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1 Introduction

1.1 On the problem

Let � = {ϕm}∞m=1 be a family of nondecreasing continuous functions ϕm : [0,∞) →
R such that for each m ∈ N:

(i1) limx→+∞ ϕm(x)/x = +∞;
(i2) for each A > 0 there exists a constant C(m, A) > 0 such that

ϕm(x) + A ln(1+x) ≤ ϕm+1(x) + C(m, A), x ≥ 0.

Moreover, in Theorems 1.2–1.4 the following additional conditions on � will be
imposed (separately or together):

(i3) for each k ∈ N there exist constants σk > 1 and γk > 0 such that

ϕk(σk x) ≤ ϕk+1(x) + γk, x ≥ 0;

(i4) for each k ∈ N there exist numbers λk > 1, hk ∈ (1, σk+1) and lk > 0 such that

λkϕk(x) ≤ ϕk+1(hkx) + lk, x ≥ 0.

Let H(C) be a space of entire functions on C. For each ν ∈ N and k ∈ Z+ define the
space

Ek(ϕν) =
{
f ∈ H(C) : pν,k( f ) = sup

z∈C
| f (z)|(1 + |z|)k

eϕν(|Im z|) < ∞
}
.

Let E(ϕν) = ⋂∞
k=0 Ek(ϕν), E(�) = ⋃∞

ν=1 E(ϕν). Since pν,k( f ) ≤ pν,k+1( f )
for f ∈ Ek+1(ϕν), Ek+1(ϕν) is continuously embedded in Ek(ϕν). Endow E(ϕν)

with a projective limit topology of spaces Ek(ϕν). Note that if f ∈ E(ϕν) then
pν+1,k( f ) ≤ eC(ν,1) pν,k( f ) for each k ∈ Z+. This means that E(ϕν) is continuously
embedded in E(ϕν+1) for each ν ∈ N. Supply E(�) with a topology of an inductive
limit of spaces E(ϕν).

Note that if � is a differentiable function on [0,∞) such that �(0) = �′(0) = 0
and its derivative is continuous, increasing and tending to infinity and functions ϕm

are defined on [0,∞) by the formula ϕm(x) = �(mx), m ∈ N, then E(�) is the
Gelfand–Shilov space of W�-type. Recall that W�-type (as other W -type) spaces
have been introduced in 1950s by Gurevich [2,3], and Gelfand and Shilov [1]. They
described them by means of the Fourier transform and then applied this description to
study the uniqueness of the Cauchy problem of partial differential equations.

In this paper we describe the space E(�) in terms of estimates on derivatives of
functions on the real axis and study Fourier transform of functions of E(�) under
additional conditions on �. We would like to note the works of Sedletskii [8,9] as
closely related to the theme of our paper.
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Results of the paper could be useful for theory of differential and pseudo-differential
operators, mathematical physics, time-frequency analysis and some other fields of
analysis.

1.2 Notation

Denote byB the set of all functions g ∈ C[0,∞) such that limx→+∞ g(x)/x = +∞.
Let

V = {
h ∈ B : h is convex on [0,∞)

}
,

V = {
h ∈ V : h is increasing on [0,∞) with h(0) = 0

}
,

Vg = {
h ∈ V : h coincides with g on [dh,∞), where dh

is some positive number depending on h
}
, g ∈ V .

For g ∈ B let g∗ be the Young conjugate: g∗(x) = supy≥0(xy − g(y)), x ≥ 0. For a
function u : [0,∞) → R let u[e](x) = u(ex ), x ≥ 0. For brevity, functions ϕm[e] are
denoted by ψm .

The Fourier transform f̂ of f ∈ E(�) is defined by the formula

f̂ (x) =
∫
R

f (ξ)e−i xξ dξ, x ∈ R.

1.3 Main results

Let �∗ = {ψ∗
ν }∞ν=1. For each ν ∈ N and m ∈ Z+ let

Em(ψ∗
ν ) =

{
f ∈ C∞(R) : Rm,ν( f ) = sup

x∈R
n∈Z+

(1 + |x |)m | f (n)(x)|
n! e−ψ∗

ν (n)
< ∞

}
.

Let E(ψ∗
ν ) = ⋂∞

m=0 Em(ψ∗
ν ), E(�∗) = ⋃∞

ν=1 E(ψ∗
ν ).

The first two theorems, proved in Sect. 3, are aimed to describe functions of the
space E(�) in terms of estimates of their derivatives on R.

Theorem 1.1 Let f ∈ E(�). Then f|R ∈ E(�∗).

Theorem 1.2 Let the family � satisfy condition (i3). Then each function f ∈ E(�∗)
admits (a unique) extension to an entire function belonging to E(�).

The proofs of these theorems follow the known schemes from [1]. Also they allow to
obtain an additional information on the structure of the space E(�). Namely, let

Hk(ϕν) =
{
f ∈ H(C) : Nν,k( f ) = sup

z∈C
| f (z)|(1 + |z|)k
e(ψ∗

ν )∗(ln(1+|Im z|)) < ∞
}
,
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370 I. Kh. Musin, M. I. Musin

ν ∈ N, k ∈ Z+,H(ϕν) be a projective limit of spaces Hk(ϕν),H(�) be an inductive
limit of spacesH(ϕν). In Sect. 3 we show that if the family � satisfies condition (i3)
then E(�) = H(�), see Proposition 3.1.

Section 4 is devoted to characterization of the space E(�) by means of the Fourier
transform under additional conditions on �. For each ν ∈ N and m ∈ Z+ we define
the normed space

Gm(ψ∗
ν ) =

{
f ∈ Cm(R) : ‖ f ‖m,ψ∗

ν
= sup
x∈R, k∈Z+
0≤n≤m

|xk f (n)(x)|
k! e−ψ∗

ν (k)
< ∞

}
.

