzero linear form ϕ : Rn → R and any point a in Rn we have

∫

Rn
ϕ2(x − a) dμ(x) > 0. (20)

Equivalently the support of the measure μ is not contained in an affine hyperplane.
Given such a measure μ satisfying (19) and (20), we associate to any Ck-smooth
function u : U → R

n the following scalar product on (Rn)∗:

g∗
x (θ, ϕ) = γ

∫

Rn
θ(ζ − u(x)) ·ϕ(ζ − u(x)) dμ(ζ ),

where the constant γ > 0 is an arbitrary parameter. If the measure is centered at the
origin, that is

∫
ζdμ(ζ ) = 0, then we have

g∗
x (θ, ϕ) = γ

{∫

Rn
θ(ζ )ϕ(ζ ) dμ(ζ ) − θ(u(x))

∫

Rn
ϕ(ζ ) dμ(ζ )

− ϕ(u(x))

∫

Rn
θ(ζ ) dμ(ζ ) + θ(u(x))ϕ(u(x))

}

= γ

∫

Rn
θ(ζ )ϕ(ζ ) dμ(ζ ) + γ ·θ(u(x))ϕ(u(x))

= g∗
0(θ, ϕ) + γ ·θ(u(x))ϕ(u(x)).
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In the second equality we have used
∫

ϕ(ζ ) dμ(ζ ) = ϕ
(∫

ζ dμ(ζ )
) = 0. If we

furthermore assume that the coordinates are chosen to be orthonormal for the metric
g0 at the origin, then the coefficients of g∗

x are

gi j = g∗
x (εi , ε j ) = δi j + γ ui u j , (21)

where ε1, . . . , εn is the dual canonical basis. Inverting this matrix, one obtains the
following Riemannian metric on Rn :

gi j = δi j − γ ui u j

1 + γ |u(x)|2 . (22)

The Binet–Legendre metric for the Zermelo metric corresponding to the function
u : U → �, where � is a bounded convex domain, is the special case of this construc-
tion corresponding to the constant γ = n − 2 and the measure dμ = χ�/Vol(�) dx .
Indeed, by definition of the Zermelo metric, the Finsler tangent ball at a point x ∈ U

is given by

�x = {
ξ ∈ TxU : F(x, ξ) < 1

} = {
ξ ∈ R

n : ξ ∈ (� − u(x))
} = � − u(x)

(here we use the canonical identification TxU = R
n). The dual Binet–Legendre metric

associated to the Zermelo metric is then given by

g∗
x (θ, ϕ) = n + 2

Vol(�x )

∫

�x

θ(ξ)ϕ(ξ) dξ = n + 2

Vol(�x )

∫

�

θ(ζ − u(x))ϕ(ζ − u(x)) dζ.

It follows that in an appropriate coordinate system, the Binet–Legendre associated to
a Zermelo metric in a domain U is given by (22) with γ = n + 2.

Observe in particular that since u(x) belongs to the bounded domain � for any
x ∈ U, the tensors (21) and (22) are always bounded. This implies in particular that
the Binet–Legendre metric of a Zermelo metric in a domainU is bilipschitz equivalent
to the Euclidean metric. In particular it is complete if and only if U = R

n .

Remark 5.2 In the special case of the Funk or reverse Funk metric, we have u(x) =
±x . It follows from (22) that for any bounded convex domain � ⊂ R

n , the Binet–
Legendre metric is given in some coordinate system by

gi j = δi j − γ xi x j

1 + γ |x |2 .

Observe that this formula is independent of the geometry of �.

Remark 5.3 The previous construction of a metric associated to a probability measure
in R

n is natural in multivariate statistics. Let X1, . . . , Xn be random variables and
assume that the random vector X = (X1, . . . , Xn) is nondegenerate. Recall that this
means that there are no constants a1, . . . , an andC such that Prob

(∑
i ai Xi = C

) = 1.
Assume also that the random vector X has finite secondmoments, that isE(X2

i ) < ∞,
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1 ≤ i ≤ n, where E( ·) is the expectation. The joint distribution of those variables
is the probability measure μ on R

n defined by μ(B) = Prob(X ∈ B) for any Borel
set B ⊂ R

n , and under the given hypothesis the measure μ satisfies the previous
conditions (19) and (20). Choosing the function u(x) = x , the corresponding metric
gi j

x in (Rn)∗ is then the matrix of product moments,

gi j
x = E((Xi − xi )(X j − x j )).

At the barycenter ofμ, this matrix is the covariance matrix of the random vector X and
is often denoted by �. The inverse matrix gi j is called the precision or concentration
matrix. In the case of Gaussian random variables, this matrix is related to conditional
independencies between the random variables.

