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Abstract We prove that every continuous function f: E — Y depends on countably
many coordinates if E is an (N1, 8g)-invariant pseudo-R|-compact subspace of a
product of topological spaces and Y is a space with a regular Gs-diagonal. Using this
fact for any @ < wj, we construct an (o + 1)-embedded subspace of a completely
regular space which is not -embedded.
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1 Introduction

If P is a property of functions, then by P(X) (P*(X)) we denote the collection of
all real-valued (bounded) functions on a topological space X with the property P. By
the symbol C we denote the property of continuity. Let B, be the property of being a
function of «-th Baire class, where 0 < o < w;.

Recall that a subset A of X is called functionally closed (open) in X if there is
feC*(X)with A = f_l 0) (A =X\ f_1 (0)). The system of all functionally open

The paper was submitted on August 23, 2013 to the Central European Journal of Mathematics, but in spite
of positive referees’ reports the manuscript was withdrawn due to financial demand for publication and
resubmitted to the European Journal of Mathematics.

O. Karlova (X)) - V. Mykhaylyuk

Department of Mathematical Analysis, Faculty of Mathematics and Informatics,
Chernivtsi National University, Kotsyubyns’koho Str., 2, Chernivtsi 58012, Ukraine
e-mail: maslenizza.ua@gmail.com

V. Mykhaylyuk

e-mail: vimykhaylyuk @ukr.net

@ Springer



On a-embedded subsets of products 161

(closed) subsets of X we denote by G (). Assume that the classes G; and 7 are
defined for all £ < o, where 0 < o < wy. Then, if « is odd, the class G}, (F7) consists
of all countable intersections (unions) of sets of lower classes, and, if « is even, the
class G} (37) consists of all countable unions (intersections) of sets of lower classes.
The classes J, for odd o and G}, for even « are said to be functionally additive, and the
classes F7 foreven o and G}, for odd « are called functionally multiplicative. A set A is
called functionally measurable if A € | Jy—y ., (F5 U G3)- Notice that the o-algebra
of functionally measurable subsets of X is also called the o-algebra of Baire sets.

An important role in the extension theory play z-embedded sets (a subset A of a
topological space X is called z-embedded in X if for any functionally closed set F
in A there exists a functionally closed set B in X such that BN A = F). In [8] for
any @ < wi the notion of an a-embedded set was introduced, i.e. suchaset A C X
that every its subset B of functionally multiplicative class « in A is the restriction
on A of some set of functionally multiplicative class « in X. Obviously, the class of
0-embedded sets coincides with the class of z-embedded sets. It is not hard to verify
that any o-embedded set is f-embedded if @ < S [8, Proposition 2.5]. The converse
statement is not true as [8, Theorem 2.6] shows: there is a 1-embedded subset E of the
product X = [0, 1] x er[o,l] X, X; = Nforall ¢ € [0, 1], which is not 0-embedded
in X. Here we generalize this result and show that for any « < w; there exists a set
E C X which is (¢ + 1)-embedded but not @-embedded in X.

A convenient tool in the investigation of properties of o-embedded subsets E
of [],cr X is the fact that under some conditions on E every continuous function
f: E — Rdepends on countably many coordinates (see definitions in Sect. 2). Mazur
introduced in [10] sets invariant under projection (see Definition 2.1 (a)) and proved
that every continuous function f: E — Y depends on countably many coordinates
if E C ¥ (a) for some a € E and E is invariant under projection, X, is a metrizable
separable space foreacht € T and Y is a Hausdorff space with a Gs-diagonal. Engelk-
ing [5] established the same result in the case when E is a set which is invariant under
composition (see Definition 2.1 (b)) which is contained in ¥ (a) for some a € E, X;
is a T7-space with countable base for each # € T and Y is a Hausdorff space in which
every one-point setis G (see also [7]). Noble and Ulmer [11] obtained the dependence
of a continuous function f: E — Y on countably many coordinates if E is a subset of
a pseudo-N1-compact space HteT X;, which contains o (a) forsomea € E and Y is a
space with a regular Gs-diagonal. The result of Noble and Ulmer was generalized by
Comfort and Gotchev in [2]. Here we consider the so-called (X, ¥g)-invariant subsets
of products and, developing the methods of Mazur and of Noble and Ulmer, we show
that every continuous function f: E — Y depends on countably many coordinates if
E is an (R, Np)-invariant pseudo-R{-compact subspace of HteT X; and Y is a space
with a regular Gs-diagonal.