Let G(ψ∗
ν ) = ⋂∞

m=0 Gm(ψ∗
ν ), G(�∗) = ⋃∞

ν=1 G(ψ∗
ν ). Since for each ν ∈ N and

m ∈ Z+,

‖ f ‖m,ψ∗
ν

≤ ‖ f ‖m+1,ψ∗
ν
, f ∈ Gm+1

(
ψ∗

ν

)
,

Gm+1(ψ
∗
ν ) is continuously embedded in Gm(ψ∗

ν ). Endow G(ψ∗
ν ) with a topology

defined by the family of norms ‖·‖m,ψ∗
ν
, m ∈ Z+. Also note that for each ν ∈ N and

m ∈ Z+,

‖ f ‖m,ψ∗
ν+1

≤ eC(ν,1)‖ f ‖m,ψ∗
ν
, f ∈ Gm

(
ψ∗

ν

)
.

Hence, G(ψ∗
ν ) is continuously embedded in G(ψ∗

ν+1). Supply G(�∗) with an induc-
tive limit topology of spaces G(ψ∗

ν ).

Theorem 1.3 Let � satisfy conditions (i3) and (i4). Then the Fourier transform
F : E(�) 
 f → f̂ establishes an isomorphism of spaces E(�) and G(�∗).
Further, let �∗ = {ϕ∗

ν }∞ν=1. For each ν ∈ N and m ∈ Z+ define the normed space

GSm(ϕ∗
ν ) =

{
f ∈ Cm(Rn) : qm,ν( f ) = sup

x∈R
0≤n≤m

| f (n)(x)|
e−ϕ∗

ν (|x |) < ∞
}
.

For each ν ∈ N letGS(ϕ∗
ν ) = ⋂

m∈Z+ GSm(ϕ∗
ν ). LetGS(�∗) = ⋃

ν∈N GS(ϕ∗
ν ). Note

that for each ν ∈ N and m ∈ Z+,

qm,ν( f ) ≤ qm+1,ν( f ), f ∈ GSm+1
(
ϕ∗

ν

)
.

Hence, GSm+1(ϕ
∗
ν ) is continuously embedded in GSm(ϕ∗

ν ). Endow GS(ϕ∗
ν ) with a

topology defined by the family of norms qν,m , m ∈ Z+. Also for each ν ∈ N and
m ∈ Z+,

qm,ν+1( f ) ≤ eC(ν,1)qm,ν( f ), f ∈ GSm
(
ϕ∗

ν

)
.

Hence, GS(ϕ∗
ν ) is continuously embedded in GS(ϕ∗

ν+1). Supply GS(�∗) with an
inductive limit topology of spaces GS(ϕ∗

ν ).
The main result of Sect. 5 is the following theorem.
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Theorem 1.4 Let functions of the family � be convex on [0,∞) and � satisfy condi-
tion (i3). Then G(�∗) = GS(�∗).

Note that if functions ϕm are defined on [0,∞) by the formula ϕm(x) = �(αmx),
where � is a differentiable function on [0,∞) such that �(0) = �′(0) = 0 and its
derivative is continuous, increasing and tending to infinity and numbersαm are positive
and αm < αm+1, m ∈ N, then the family � satisfies assumptions of Theorem 1.4.

2 Auxiliary results

The following two lemmas are essentially used in the next sections.

Lemma 2.1 Let g ∈ B, then for each M > 0 there exists a constant A > 0 such that

(g[e])∗(x) ≤ x ln
x

M
− x + A, x > 0.

Proof By assumption, for each M > 0 we can find a number A > 0 such that
g[e](y) ≥ Mey − A for all y ≥ 0. Hence, for x > 0,

(g[e])∗(x) = sup
y>0

(xy − g[e](y)) ≤ sup
y>0

(xy − Mey) + A

≤ sup
y∈R

(xy − Mey) + A = x ln
x

M
− x + A. ��

Corollary 2.1 Let g ∈ B, then for each b > 0 the series
∑∞

j=0 e
(g[e])∗( j)/(b j j !)

converges.

Lemma 2.2 Let u, v ∈ B and for some ρ > 0, μ ≥ 0 and C > 0,

ρu(x) ≤ v(x + μ) + C, x ≥ 0.

Then for all nonnegative numbers α and β satisfying the equality α +β = ρ we have

v∗(αx+βy) ≤ αu∗(x) + βu∗(y) + μ(αx+βy) + A, x, y ≥ 0,

where A = max
(
C, ρ minξ≥0 u(ξ) − minξ≥0 v(ξ)

)
.

Proof For all x, y, t ∈ [0,∞) andnonnegative numbersα andβ satisfying the equality
α + β = ρ we have

αu∗(x) + βu∗(y) ≥ (αx+βy)t − ρu(t) ≥ (αx+βy)t − v(t+μ) − C.

Hence,

αu∗(x) + βu∗(y) ≥ sup
ξ≥μ

(
(αx+βy)ξ − v(ξ)

) − μ(αx+βy) − C. (1)

123



372 I. Kh. Musin, M. I. Musin

Note that for all x, y ∈ [0,∞),

sup
ξ∈[0,μ]

(
(αx+βy)ξ − v(ξ)

) ≤ (αx+βy)μ − min
ξ∈[0,μ] v(ξ)

≤ (αx+βy)μ + αu∗(x) + βu∗(y) + ρ min
ξ≥0

u(ξ) − min
ξ≥0

v(ξ).

From this and inequality (1) we obtain that for all x, y ≥ 0,

v∗(αx+βy) ≤ αu∗(x) + βu∗(y) + (αx+βy)μ + A,

where A = max
(
C, ρ minξ≥0 u(ξ) − minξ≥0 v(ξ)

)
. ��

3 Alternative approach to description of E(�)

3.1 Proof of Theorem 1.1 Let f ∈ E(�), then f ∈ E(ϕν) for some ν ∈ N. Fix
m ∈ Z+. For all x ∈ R, n ∈ Z+ and R > 0 we have

(1 + |x |)m f (n)(x) = n!
2π i

∫
LR(x)

(1 + |x |)m f (ζ )

(ζ − x)n+1 dζ,

where LR(x) = {ζ ∈ C : |ζ − x | = R}. From this we have

(1 + |x |)m ∣∣ f (n)(x)
∣∣ ≤ n! max

ζ∈LR(x)

(1 + |ζ − x |)m (1 + |ζ |)m | f (ζ )|
Rn

≤ n!(1 + R)m pν,m( f )eϕν(R)

Rn
.