5.3 An example of a complete metric with incomplete Binet–Legendre metric

In this subsection we briefly give an example of a Finsler metric that is both forward
and backward complete and whose associated Binet–Legendre metric is incomplete,
showing that the converse to Corollary 4.2 fails.

The example is given by a Zermelo metric that interpolates between the Funk
metric (which is forward complete) and the reverse Funk metric (which is backward
complete). It can be built in any bounded convex domain, but we will only describe it
in the standard unit ball Bn ⊂ R

n .
Using (18), we see that the Funk distance in B

n from the origin to a point x ∈ B
n

is given by

dFunk(0, x) = log
1

1 − |x | ,

therefore the open ball of radius t centered at the origin for the Funk metric is given
by

Wt = {
x ∈ R

n : |x | < 1 − e−t}.

Let us now choose a smooth function u : Bn → B
n such that for any integer k ∈ N

we have

u(x) =
{

x if x ∈ W4k+1\W4k,

−x if x ∈ W4k+3\W4k+2.

The Zermelo metric Fu associated to the function u, coincides with the Funk metric in
W4k+1\W4k and to the reverse Funk metric in W4k+3\W4k+2 for any integer k ∈ N.
In particular we have

x /∈ W4k+3 �⇒ du(0, x) ≥ k and du(x, 0) ≥ k.
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Fig. 2 The distance in the Funk
or reverse Funk metric is given
by the logarithm of the ratio of
the Euclidean distances to the
boundary

Because W4k+3 is relatively compact inBn , it is clear that themetric Fu is both forward
and backward complete. Sincewe proved in the previous subsection that the associated
Binet–Legendre metric is not complete, we have produced an example of a complete
Finsler metric with incomplete Binet–Legendre metric.

5.4 The Hilbert metric and the “affine metric” in a bounded convex domain

The symmetrization of the Funk metric in a bounded convex domain � is called the
Hilbert metric in that domain, the Finsler norm is thus given by

FHilb(x, ξ) = 1

2
(FFunk(p, ξ) + FFunk(p,−ξ)).

Referring to the notations in Fig. 2, we have the following formula for the distance
between two points p and q:

dHilb(p, q) = 1

2
(dFunk(p, q) + dFunk(q, p)) = 1

2
log

( |a − p|
|a − q| · |b − q|

|b − p|
)

. (23)

We refer to the books [11,29] for a short introduction to Hilbert geometry and to [30]
for an overview of some recent developments.

We have the following result about the Binet–Legendre metric associated to the
Hilbert metric.

Proposition 5.4 The Binet–Legendre metric associated to the Hilbert metric in a
bounded convex domain � is a complete Riemannian metric. This metric is invari-
ant under the group of projective transformations preserving the domain and it is
bilipschitz equivalent to the Hilbert metric.

Proof The Hilbert metric is clearly reversible and it is not difficult to check from
formula (23) that it is complete. The second statement in Theorem 1.1 implies that
its associated Binet–Legendre metric is bilipshitz equivalent to the Hilbert metric, in
particular it is also complete.

The Hilbert metric is invariant under projective transformations since the distance
is expressed in terms of the cross ratio of four aligned points. Using Theorem 2.2 (b),
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we deduce that the Binet–Legendre metric is also invariant under projective transfor-
mations. �


Another important projectively invariant metric in a convex domain can be con-
structed from the solution to some Monge–Ampère equation. It is based on the
following statement.

Theorem 5.5 Let U ⊂ R
n be an arbitrary bounded convex domain. Then there exists

a unique solution to the following Monge–Ampère equation:

det
∂2u

∂xi∂x j
=

(
− 1

u

)n+2

, (24)

which is smooth, positive, strictly concave, continuous in the closure U and vanishes
on the boundary ∂U.

This theorem was first proved in 1974 by Loewner and Nirenberg for the case of
smooth, 2-dimensional strictly convex domain [19] and in 1977 by Cheng and Yau for
the general case [13,19,21].

Definition 5.6 The affine metric on the convex domain U is the Riemannian metric
defined as

gAff = − 1

u

∑

i, j

∂2u

∂xi∂x j
dxi dx j ,

where u : U → R
n is the above solution to (24).

Observe that by the strict concavity of u, the metric gAff is positive definite, hence
Riemannian. The name “affine metric” has been proposed in relation to the Blaschke
theory of affine hypersurfaces, see [7,20,28]. The affine metric enjoys the following
properties.

Theorem 5.7 • The affine metric gAff is complete and invariant under projective
transformations leaving the domain U invariant.