2 Some properties of pseudo-81-compact invariant sets
Let (X; : t € T) be a family of non-empty topological spaces, X = [[,.; X; and

let a = (a;):er be a fixed point of X. For § € T we denote by pg the projection
ps: X — HteS Xy, where ps(x) = (x;)ses for each x = (x;);er € X; by x‘s‘ we
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162 0. Karlova, V. Mykhaylyuk

denote the point with coordinates (y;);e7, Where y; = x; if t € S and y; = a; if
t € T\S.Forabasicopenset U = [[,.; U S X1let NU) ={t €T : U; # X;}.

Definition 2.1 A set E C X is called

(a) invariant under projection [10] if xg € Eforanyx e Eand S C T;
(b) invariant under composition [5] if for any x,y € E and S € T we have z =
(zt)ter € E, where z; = x; forevery t € S and z; = y; forevery t € T\ S.

Clearly, every set E invariant under composition is invariant under projection for any
aek.

Following Engelking [5], HuSek in [7, p. 132] introduced a notion of x-invariant
set for k > Ro.

Definition 2.2 A set E is called «-invariant if for any x,y € E and S € T with
|S| < k there is a point z € E such that z; = x; for every r € S and z; = y, for every
teT\S.

Developing the above-mentioned concepts of Mazur and HuSek, we introduce the
following notions.

Definition 2.3 Let 8; and X; be infinite cardinals, E C X and a € E. Then E is
called

e N;-invariant with respect to a ifxg € Eforeveryx € Eand S C T with | S| < 8;;
o (N, Nj)-invariant with respect to a if xg € E and x7, ¢ € E for any point x € E
and for any sets S1, S € T with |S1| < X; and [T\ $2| < N;.

Obviously, every set (R;, 8 ;)-invariant with respect to a is ®;-invariant with respect
toa.

Definition 2.4 A topological space X is said to be

e pseudo-Ri-compact if any locally finite family of open subsets of X is at most
countable;
e hereditarily pseudo-R1-compact if each subspace of X is pseudo-&-compact.

It is easy to check that continuous mappings preserve pseudo-81-compactness.

The following theorem gives a characterization of pseudo-R-compactness of Rg-
invariant sets and is an analogue of the similar result of Noble and Ulmer [11, Corollary
1.5] for products.

Theorem 2.5 Let (X; : t € T) be a family of topological spaces, X = [[,cr X1,
a € X and let E C X be an Ry-invariant set with respect to a. Then the following
conditions are equivalent:

(1) E is pseudo-X1-compact;

(ii) for any finite non-empty set S < T and for any uncountable family (U; : i € I)
of open sets U; in X with U; N E # ) the family (pS(U,- NE):ie I) is not
locally finite in ps(E).
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Proof ()= (ii)) Let S C T be a finite non-empty set, (U; : i € I) be an uncountable
family of basic open sets U; in X with U; N E # & and let V; = ps(U; N E) for
each i € [.If the family (V; : i € I) is locally finite in ps(E), then the family
(ps_l(V,') NE:ie 1) is locally finite in £ and U; NE C pS_I(V[) N E foreachi € I,
which contradicts pseudo-R-compactness of E.

(i1))= (i) Consider an uncountable family (U,- =[ler Ul.’ ciel ) of basic open
sets in X such that U; N E # @ foralli € I. By Sanin’s lemma [12] we choose a
finite set Z and uncountable set J C [ such that N(U;) N N(U;) = Z for all distinct
i,jelJ.