Using condition (i2) on �, we get

(1 + |x |)m ∣∣ f (n)(x)
∣∣ ≤ eC(ν,m)n! pν,m( f )

eϕν+1(R)

Rn
.

Further,

(1 + |x |)m ∣∣ f (n)(x)
∣∣ ≤ eC(ν,m)n! pν,m( f )einf R≥1(ϕν+1(R)−n ln R)

= eC(ν,m)n! pν,m( f )e− supr≥0(nr−ψν+1(R))

= eC(ν,m)n! pν,m( f )e−ψ∗
ν+1(n).

This means that
Rm,ν+1

(
f|R

) ≤ eC(ν,m) pν,m( f ). (2)

Therefore, f|R ∈ E(ψ∗
ν+1). Thus, f|R ∈ E(�∗). ��
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Proof of Theorem 1.2 First note that due to condition (i3) on � we have that for each
k ∈ N,

ψk
(
t + δk

) ≤ ψk+1(t) + γk, t ≥ 0,

where δk = ln σk . From this it easily follows that

ψ∗
k (x) − ψ∗

k+1(x) ≥ δk x − γk, x ≥ 0. (3)

Now let f ∈ E(�∗). Then f ∈ E(ψ∗
ν ) for some ν ∈ N. Hence, for each m ∈ Z+ we

have
(1 + |x |)m ∣∣ f (n)(x)

∣∣ ≤ Rm,ν( f )n! e−ψ∗
ν (n), x ∈ R, n ∈ Z+. (4)

From this (taking into account that limx→+∞ ψ∗
ν (x)/x = +∞) we get that for each

ε > 0 there exists a constant Aε > 0 such that | f (n)(x)| ≤ Aεε
nn! for all x ∈ R

and n ∈ Z+. So it is clear that the sequence
(∑k

n=0 f (n)(0)xn/n!)∞
k=0 converges to f

uniformly on compacts of the real axis and the series
∑∞

n=0 f (n)(0)zn/n! converges
uniformly on compacts ofC and, hence, its sum Ff (z) is an entire function. Obviously,
Ff (x) = f (x), x ∈ R. The uniqueness of holomorphic continuation is obvious.

Now we prove that Ff ∈ E(�). Let m ∈ Z+ be arbitrary. Using the equality

Ff (z) =
∞∑
n=0

f (n)(x)

n! (iy)n, z = x + iy, x, y ∈ R,

and inequality (4), we have

(1 + |z|)m |Ff (z)| ≤
∞∑
n=0

(1 + |x |)m (1 + |y|)m+n | f (n)(x)|
n!

≤ Rm,ν( f )(1 + |y|)m
∞∑
n=0

(1 + |y|)n e−ψ∗
ν (n)

= Rm,ν( f )(1 + |y|)m
∞∑
n=0

(1 + |y|)n
eψ∗

ν+1(n)
eψ∗

ν+1(n)−ψ∗
ν (n).

Now using inequality (3) and denoting eγν+δν /
(
eδν − 1

)
by Bν , we have

(1 + |z|)m |Ff (z)| ≤ BνRm,ν( f )(1 + |y|)m sup
n∈Z+

(1 + |y|)n
eψ∗

ν+1(n)

≤ BνRm,ν( f )(1 + |y|)m esupt≥0(t ln(1+|y|)−ψ∗
ν+1(t)).

Thus,
(1 + |z|)m |Ff (z)| ≤ BνRm,ν( f )e

(ψ∗
ν+1)

∗(ln(1+|y|))+m ln (1+|y|). (5)
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Recall that by condition (i2) on � for each k ∈ N and A > 0 there exists a constant
C(k, A) > 0 such that

ϕk(x) + A ln(1+x) ≤ ϕk+1(x) + C(k, A), x ≥ 0.

Hence,

ψk(x) + Ax ≤ ψk+1(x) + C(k, A), x ≥ 0.

From this we have that for all ξ ≥ 0,

ψ∗
k (ξ) = sup

x≥0

(
ξ x − ψk(x)

) ≥ sup
x≥0

(
ξ x − ψk+1(x) + Ax

) − C(k, A)

= sup
x≥0

(
(ξ + A)x − ψk+1(x)

) − C(k, A) = ψ∗
k+1(ξ + A) − C(k, A).

Then for all x ≥ 0,

(
ψ∗
k

)∗(x) = sup
x≥0

(
xξ − ψ∗

k (ξ)
) ≤ sup

x≥0

(
xξ − ψ∗

k+1(ξ + A)
) + C(k, A)

= sup
x≥0

(
x(ξ + A) − ψ∗

k+1(ξ + A)
) − Ax + C(k, A)

≤ (
ψ∗
k+1

)∗(x) − Ax + C(k, A).

Thus, for each k ∈ N and A > 0 we have

(
ψ∗
k

)∗(x) + Ax ≤ (
ψ∗
k+1

)∗(x) + C(k, A), x ≥ 0. (6)

Now with help of inequality (6) we obtain from estimate (5),

(1 + |z|)m |Ff (z)| ≤ BνRm,ν( f )e
C(ν+1,m)e(ψ∗

ν+2)
∗(ln(1+|y|)). (7)

It is clear that

(1 + |z|)m |Ff (z)| ≤ BνRm,ν( f )e
C(ν+1,m)eψν+2(ln(1+|y|)).

Hence,

(1 + |z|)m |Ff (z)| ≤ BνRm,ν( f )e
C(ν+1,m)eϕν+2(1+|y|).

