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Abstract In the paper (Kulikov in Sb Math 204(2):237–263, 2013), the ambiguity
index a(G,O) was introduced for each equipped finite group (G, O). It is equal to
the number of connected components of a Hurwitz space parametrizing coverings of
a projective line with Galois group G assuming that all local monodromies belong
to conjugacy classes O in G and the number of branch points is greater than some
constant.We prove in this article that the ambiguity index can be identifiedwith the size
of a generalization of so called Bogomolov multiplier (Kunyavskiı̆ in Cohomological
and Geometric Approaches to Rationality Problems. Progress in Mathematics, vol
282, pp 209–217, 2010), see also (Bogomolov in Math USSR-Izv 30(3):455–485,
1988) and hence can be easily computed for many pairs (G, O). In particular, the
ambiguity indices are completely counted in the cases when G are the symmetric or
alternating groups.
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1 Introduction

LetG be a finite group and O be a subset ofG consisting of conjugacy classesCi ofG,
O = C1∪· · ·∪Cm , which together generate G. The pair (G, O) is called an equipped
group and O is called an equipment of G. We fix the numbering of conjugacy classes
contained in O . One can associate a C-group (˜G, ˜O) to each equipped group (G, O).
The C-group ˜G is generated by the letters of the alphabet Y = YO = {yg : g ∈ O}
subject to relations

yg1 yg2 = yg2 yg−1
2 g1g2

= yg1g2g−1
1

yg1 .

We assume ˜O = YO in the definition of ˜G. There is an obvious natural homomorphism
β : ˜G → G given by β(yg) = g. It was shown in [11], that the commutator subgroup
[˜G, ˜G] is finite. The order a(G,O) of the group ker β ∩[˜G, ˜G]was called the ambiguity
index of the equipped finite group (G, O).

The notion of equipped groups is related to the description of Hurwitz spaces
parametrizing maps between projective curves with G as the monodromy group and
the ambiguity index a(G,O) is equal to the properly defined “asymptotic” number of
connected components of Hurwitz space parametrizing covering of curves with fixed
ramification data. More precisely, let f : E → F be a morphism of a non-singular
complex irreducible projective curve E onto a non-singular projective curve F . Let
us choose a point z0 ∈ F such that z0 is not a branch point of f hence the points
f −1(z0) = {w1, . . . , wd}, where d = deg f , are simple. If we fix the numbering of
points in f −1(z0) then we call f a marked covering.

Let B = {z1, . . . , zn} ⊂ F be the set of branch points of f . The numbering
of the points of f −1(z0) defines a homomorphism f∗ : π1(F \B, z0) → �d of the
fundamental group π1 = π1(F \B, z0) to the symmetric group �d . Define G ⊂ �d

as im f∗ = G. It acts transitively on f −1(z0). Let γ1, . . . , γn be simple loops around,
respectively, the points z1, . . . , zn starting at z0. The image g j = f∗(γ j ) ∈ G is called
a local monodromy of f at the point z j . Each local monodromy g j depends on the
choice of γ j , therefore, it is defined uniquely up to conjugation in G.

Denote by O = C1 ∪ · · · ∪ Cm ⊂ G the union of conjugacy classes of all local
monodromies and by τi the number of local monodromies of f belonging to the
conjugacy class Ci . The collection τ = (τ1C1, . . . , τmCm) is called the monodromy
type of f . Assume that the elements of O generate the group G. Then the pair (G, O)

is an equipped group. Let HURm
d,G,O,τ (F, z0) be the Hurwitz space (see the definition

of Hurwitz spaces in [4] or in [12]) of marked degree d coverings of F with Galois
group G ⊂ �d , local monodromies in O , and monodromy type τ .

The number of irreducible components of HURm
d,G,O,τ (F, z0) for fixed d,G, O, F

is a function of an integer vector τ = (τ1, . . . , τm). It was proved in [12] that this
number is constant for big τ . More precisely, for each equipped finite group (G, O)

there is T such that if for all i = 1, . . . ,m we have τi � T , i = 1, . . . ,m, then the
number of irreducible components of the Hurwitz space HURm

d,G,O,τ (F, z0) is equal
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262 F. A. Bogomolov, V. S. Kulikov

to a(G,O). The (minimal) number T does not depend on the base curve F and the
degree d of the covering.

The subgroup B0(G) ⊂ H2(G,Q/Z) was defined and studied in [1]. It consists
of elements of H2(G,Q/Z) which restrict trivially onto abelian subgroups of G. It
was conjectured in [2] that B0(G) is trivial for simple groups. This conjecture was
partially solved already in [2] and it was completely solved by Kunyavskiı̆ in [13],1

and by Kunyavskiı̆–Kang in [8] for a wider class of almost simple groups. The latter
consists of groups G which contain some simple group L and in turn are contained
in the automorphism group Aut L . Kunyavskiı̆ in [13] called B0(G) as Bogomolov
multiplier and we are going to use his terminology here. Denote by b0(G) the order of
the group B0(G) and denote by h2(G) the order of the Schur multiplier of the group
G, that is, the order of the group H2(G,Z).

The aim of this article is to prove

Theorem 1.1 For an equipped finite group (G, O)wehave the following inequalities:

b0(G) � a(G,O) � h2(G).

In particular, a(G,G\{1}) = b0(G).

Since, by [13], b0(G) = 1 for a finite almost simple group G, we conclude

Corollary 1.2 Let G be a finite almost simple group. Then there is a constant T such
that for any projective irreducible non-singular curve F each non-empty Hurwitz
space HURm

d,G,G\{1},τ (F, z0) is irreducible if all τi � T .