Let V; = pz(U; N E) foralli € J. It follows from (ii) that the family (V; : i € J)
has a cluster point v € pz(E). Take y € E such thatv = pz(y) and put x = y. We
shall show that x is a cluster point of (U; N E : i € J). Indeed, let W = HteT W;
be a basic open neighborhood of x in X and V = [[,., W; N pz(E). Choose such
infinite set K € Jthat VN V; # @and N(W)N NU;) C Z foralli € K. Take an
arbitrary i € K and apointb € V N'V;. Consider a point c € U; N E with b = pz(c)
and putd = %, N Clearly, d € U;. Since E is Np-invariant with respect to a and
c € E,d € E. Moreover, pz(d) = pz(c) = b € V and d; = a; € W, for every
t € N(W)\ Z. Therefore,d € W. Hence,d € WN E N U,. |

The example below shows that condition (ii) in the previous theorem cannot be weak-
ened to the following: the set ps(E) is pseudo-R1-compact for any non-empty finite
setSCT.

Example There exists a set E C HtGT Xy, (N1, Rp)-invariant with respect to a point
a € E such that pg(E) is pseudo-Rj-compact for any non-empty finite set S C T,
but E is not pseudo-N-compact.

Proof Let T = [0, 1], Xg = P = Rx[0, +00) be the Niemytzki plane [6, p.21],
X; ={0, 1} foreachs € (0, 11, X =[], X; andleta = (a;);er € X, wherea; =0
for each 1 € (0, 1] and ap = (0, 0). For each ¢ € (0, 1] define y® = (yy))sg and
70 = (z?))sg € X as follows:

0, s € (0, 17\ {r}, 0, s € (0, 11\ {r},
O =11, s=t, =11, s=t,
(t,0), s5=0, 0,0, s=0.

Consider the (X, 8)-invariant set

E={y":te@©1}u{z":re©11}u (Xox H{O})

te(0,1]

with respect to the point a. Observe that for any finite set S C [0, 1] the sets pg ({ y®
t € (0,11}) and ps({z® : 1 € (0, 1]}) are finite and the set ps(Xo x [T;¢(0,17{0}) is
separable. Hence, E satisfies the condition mentioned above. But ({ y®D}:t e (0, 1])

is a locally finite family of open sets in E. Therefore, E is not pseudo-RX{-compact.
]
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3 Dependence of continuous mappings on countably many coordinates

Definition 3.1 Let E C [[,.; X,. We say thata function f: E — Y depends on a set
S C T[3,p.231]ifforall x, y € E theequality ps(x) = ps(y) implies f(x) = f(y).
If |S] < R then we say that f depends on countably many coordinates. Similarly, E
depends on S if forall x € E and y € X with ps(x) = ps(y) wehave y € E.

Definition 3.2 We say that a space Y has a regular Gs-diagonal [14] if there exists a
sequence (G,);> | of open subsets of Y2 such that

oo

{3, y):yeY)=[)Gu=[)Gn (1)
n=1

n=1
We denote o (a) = {x eX:teT: x #a/ < No} as in [4].

Theorem 3.3 Let Y be a space with a regular Gs-diagonal, (X; : t € T) be a
family of topological spaces, X = [|,cr X1, a € X and let E C X be a pseudo-
R1-compact subspace which is (X1, Ro)-invariant with respect to a. Then for any
continuous mapping f: E — Y there exist a countable set Ty C T and a continuous
mapping fo: pr,(E) — Y such that f = foo(pr,|E). In particular, f depends on
countably many coordinates.

Proof Let(G,);° | be asequence of opensetsin Y2 which satisfies (I)andlet f: E —
Y be a continuous function. Denote by Tj the set of all + € T for which there exist
points x’, y' € E N o (a) such that

xl =yl forall s#t1,
X =ay, 2

FGD# FOD.

Assume that Ty is uncountable and choose an uncountable subset B C T and a number
no € N such that

(f&D, fON) e Y2\G,, forall e B.

Using the continuity of f at x’ and y’ for every t € B, we find open basic neighbor-
hoods U’ and V! of x’ and y’, respectively, such that

ps(Ut) = ps(Vt) for s 5& z, (3)
FWU'NE)x f(VINE) CY*\Gy,. (4)

Since E is pseudo-R-compact and the family (V' N E : ¢ € B) is uncountable, there
exists a point x* € FE such that for any basic open neighborhood W of x* the set
Cw=1{teB:V'NENW # &} is infinite. The continuity of f at x* implies that
there is an basic open neighborhood W of x* such that f(WNE) x f(WNE) C Gp,.
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Notice that C = Cy \N(W) # @.Fixt € Candy € V' N ENW.Letx = y7, -
Then (2) and (3) imply that x € U’. Since E is (R, Rg)-invariant with respect to
a,x € E. Moreover, x € W, since t ¢ N(W). Then (f(x), f(y)) € Gp,, which
contradicts (4). Hence, the set Tj is countable.