As functions of the family� are nondecreasing and satisfy condition (i3), it is possible
to find a constant Kν,m > 0 such that for all z ∈ C,

(1 + |z|)m |Ff (z)| ≤ Kν,mRm,ν( f )e
ϕν+3(|Im z|). (8)

Thus, for each m ∈ Z+, pν+3,m(Ff ) ≤ Kν,mRm,ν( f ). Hence, Ff ∈ E(ϕν+3). Thus,
Ff ∈ E(�). ��
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3.2 Additional information on a structure of the space E(Φ)

In Sect. 1.3 for each ν ∈ N we introduced the space H(ϕν) as a projective limit of
spaces

Hk(ϕν) =
{
f ∈ H(C) : Nν,k( f ) = sup

z∈C
| f (z)|(1 + |z|)k
e(ψ∗

ν )∗(ln(1+|Im z|)) < ∞
}
, k ∈ Z+,

and then defined the space H(�) as an inductive limit of spaces H(ϕν). Note that in
view of inequality (6) the spaceH(ϕν) is continuously embedded inH(ϕν+1) for each
ν ∈ N.

Remark that if the family � satisfies condition (i3) and functions ψm are convex
[0,∞), then H(�) = E(�). Indeed, for each ν ∈ N,

(ψ∗
ν )∗(ln(1+ t)) = ψν(ln(1+ t)) = ϕν(1 + t) ≥ ϕν(t), t ≥ 0.

On the other hand, for each ν ∈ N there exists a constant dν > 0 such that ϕν(1+ t) ≤
ϕν(σν t) + dν for all t ≥ 0. Using this inequality and condition (i3), we have

(ψ∗
ν )∗(ln(1+ t)) ≤ ψν(ln(1+ t)) = ϕν(1 + t) ≤ ϕν+1(t) + γν + dν, t ≥ 0.

From these inequalities our assertion easily follows. Using Theorems 1.1 and 1.2 we
can prove a more strong assertion.

Proposition 3.1 Let the family � satisfy condition (i3). Then E(�) = H(�).

Proof Let ν ∈ N and f ∈ H(ϕν). Using nondecreasity of ϕν and condition (i3) on �

we can find a constant Kν > 0 such that for each k ∈ Z+,

pν+1,k( f ) ≤ KνNν,k( f ), f ∈ H(ϕν).

From this it follows that the embedding I : H(�) → E(�) is continuous.
The mapping I is surjective too. Indeed, if f ∈ E(�) then f ∈ E(ϕν) for some ν ∈

N. Recall that by inequality (2) for each k ∈ Z+ we haveRk,ν+1( f|R) ≤ eCν,k pν,k( f ).
From this and inequality (7) (with ν replaced by ν + 1) we obtain

Nν+3,k( f ) ≤ Aν,k pν,k( f ),

where Ak,ν is some positive number. Hence, f ∈ H(ϕν+3). Thus, f ∈ H(�). More-
over, the last estimate shows that the inverse mapping I−1 is continuous. Hence, the
equality E(�) = H(�) is topological as well. ��
Remark 3.1 Let the family � satisfy conditions (i1)–(i3). Consider the family �̃

consisting of functions (ψ∗
ν )∗(ln(1 + x)). Obviously, for each ν ∈ N functions

(ψ∗
ν )∗(ln(1 + x)) are continuous and nondecreasing on [0,∞). By inequality (6),

for each A > 0 we have

(ψ∗
ν )∗(ln(1+x)) + A ln(1+x) ≤ (ψ∗

ν+1)
∗(ln(1+x)) + C(ν, A), x ≥ 0.
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Since for each ν ∈ N, limx→+∞(ψ∗
ν )∗(x)/ex = +∞ (it follows from Lemma 2.1)

then

lim
x→+∞

(ψ∗
ν )∗(ln(1+x))

x
= +∞.

Thus, the family �̃ satisfies conditions of the form (i1) and (i2). Since � satisfies
condition (i3), using inequality (3), it is easy to get

(ψ∗
ν )∗(t + δν) ≤ (ψ∗

ν+1)
∗(t) + γk, t ≥ 0.

Further, for all x ≥ 0,

(ψ∗
ν )∗(ln(1+σνx)) ≤ (ψ∗

ν )∗
(
ln σν + ln(1+x)

)
= (ψ∗

ν )∗
(
δν + ln(1+x)

) ≤ (ψ∗
ν+1)

∗(ln(1+x)) + γk .

Hence, the family �̃ satisfies a condition of the form (i3). Also note that functions
(ψ∗

ν )∗(ln(1+x)) are convex on [0,∞). Hence, H(�̃) = E(�̃). By Proposition 3.1,
we have that E(�) = H(�). Since E(�̃) ≡ H(�), we finally obtain E(�) =
H(�) = H(�̃).

4 Fourier transform of E(�)

First we will prove that under condition (i3) on � the space G(�∗) admits a more
simple description. For ν ∈ N and m ∈ Z+ let

Qm(ψ∗
ν ) =

{
f ∈ Cm(Rn) : Nm,ψ∗

ν
( f ) = max

0≤n≤m
sup
x∈R
k∈Z+

(1 + |x |)k | f (n)(x)|
k! e−ψ∗

ν (k)
< ∞

}
.

Let Q(ψ∗
ν ) = ⋂

m∈Z+ Qm(ψ∗
ν ), Q(�∗) = ⋃∞

ν=1 Q(ψ∗
ν ). With usual operations of

addition and multiplication by complex numbers Q(ψ∗
ν ) and Q(�∗) are linear spaces.

The family of norms Nψ∗
m,ν

, m ∈ Z+, defines a locally convex topology in Q(ψ∗
ν ).

Endow Q(�∗) with an inductive limit topology of spaces Q(ψ∗
ν ).

Lemma 4.1 Let the family � satisfy condition (i3). Then the spaces Q(�∗) and
G(�∗) coincide.

Proof Let ν ∈ N and f ∈ Q(ψ∗
ν ). Then for each m ∈ Z+, Nm,ψ∗

ν
( f ) < ∞. Since

‖ f ‖m,ψ∗
ν

≤ Nm,ψ∗
ν
( f ) for eachm ∈ Z+, f ∈ Gm(ψ∗

ν ). Thus, if f ∈ Q(�∗) then f ∈
G(�∗) and, obviously, the embedding mapping J : Q(�∗) → G(�∗) is continuous.