• The affine metric gAff is bilipschitz equivalent to the Hilbert metric: there exists a
constant c such that

1

c
· FHilb ≤ √

gAff ≤ c · FHilb.

A proof of the first statement is given in [19, Sections 6 and 9], see also [14,15]. The
second statement is a recent result by Benoist and Hulin [7, Proposition 3.4]. Observe
that the completeness of gAff also follows from the second statement, since the Hilbert
metric is complete. From the previous theorem and Theorem 1.1 we then have

Corollary 5.8 The Binet–Legendre metric gBL associated to the Hilbert metric in a
properly convex domain U ⊂ RP

n is bilipschitz equivalent to the affine metric gAff.
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In conclusion, both the Binet–Legendre and the affine metric in a convex domain are
complete, invariant under projective transformation and bilipschitz equivalent to the
Hilbert metric. Observe however that the construction of the affine metric is based
on hard analysis to solve a nonlinear elliptic partial differential equation, so even the
existence of such a metric is a nontrivial fact. On the other hand, the Binet–Legendre
metric is based on a direct and quite elementary geometric construction. This metric
can be effectively computed, at least for sufficiently simple domains, see e.g. [27].

Acknowledgments The authors are thankful to Rolf Schneider for useful discussions.

Appendix 1: Non-smoothness of the John metric

The John metric, like the Binet–Legendre metric, is a natural construction in Finsler
geometry that enjoys good functorial properties, in particular properties (b), (c) and
(d) of Theorem 2.2 also hold for the John metric. However, the John metric is in
general not smooth and this fact creates serious limits to its potential usefulness in
Finsler geometry. We illustrate this phenomenon by the following example. Consider
the following Finsler metric F on M = R

n :

F(x, ξ) = ‖ξ‖p(x) =
(

n∑

i=1

|ξi |p(x)

)1/p(x)

,

where p is the function p(x) = 1 + ex1. If one identifies Tx M with R
n , the Finsler

unit ball is

�x =
{

ξ ∈ R
n :

n∑

i=1

|ξi |p(x) < 1

}

.

It is easy to see that the John ellipsoid of�x is an Euclidean ball centered at the origin.
Indeed, each �x is invariant with respect to the symmetries σi : (. . . , ξi , . . . ) �→
(. . . ,−ξi , . . . ) and σi j : (. . . , ξi , . . . , ξ j , . . . ) �→ (. . . , ξ j . . . , ξi , . . . ), and since the
John ellipsoid J [�x ] of �x is unique, it must be σi - and σi j -invariant for all i, j =
1, . . . , n. Since theEuclidean balls centered at the origin are the only ellipsoid invariant
with respect to all such symmetries, the John ellipsoid must be such a ball. The radius
r of the ball J [�x ] only depends on p = p(x) and a calculation shows that

r(x) = min
{
1, n1/2−1/p} =

{
n1/2−1/p if 1 < p ≤ 2,

1 if p ≥ 2.

Indeed, for p ≤ 2 a common point of the boundary of J [�x ] of �x is given by
ξ = (1, 0, . . . , 0), while for p ≥ 2 a common point of the boundary of J [�x ] of �x

is ξ = (
(1/n)1/p, . . . , (1/n)1/p

)
(Fig. 3).

It is elementary to check that the function r(x) is not differentiablewhen x1 = log 2,
that is p = 2. Therefore the ellipsoid J [�x ] does not depend smoothly on x .Moreover,
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Fig. 3 The convex bodies �x and their John ellipsoids

the metric gJohn has a discontinuous curvature and therefore cannot be made smooth by
a C0-change of coordinates. We have thus constructed an analytical Finsler metric F
on Rn such that the associated John metric is given at the point x by

gJohn(ξ, η) = 1

r2(x)
〈ξ, η〉,

where r(x) is not differentiable.

Appendix 2: About the constant C1

Recall inequality (11):

√
gBL(ξ, ξ) ≤ 2n1+n/2F(x, ξ),

this gives the estimates C1 = 2n1+n/2 in Theorem 1.1. However, arguing as in [18],
one can slightly improve inequality (5) as follows:

� ⊆ √
2n(n+1) · J0[�].

Inequality (6) can thus be improved as

1√
2n(n+1)

√
gJohn(ξ, ξ) ≤ F(x, ξ). (25)

Using (25), inequality (11) can now be improved to

√
gBL(ξ, ξ) ≤ √

2n(n+1) nn/2F(ξ).

That is we have the better estimate C1 = √
2n(n+1) nn/2 in Theorem 1.1.
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