We show that f depends on Tp. To do this it is sufficient to check the equality
fx) = f(x‘;o) for every x € E. Consider the case x € E No(a). Let {t € T\ Ty :
X Zary ={t1,...,tyn}. Then

fx) = f(x%\{n}) = f((x%\{tl})%\{tz}) =
= F((CFvny) ) Tvn) = F(&5)-

Now letx € E.Noticethat ENo (a)isadensesetin E. Indeed, if b = (b;);er € E and
W is a basic open neighborhood of b in X, then bj’v(W) € WN ENo(a). Hence, there
exists a net (x;) of points x; € E No (a) such thatlim; x; = x. Then lim; (xi)‘}o = x%).
It follows from continuity of f that

f@) = f(limx;) =lim f () = lim f((0)F) = f(lim()7,) = f (7).

Consider the function fo: pr (E) — Y defined by fo(z) = f(x) if z = pr,(x) for
x € E. Observe that fj is defined correctly, because f depends on Tj. It remains
to prove that f is continuous on pz,(E). Fix z € pp (E) and a net (z;) of points
Zi € pry(E) such that lim; z; = z. Take x € E and x; € E with z = pg,(x) and
zi = pry(x;). Lety; = (x; ‘}0 andy = X?O.Then vi, ¥y € E andlim; y; = y. Moreover,
since f is continuous at y, we have

lim fo(z;) = lim f(x;) =lim f(yi) = f(y) = f(x) = fo(2).

Hence, fy is continuous at z. O

Notice that the proof of dependence of f on Ty in Theorem 3.3 is similar to the proof
of [1, Lemmas 2.27 (a) and 2.32].

Theorem 3.4 Let (X, : t € T) be an uncountable family of topological spaces,
X = HteT X:,a € Xandlet E C X be an (N1, Ro)-invariant set with respect to a.
Consider the following conditions:

() E is pseudo-R1-compact;

(i1) for any space Y with a regular Gs-diagonal and for any continuous map-
ping f: E — Y there exist a countable set Ty C T and a continuous mapping
Jo: pry(E) = Y suchthat f = foo(prylE);

(iii) for any continuous function f: E — R there exist a countable set Ty C T
and a continuous mapping fo: pr,(E) — R such that f = foo (pr,|E).

Then (1) = (i) = (iii).
If E is completely regular and
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166 O. Karlova, V. Mykhaylyuk

(iv) for any non-empty open set U in E there exists an uncountable set Ty € T
such that for every t € Ty there are y) = (y‘gt))seT and 7 = (Zg))ser eU
with yt(t) * zgt) and ys(l) = zgt) for everys € T\{t},

then (iii) = (1).

Proof The implication (i) = (ii) follows from Theorem 3.3, whereas the implication
(ii) = (iii) is obvious.
(iii))=> (1) Suppose that E is not pseudo-N|-compact and choose a locally finite in E
family (U, : o < w1) of non-empty open sets U,. Note that U, may be taken to be
disjoint. Indeed, let (V; : i € I) be a locally finite family of non-empty open subsets
of E with || > K. For every i € I we choose a non-empty open set W; C V; and a
finite set J; C I such that W; C ﬂjeJ,- Viand W; N V; =@ forall j € I\J;. Since
i € Jjforeveryi € I, J;c; Ji = I. Now we take a uncountable set Iy C I such that
all sets J; from the family (J; : i € Iy) are different. Then the uncountable family
(W; 1 i € Iy) consists of mutually disjoint elements.