Now let ν ∈ N and f ∈ G(ψ∗
ν ). Let m ∈ Z+ be arbitrary and n ∈ Z+ be such that

0 ≤ n ≤ m. Then ∣∣ f (n)(x)
∣∣ ≤ ‖ f ‖m,ψ∗

ν
e−ψ∗

ν (0), x ∈ R. (9)
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Obviously,

sup
|x |≤1/δν

k∈Z+

(1 + |x |)k | f (n)(x)|
k! e−ψ∗

ν+1(k)
≤ sup

|x |≤1/δν

k∈Z+

(1 + 1/δν)
k | f (n)(x)|

k! e−ψ∗
ν+1(k)

.

Now take into account that limk→∞ eψ∗
ν+1(k)/(k!bk) = 0 for each b > 0, see

Lemma 2.1. So we can find a constant Cν > 1 such that

sup
|x |≤1/δν

k∈Z+

(1 + |x |)k | f (n)(x)|
k! e−ψ∗

ν+1(k)
≤ Cν sup

|x |≤1/δν

∣∣ f (n)(x)
∣∣.

Using (9), we get

sup
|x |≤1/δν

k∈Z+

(1 + |x |)k | f (n)(x)|
k! e−ψ∗

ν+1(k)
≤ Cν ‖ f ‖m,ψ∗

ν
e−ψ∗

ν (0). (10)

Further,

sup
|x |>1/δν

k∈Z+

(1 + |x |)k | f (n)(x)|
k! e−ψ∗

ν+1(k)
≤ sup

|x |>/δν

k∈Z+

(1 + δν)
k |x |k | f (n)(x)|

k! e−ψ∗
ν+1(k)

= sup
|x |>1/δν

k∈Z+

|x |k | f (n)(x)|
k! e−ψ∗

ν+1(k)−k ln(1+δν)

≤ sup
|x |>1/δν

k∈Z+

|x |k | f (n)(x)|
k! e−ψ∗

ν+1(k)−kδν
.

Using inequality (3), we have

sup
|x |>1/δν

k∈Z+

(1 + |x |)k | f (n)(x)|
k! e−ψ∗

ν+1(k)
≤ eγν sup

|x |>1/δν

k∈Z+

|x |k | f (n)(x)|
k! e−ψ∗

ν (k)
≤ eγν ‖ f ‖m,ψ∗

ν
.

From this and (10) we get for each m ∈ Z+,

Nm,ψ∗
ν+1

( f ) ≤ Mν ‖ f ‖m,ψ∗
ν
, f ∈ G(ψ∗

ν ), (11)

where Mν = max
(
Cνe−ψ∗

ν (0), eγν
)
. Hence, f ∈ Q(ψ∗

ν+1). From (11) it follows that
the inverse mapping J−1 acts from G(�∗) to Q(�∗) and is continuous. Thus, the
topological equality Q(ψ∗) = G(ψ∗) is established. ��
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Proof of Theorem 1.3 Let ν ∈ N and f ∈ E(ϕν). Then for all n ∈ Z+ and x ∈ R we
have ∣∣ f̂ (n)(x)

∣∣ ≤
∫
R

| f (ξ)|(1 + |ξ |)n+2

1 + ξ2
dξ ≤ πpν,n+2( f )e

ϕν(0). (12)

Let m ∈ N, n ∈ Z+ and x ∈ R. For arbitrary η ∈ R,

xm f̂ (n)(x) = xm
∫
R

f (ζ )(−iζ )n e−i xζ dξ, ζ = ξ + iη, ξ ∈ R.

From this we get

∣∣xm f̂ (n)(x)
∣∣ ≤

∫
R

| f (ζ )|(1 + |ζ |)n+2exη |x |m dξ

1 + ξ2
.

If x �= 0 then putting in the last inequality η = −xt/|x | with t > 0, we have

∣∣xm f̂ (n)(x)
∣∣ ≤ πpν,n+2( f )e

−t |x |eϕν(t) |x |m
≤ πpν,n+2( f )e

supr>0(−tr+m ln r)+ϕν(t)

≤ πpν,n+2( f )e
m lnm−m−m ln t+ϕν(t).

Since

inf
t>0

(−m ln t + ϕν(t)) = − sup
t>0

(m ln t − ϕν(t))

≤ − sup
t≥1

(m ln t − ϕν(t)) = − sup
u≥0

(mu − ψν(u)) = −ψ∗
ν (m),

then from this and the previous estimate we obtain

∣∣xm f̂ (n)(x)
∣∣ ≤ πpν,n+2( f )e

m lnm−m−ψ∗
ν (m), x �= 0. (13)

If x = 0 then xm f̂ (n)(x) = 0. From this and inequalities (12) and (13) (taking into
account that ψ∗

ν (0) = − inf t≥0 ψν(t) = −ϕν(1) ≤ −ϕν(0)) we have for all m ∈ N

and n ∈ Z+,
∣∣xm f̂ (n)(x)

∣∣ ≤ πpν,n+2( f )m!e−ψ∗
ν (m), x ∈ R.

Thus, for all k ∈ Z+ we get

max
0≤n≤k

sup
x∈R
m∈Z+

∣∣xm f̂ (n)(x)
∣∣

m! e−ψ∗
ν (m)

≤ πpν,k+2( f ), f ∈ E(ϕν).

In other words, ‖ f̂ ‖k,ψ∗
ν

≤ πpν,k+2( f ), f ∈ E(ϕν). From this inequality it fol-
lows that the linear mapping F : f ∈ E(�) → f̂ acts from E(�) to G(�∗) and is
continuous.
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Let us show that F is surjective. Let g ∈ G(�∗), then g ∈ G(ψ∗
ν ) for some ν ∈ N.

By the proof of Lemma 4.1, g ∈ Q(ψ∗
ν+1). Hence, for all m, k ∈ Z+,

(1 + |x |)k ∣∣g( j)(x)
∣∣ ≤ Nm,ψ∗

ν+1
(g)k! e−ψ∗

ν+1(k), x ∈ R, j = 0, . . . ,m.

Put

f (ξ) = 1

2π

∫
R

g(x)eixξ dx, ξ ∈ R,

and show that f satisfies assumptions of Theorem 1.2. Let m, n ∈ Z+ be arbitrary,
r = min(m, n) and ξ ∈ R. Then

(iξ)m f (n)(ξ) = 1

2π

∫
R

(g(x)(i x)n)(m)eixξ dx

= (−1)m

2π

∫
R

r∑
j=0

C j
mg

(m− j)(x)((i x)n)( j)eixξ dx .

From this we have

∣∣ξm f (n)(ξ)
∣∣ ≤ 1

2π

r∑
j=0

C j
m

∫
R

∣∣g(m− j)(x)
∣∣ n!
(n − j)! |x |n− j dx

≤ 1

2π

r∑
j=0

C j
m

n!
(n − j)!

∫
R

∣∣g(m− j)(x)
∣∣(1 + |x |)n− j+2 dx

1 + x2

≤ 1

2

r∑
j=0

C j
m

n!
(n − j)! Nm,ψ∗

ν+1
(g)(n − j + 2)! e−ψ∗

ν+1(n− j+2).

Continuing the estimate, we get

∣∣ξm f (n)(ξ)
∣∣ ≤ (n + 2)!m!

2
Nm,ψ∗

ν+1
(g)

r∑
j=0

e−ψ∗
ν+1(n− j)

j ! . (14)

Recall now that by assumption of theorem, for each s ∈ N there exist numbers λs > 1,
hs ∈ (1, σs+1) and ls > 0 such that

λsϕs(x) ≤ ϕs+1(hsx) + ls, x ≥ 0.

From this it follows that

λsψs(x) ≤ ψs+1(x+τs) + ls, x ≥ 0,
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where τs = ln hs . Then, by Lemma 2.2, there exists a constant Ks > 0 such that for
all nonnegative numbers α and β satisfying the equality α + β = λs we have

ψ∗
s+1(αx+βy) ≤ αψ∗

s (x) + βψ∗
s (y) + τs(αx+βy) + Ks, x, y ≥ 0. (15)

Using (15), we have from (14)

∣∣ξm f (n)(ξ)
∣∣ ≤ bν,1 (n + 2)! Nm,ψ∗

ν+1
(g)m! e−ψ∗

ν+2(n)+τν+1n

r∑
j=0

e(λν+1−1)ψ∗
ν+1( j/(λν+1−1))

j ! ,

where bν,1 = eKν+1/2. Obviously, there exists a constant bν,2 > 0 such that for all
m, n ∈ Z+,

∣∣ξm f (n)(ξ)
∣∣ ≤ bν,2n! Nm,ψ∗

ν+1
(g)m! e−ψ∗

ν+2(n)+δν+2n
∞∑
j=0

e((λν+1−1)ψν+1)
∗( j)

j ! .

Note that the series
∑∞

j=0 e
((λν+1−1)ψν+1)

∗( j)/j ! converges, see Corollary 2.1. Now
using inequality (3), we get

∣∣ξm f (n)(ξ)
∣∣ ≤ bν,2n! Nm,ψ∗

ν+1
(g)m!e−ψ∗

ν+3(n),

where bν,3 = bν,2eγν+2
∑∞

j=0 e
((λν+1−1)ψν+1)

∗( j)/j !. From this we have that for each
m ∈ Z+ and all n ∈ Z+, ξ ∈ R,

(1 + |ξ |)m ∣∣ f (n)(ξ)
∣∣ ≤ 2m bν,3n! Nm,ψ∗

ν+1
(g)m! e−ψ∗

ν+3(n).

By Theorem 1.2, f can be holomorphically continued (uniquely) to an entire function
Ff belonging to E(�). Obviously, g = F(Ff ). The proof of Theorem 1.2 (in partic-
ular, inequalities (4) and (8)) indicates that there is a constant K (ν,m) > 0 such that
for z ∈ C, z = x + iy,

(1 + |z|)m |Ff (z)| ≤ K (ν,m)Nm,ψ∗
ν+1

(g)eϕν+6(|y|).

Thus, for each m ∈ Z+,

pν+6,m
(
F−1g

) ≤ K (ν,m)Nm,ψ∗
ν+1

(g), g ∈ G(ψ∗
ν ).

Taking into account inequality (11), we get

pν+6,m
(
F−1g

) ≤ Mν K (ν,m)‖g‖m,ψ∗
ν
, g ∈ G(ψ∗

ν ).

From this estimate it follows that the inverse mapping F−1 is continuous.
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Thus, it is proved that Fourier transform establishes a topological isomorphism
between spaces E(�) and G(�∗). ��

5 Special case of a family �

In the proof of Theorem 1.4 the following three lemmas will be used.

Lemma 5.1 Let g be a real-valued continuous function on [0,∞) such that
limx→+∞ g(x)/x = +∞. Then for each δ > 0,

lim
x→+∞

g∗((1+δ)x) − g∗(x)
x

= +∞.

Proof Let δ > 0 be arbitrary. For each x > 0 denote by ξ(x) a point where the
supremum of the function ux (ξ) = xξ − g(ξ) over [0,∞) is attained. Note that
ξ(x) → +∞ as x → +∞. Otherwise there are a number M > 0 and a sequence
(x j )∞j=1 of positive numbers x j converging to+∞ such that ξ(x j ) ≤ M . Then g∗(x j )
= x jξ(x j ) − g(ξ(x j )). But it contradicts to the fact that limx→+∞ g∗(x)/x = +∞.

Thus, limx→+∞ ξ(x) = +∞. From this and the inequality

g∗((1+δ)x) − g∗(x) ≥ (1+δ)xξ(x) − g(ξ(x)) − xξ(x) + g(ξ(x)) = δxξ(x),

for all x > 0, the assertion of lemma follows. ��
The proof of the following lemma essentially rests on ideas of Napalkov and Popenov
from [7, Lemma 4].