Since E is completely regular, we may assume that all sets U, are functionally
open. For every o < w; take a continuous function f,: E — [0, 1] such that U, =
£-1((0, 17). Since Ty, is uncountable, we may construct a family (7, : o < wy)

o
of distinct points #, € Ty,. According to (iv) we choose for every o < @ points

YO = (3)ser, 2@ = (2{)ser € Uy such that y* # 7% and y* = (¥
for every s € T\{#y}. Now for every « < w; we choose a continuous function
gt E — [0, 1] such that g4 (y®) = 1 and go (z®)) = 0.

Consider the continuous function f: E — [0, 1], f(x) = Z(le fa(X)ga(x).
Since sets U,, are mutually disjoint,

f(y(a)) - f(Z(a)) = fo (y(a))ga (y(a)) — Ja (Z(a))got (Z(a)) = fa(y(a)) > 0.

Hence, f(y®) # f(2®) for every o < w. Since the set {f, : @ < w;} is uncount-
able, the function f does not satisfy (iii). (|

4 Functionally measurable sets

Proposition 4.1 Let E be a subset of X = [[,.y X; such that for any continuous
Sfunction f: E — R there exist a countable set Ty C T and a continuous mapping
fo: pry(E) = Rwith f = foo(pr,|E) and let 0 < o < wy. Then for any set A of
functionally additive (multiplicative) class a in E there exists a countable set Ty C T
such that A depends on Ty and pr,,(A) is of functionally additive (multiplicative) class
ain pr,(E).

Proof Let @ = 0. We consider the case when a set A is functionally open in E. Then
A = f71((0, 400)) for some continuous function f: E — R. Take a countable set
Tp € T and a continuous mapping fo: pr,(E) — R with f = foo(pr|g). Then
the set pr, (A) = f(;1 ((0, +00)) is functionally open in pr, (E). Moreover, if x € A
and y € E with p7(x) = pr,(y), then f(y) = f(x) > 0. Therefore, y € A which
implies that A depends on Tj.
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Assume that the assertion is true for all « < f and consider a set A of functionally
additive class o in E. Then A = |J2; A,, where A, is of functionally multiplicative
class «, < « for every n. By the assumption, for every n there exists a countable set
T, < T suchthat A, depends on 7, and p7, (A,) belongs to functionally multiplicative
class a, in pr, (E). Notice that pr,(A,) is of functionally multiplicative class ¢, in
p1,(E) for every n. Then pr,(A) = UE‘;I P17, (Ay) is of functionally additive class o
in pr,(E). ]

Definition 4.2 Let0 < o < w1. A space X is called a-universal if any subset of X is
a-embedded in X.

Clearly, every perfectly normal space is a-universal for any o < w;.

Proposition 4.3 Let0 < o < w1, (X¢)rer be a family of topological spaces such that
every countable subproduct is a-universal, X = [[,.; X; and let E € X be such a
set as in Proposition 4.1. Then E is an oa-embedded set in X.

Proof Let A C E be a set of functionally multiplicative class « in E. According
to Proposition 4.1 there exists a countable set 7o € 7T such that A depends on Ty
and Ag = pr,(A) is of functionally multiplicative class « in Eg = pr,(E). Since
Xo = HteTO X; is a-universal, the set E( is a-embedded in X. Hence, there exists
a set By of functionally multiplicative class o in X¢ such that By N Ey = Ag. Let
B = pyg, '(By). Then B is of functionally multiplicative class « in X, because the
mapping pr, is continuous. Moreover, it is easy to see that BN E = A. ]

Proposition 4.4 Let 0 < o < w1, X = [[,cp X be a pseudo-R¥1-compact space,
where (X;);er is afamily of spaces such that every countable subproduct is a-universal
and hereditarily pseudo-R1-compact. Then any functionally measurable set E C X is
a-embedded in X.