Lemma 5.2 Let u ∈ V , then there exists a constant K > 0 depending on u such that

(u[e])∗(t) + (u∗[e])∗(t) ≥ t ln t − t − K , t > 0.

Proof It is known [4] that there exists a function v ∈ Vu such that

lim
t→+∞

v(t)

t
= lim

t→0+
t

v(t)
= +∞.

Since |v(t) − u(t)| ≤ A, t ≥ 0, for some A > 0 then

∣∣(v[e])∗(x) − (u[e])∗(x)∣∣ ≤ A, x ≥ 0,∣∣(v∗[e])∗(x) − (u∗[e])∗(x)∣∣ ≤ A, x ≥ 0.
(16)

Let t > 0 be arbitrary. Note that

sup
ξ≥0

(
tξ − v(eξ )

) ≥ sup
ξ∈R

(
tξ − v(eξ )

) − v(1),

sup
μ≥0

(
tμ − v∗(eμ)

) ≥ sup
μ∈R

(
tμ − v∗(eμ)

) − v∗(1).

123



382 I. Kh. Musin, M. I. Musin

Hence, for each ξ, μ ∈ R,

(v[e])∗(t) + (v∗[e])∗(t) ≥ t (ξ +μ) − (
v(eξ ) + v∗(eμ)

) − v(1) − v∗(1). (17)

Using simple geometrical ideas, it is not difficult to see (firstly it was noticed by
Popenov) that there exists a unique point x0 > 0 such that

u′−(x0) ≤ t

x0
≤ u′+(x0)

(here u′−(x0) is the left derivative at x0 and u′+(x0) is the right derivative at x0) and if
x∗
0 = t/x0 then the following equality holds:

u(x0) + u∗(x∗
0 ) = t.

Putting in (17), ξ = ln x0, μ = ln x∗
0 , we get

(v[e])∗(t) + (v∗[e])∗(t) ≥ t ln t − t − v(1) − v∗(1), t > 0. (18)

Using inequalities (16), we get from (18)

(u[e])∗(t) + (u∗[e])∗(t) ≥ t ln t − t − v(1) − v∗(1) − 2A, t > 0.

It remains to put K = v(1) + v∗(1) + 2A. ��
The following lemma was proved in [5,6].

Lemma 5.3 Let a lower semi-continuous function u : [0,∞) → R be such that
limx→+∞ u(x)/x = +∞. Then

(u[e])∗(x) + (u∗[e])∗(x) ≤ x ln x − x, x > 0.

Proof of Theorem 1.4 First note that using convexity of functions of the family� and
condition (i3) on � we easily obtain that for each k ∈ N,

σkϕk(x) ≤ ϕk+1(x) + γk + (σk −1)ϕk(0), x ≥ 0.

In particular, this means that condition (i4) holds in our case trivially with λk = σk
and lk = γk + (σk −1)ϕk(0). Also from the last inequality it follows that for each
k ∈ N we have

σkψk(x) ≤ ψk+1(x) + γk + (σk −1)ϕk(0), x ≥ 0.

Hence, by Lemma 2.2, for each k ∈ N there exists a number Ak > 0 such that for all
nonnegative numbers α and β satisfying the equality α + β = σk we have

ψ∗
k+1(αx+βy) ≤ αψ∗

k (x) + βψ∗
k (y) + Ak, x, y ≥ 0. (19)
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Now let ν ∈ N and f ∈ G(ψ∗
ν ). Fix m ∈ Z+. Since f ∈ Q(ψ∗

ν+1) (see the proof of
Lemma 4.1), for all k ∈ Z+ and n ∈ Z+ such that 0 ≤ n ≤ m,

∣∣ f (n)(x)
∣∣ ≤ Nm,ψ∗

ν+1
( f )k! e−ψ∗

ν+1(k)

(1 + |x |)k , x ∈ R. (20)

Using inequality (19), nondecreasity of ψ∗
ν+1 and taking into account that j ! <

3 j j+1/e j for all j ∈ N, we have that for all k ∈ N, t ∈ [k, k + 1) and μ ≥ 1,

k! e−ψ∗
ν+1(k)

μk
≤ 3kk+1e−ψ∗

ν+1(k)

ekμk

≤ 3μt t+1e−ψ∗
ν+2(t)+(σν+1−1)ψ∗

ν+1(1/(σν+1−1))+Aν+1+1

etμt
.

From this using inequality (3), we obtain

k! e−ψ∗
ν+1(k)

μk
≤ Cν,1μe

(t+1) ln t−ψ∗
ν+3(t)−t ln eμ−δν+2t,

where Cν,1 = 3e(σν+1−1)ψ∗
ν+1(1/(σν+1−1))+Aν+1+γν+2+1. Using Lemma 5.2, we get for

some Cν,2 > 0 (not depending on k and t),

k! e−ψ∗
ν+1(k)

μk
≤ Cν,2μe

(ϕ∗
ν+3[e])∗(t)−t lnμ+ln t−δν+2t.

We can choose a constant Cν,3 > 0 (not depending on k and t) so that

k! e−ψ∗
ν+1(k)

μk
≤ Cν,3μe

(ϕ∗
ν+3[e])∗(t)−t lnμ.

From this it follows that

inf
k∈N

k! e−ψ∗
ν+1(k)

μk
≤ Cν,3μe

inf t≥1((ϕ
∗
ν+3[e])∗(t)−t lnμ). (21)

Obviously,

inf
t≥1

(
(ϕ∗

ν+3[e])∗(t) − t lnμ
) ≤ − lnμ + (

ϕ∗
ν+3[e]

)∗
(1),

inf
0<t≤1

(
(ϕ∗

ν+3[e])∗(t) − t lnμ
) ≥ − lnμ + (

ϕ∗
ν+3[e]

)∗
(0).