Proof Consider a functionally measurable set £ C X. Without loss of generality,
we may assume that E belongs to functionally multiplicative class 8 for some 0 <
B < wi. Take a function f € Bg(X) such that £ = £~10). Since X is pseudo-
R1-compact, [11, Theorem 2.3] implies that there exists a countable set Ty € T such
that for all x € E and y € X the equality p7,(x) = pr,(y) implies that y € E. Let
Eg = pr,(E). Then

E = E, xH X,.
reT\Ty

Since [, enpus Xi 1s ahereditarily pseudo-R-compact space, Eg x [1,c5X: is pseudo-
N1-compact space for any finite set S C 7\ Tp. Hence, by [11, Corollaryl.5] the
set E is pseudo-Rj-compact. Therefore, E satisfy the condition of Proposition 4.1
by Theorem 3.3 applied to the whole product EOtzeT\To X;. It remains to use
Proposition 4.3. 0

The following result implies a positive answer to [8, Question 8.1].
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Corollary 4.5 Let (X;):er be a family of separable metrizable spaces. Then every
functionally measurable subset of X = [],cp X, is a-embedded in X forany 0 < o <
1.

Proof The statement follows from Proposition 4.4 and the fact that any countable
product of separable metrizable spaces is separable and metrizable, consequently,
a-universal and hereditarily pseudo-81-compact. |

5 The construction of «-embedded sets

Theorem 5.1 For every 0 < a < w; there exists a completely regular space X with
an (o + 1)-embedded subspace E C X which is not a-embedded.

Proof Fix o < w;. Let Xg = [0,1], X;, = Nforeveryz € (0,1], Y = Hze(o,l] X,
and X =[0,1]xY = Hte[O,l] X;.
According to [9, p.371] there exists a set A} < [0, 1] of additive class « which

does not belong to multiplicative class «. Let A; = [0, 1]\ A;. Fori = 1,2 put

Fr=({y=0diconeY:[{te@©1]:y =n} <1}.
n#£i

It is easy to see that F] and F; are closed disjoint subsets of Y. Let B; = A; x F; for
i =1,2and E = By U B;. Then B and B, are disjoint closed subsets of E.

Claim 5.2 The set B; is a-embedded in X for everyi = 1, 2.

Proof We show that Bj is pseudo-N-compact (for the set B, we argue verbatim).
Since A is separable, it is enough to check that Fj is pseudo-8-compact. Notice that
the set F is (X1, ®y)-invariant with respect to the point a = (a;);¢ (0,1}, Where a; = 1
for every ¢ € (0, 1]. Since for any finite set § € (0, 1] the space Ht <s X1 is countable,
the set F satisfies condition (ii) of Theorem 2.5. Then by Theorem 2.5 the set Fj is
pseudo-N1-compact.

Now observe that each set B; is (X, N)-invariant with respect to the point a =
(al)ief0,17, whereal =i forallz € (0, 11and a, € A;.Itremains to apply Theorem 3.3
and Proposition 4.3. u

Claim 5.3 The set E is not a-embedded in X.

Proof Assume the contrary and choose a set H of functionally multiplicative class «
in X such that H N E = Bj. It follows from Proposition 4.1 that there is a countable
set S = {0} U T, where T C (0, 1], such that H depends on S. Let yp € Y be such
that pr(yp) is a sequence of distinct natural numbers which are not equal to 1 or 2.
Take y; € F1 and yo € F> with pr(y9) = pr(y1) = pr(y2). Thenforall x € A we
have (x, y1) € H and, consequently, (x, yo) € H. Moreover, for all x € A, we have
(x,y2) ¢ H and, consequently, (x, yo) & H.Hence, A x {yo} = ([0, 11x {yo}) N H.
Therefore, A1 x {yo} is of functionally multiplicative class « in X, which implies that
the set A| belongs to functionally multiplicative class « in [0, 1], a contradiction. Wl
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Claim 5.4 The set E is (o« + 1)-embedded in X.

Proof Let C be a set of functionally multiplicative class (« 4+ 1) in E. Denote E; =
A; x Y fori = 1,2.Then E is of functionally additive class « and E» is of functionally
multiplicative class & in X. Fori = 1, 2 put C; = C N B;. Since each of the sets C; is
of functionally multiplicative class (@ + 1) in the a-embedded set B; in X, there exists
a set D; of functionally multiplicative class (¢ + 1) in X such that D; N B; = C;.
Let D = (D1 NE;)U (D> N Ey). Then D is a set of functionally multiplicative class
(e+1HinXand DNE =C. |

This completes the proof. ]

Notice that the sets F; were first defined by Stone [13] in his proof of non-normality
of the uncountable power N* of the space N of natural numbers.
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