Consequently,

inf
t≥1

(
(ϕ∗

ν+3[e])∗(t) − t lnμ
) ≤ inf

0<t≤1

(
(ϕ∗

ν+3[e])∗(t) − t lnμ
)

+ (ϕ∗
ν+3[e])∗(1) − (ϕ∗

ν+3[e])∗(0).
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Denoting (ϕ∗
ν+3[e])∗(1) − (ϕ∗

ν+3[e])∗(0) by mν , we have

inf
t≥1

(
(ϕ∗

ν+3[e])∗(t) − t lnμ
) ≤ inf

t>0

(
(ϕ∗

ν+3[e])∗(t) − t lnμ
) + mν .

With help of this inequality we have from (21)

inf
k∈N

k! e−ψ∗
ν+1(k)

μk
≤ Cν,3e

mν μeinf t>0((ϕ
∗
ν+3[e])∗(t)−t lnμ). (22)

For each j ∈ N choose θ j ∈ Vϕ∗
j [e]. Then

∣∣θ j (ξ) − ϕ∗
j [e](ξ)

∣∣ ≤ r j , ξ ≥ 0, (23)∣∣θ∗
j (ξ) − (ϕ∗

j [e])∗(ξ)
∣∣ ≤ r j , ξ ≥ 0, (24)

where r j is some positive number depending onϕ∗
j [e] and θ j . From (22) using inequal-

ity (24), we have

inf
k∈N

k! e−ψ∗
ν+1(k)

μk
≤ Cν,4μeinf t>0(θ

∗
ν+3(t)−t lnμ),

where Cν,4 = Cν,3emν+rν+3 . Using the Young inversion formula, we obtain

inf
k∈N

k! e−ψ∗
ν+1(k)

μk
≤ Cν,4μe−θν+3(lnμ).

From this, using inequality (23), we have

inf
k∈N

k! e−ψ∗
ν+1(k)

μk
≤ Cν,5μe−ϕ∗

ν+3[e](lnμ),

where Cν,5 = Cν,4erν+3 . In other words,

inf
k∈N

k! e−ψ∗
ν+1(k)

μk
≤ Cν,5μe−ϕ∗

ν+3(μ).

Using this inequality and nondecreasity of ϕ∗
ν+3, we have

inf
k∈N

k! e−ψ∗
ν+1(k)

(1 + |x |)k ≤ Cν,5 (1 + |x |)e−ϕ∗
ν+3(|x |), x ∈ R. (25)

Note that using condition (i3) on �, it is easy to obtain that for each j ∈ N,

ϕ∗
j+1(ξ) ≤ ϕ∗

j

(
ξ

σ j

)
+ γ j , ξ ≥ 0. (26)
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Hence,

ϕ∗
j (ξ) − ϕ∗

j+1(ξ) ≥ ϕ∗
j (ξ) − ϕ∗

j

(
ξ

σ j

)
− γ j , ξ ≥ 0.

From this and Lemma 5.1 we get

lim
ξ→+∞

ϕ∗
j (ξ) − ϕ∗

j+1(ξ)

ξ
= +∞. (27)

Going back to (25), we obtain with help of (27)

inf
k∈N

k! e−ψ∗
ν+1(k)

(1 + |x |)k ≤ Cν,6e
−ϕ∗

ν+4(|x |), x ∈ R,

where Cν,6 is some positive number. From this and inequality (20), we obtain that for
n ∈ Z+ such that 0 ≤ n ≤ m,

∣∣ f (n)(x)
∣∣ ≤ Cν,6Nm,ψ∗

ν+1
( f )e−ϕ∗

ν+4(|x |), x ∈ R.

This means that

qm,ν+4( f ) ≤ Cν,6Nm,ψ∗
ν+1

( f ), f ∈ G(ψ∗
ν ).

Taking into account inequality (11), we have

qm,ν+4( f ) ≤ Cν,7‖ f ‖m,ψ∗
ν
, f ∈ G(ψ∗

ν ),

where Cν,7 is some positive constant depending on ν. From this it follows that the
identity mapping T acts from G(�∗) to GS(�∗) continuously.

Show that T is surjective. Let f ∈ GS(�∗). Then f ∈ GS(ϕ∗
ν ) for some ν ∈ N.

Let m ∈ Z+ be fixed, x be arbitrary. For all n ∈ Z+ such that 0 ≤ n ≤ m we have

∣∣ f (n)(x)
∣∣ ≤ qm,ν( f )e

−ϕ∗
ν (|x |). (28)

Using inequality (26), we have from (28)

∣∣ f (n)(x)
∣∣ ≤ eγνqm,ν( f )e

−ϕ∗
ν+1(σν |x |).

Obviously, there exists a constant αν > 1 (not depending on x and n) such that

∣∣ f (n)(x)
∣∣ ≤ αν qm,ν( f )e

−ϕ∗
ν+1(|x |+1).

In other words, ∣∣ f (n)(x)
∣∣ ≤ αν qm,ν( f )e

−ϕ∗
ν+1[e](ln(|x |+1)).
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From this we have

∣∣ f (n)(x)
∣∣ ≤ αν qm,ν( f )e

− supt>0(t ln(|x |+1)−(ϕ∗
ν+1[e])∗(t)).

Now using Lemma 5.3, we get

∣∣ f (n)(x)
∣∣ ≤ αν qm,ν( f )e

− supt>0(t ln(e(|x |+1))−t ln t+ψ∗
ν+1(t)).

Consequently, for all k ∈ N,

∣∣ f (n)(x)
∣∣ ≤ αν qm,ν( f )

kke−ψ∗
ν+1(k)

(e(1 + |x |))k .

From this and (28) it follows that

(1 + |x |)k ∣∣ f (n)(x)
∣∣ ≤ αν qm,ν( f )k! e−ψ∗

ν+1(k), k ∈ Z+.

This means that
‖ f ‖m,ψ∗

ν+1
≤ αν qm,ν( f ). (29)

Since m ∈ Z+ was arbitrary, f ∈ G(ψ∗
ν+1). Hence, f ∈ G(�∗).

From (29) it follows that the mapping T−1 is continuous. Thus, the spaces G(�∗)
and GS(�∗) coincide. ��
Acknowledgments The authors are very grateful to the referee for careful reading, valuable comments
and suggestions.
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