It was shown in [11] that if O1 ⊂ O2 are two equipments of a finite group G, then
a(G,O2) � a(G,O1).

For a symmetric group�d , the famous Clebsch–Hurwitz theorem [3,6] implies that
the ambiguity index a(�d ,T ) = 1, where T is the set of transpositions in�d , and it was
shown in [10] that the ambiguity index a(�d ,O) = 1 if the equipment O contains an
odd permutation σ ∈ �d such that σ leaves fixed at least two elements. Theorem 4.14
(see Sect. 4.4) gives the complete answer on the value of a(�d ,O) for each equipment
O of �d . Also in Sect. 4.4, we give the complete answer on the value of a(Ad ,O) for
each d and for each equipment O of the alternating group Ad .

In Sect. 2, we remind some properties ofC-groups and prove one of the inequalities
claimed in Theorem 1.1. In Sect. 3, we complete the proof of this theorem.

In Sect. 4, we investigate the properties of ambiguity indices of a quasi-cover of an
equipped finite group (G, O), and in Sect. 5, we give a cohomological description of
the ambiguity indices.

In Sect. 6, we give examples of finite groupsG withBogomolovmultiplier b0(G) >

1. Therefore, for suchG each non-empty space HURm
d,G,O,τ (F, z0) consists of at least

b0(G) > 1 irreducible components for any τ = (τ1, . . . , τm) with big enough τi .
In this article, if F is a free group freely generated by an alphabet X , N is a normal

subgroup of F, and a group G = F/N , then a word w = w(xi1 , . . . , xin ) in letters

1 The proof of triviality of B0(G) for finite almost simple groups G was recently completed in [8] after a
minor gap was discovered in the argument in [12]. The gap was due to the reference on a result in [1] which
contained an error and was corrected by Jezernik and Moravec [7].
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The ambiguity index of an equipped finite group 263

xi j ∈ X and their inverses will be considered as an element of G in case if it does not
lead to misunderstanding.

2 C-groups and their properties

Let us remind the definition of a C-group (see, for example, [9]).

Definition 2.1 A group G is a C-group if there is a set of generators x ∈ X in G such
that a basis of relations between x ∈ X consists of the following relations:

x−1
i x j xi = xk, (xi , x j , xk) ∈ M, (1)

where M is a subset of X3.

Thus the C-structure of G is defined by X ⊂ G and M ⊂ X3.
Let F be a free group freely generated by an alphabet X . Denote by N the subgroup

of F normally generated by the elements x−1
i x j xi x

−1
k , (xi , x j , xk) ∈ M . The group N

is a normal subgroup of F. Let f : F → G = F/N be the natural epimorphism given
by presentation (1). In the sequel, we consider each C-group G as an equipped group
(G, O) with the equipment O = f (XF) (where XF is the orbit of X under the action
of the group of inner automorphisms of F). The elements of O are calledC-generators
of the C-group G. In particular, the equipped group (F, XF) is a C-group.

A homomorphism f : G1 → G2 of a C-group (G1, O1) to a C-group (G2, O2)

is called a C-homomorphism if it is a homomorphism of equipped groups, that is,
f (O1) ⊂ O2. In particular, two C-groups (G1, O1) and (G2, O2) are C-isomorphic
if they are isomorphic as equipped groups.

Claim 2.2 ([9, Lemma 3.6]) Let N be a normal subgroup of F normally generated
by a set of elements of the form w−1

i x jwiwl x
−1
k w−1

l , where wi and wl are elements
of F and x j , xk ∈ X. Let f : F → G � F/N be the natural epimorphism. Then
(G, f (XF)) is a C-group and f is a C-homomorphism.

To each C-group (G, O), one can associate a C-graph. By definition, the C-graph
� = �(G,O) of a C-group (G, O) is a directed labeled graph whose set of vertices
V = {vgi : gi ∈ O} is in one-to-one correspondence with the set O . Two vertices vg1
and vg2 , g1, g2 ∈ O , are connected by a labeled edge evg1vg2vg (here vg1 is the tail of
evg1vg2vg , vg2 is the head of evg1vg2vg , and vg is the label of evg1vg2vg ) if and only if in

G we have the relation g−1g1g = g2 with some g ∈ O .
A C-homomorphism f : (G1, O1) → (G2, O2) of C-groups induces a map

f∗ : �(G1,O1) → �(G2,O2) from the C-graph �(G1,O1) in the C-graph �(G2,O2), where
by definition, f∗(vg) = v f (g) for each vertex vg of �(G1,O1) and

f∗
(

evg1vg2vg

) = ev f (g1)v f (g2)v f (g)

for each edge evg1vg2vg of �(G1,O1). The following claim is obvious.

Claim 2.3 A C-homomorphism f : (G1, O1) → (G2, O2) is a C-isomorphism if f∗
is one-to-one between the sets of vertices of �(G1,O1) and �(G2,O2).
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264 F. A. Bogomolov, V. S. Kulikov

In the sequel, we will consider only finitely presented C-groups (as groups without
equipment) and C-graphs consisting of finitely many connected components. Denote
by m the number of connected components of a C-graph �(G,O).

Then it is easy to see that G/[G,G] � Zm and any two C-generators g1 and g2 are
conjugated in the C-group G if and only if vg1 and vg2 belong to the same connected
component of �(G,O). Thus the set O of C-generators of the C-group (G, O) is the
union of m conjugacy classes of G and there is a one-to-one correspondence between
the conjugacy classes of G contained in O and the set of connected components of
�(G,O).

Denote by τ : G → H1(G,Z) = G/[G,G] the natural epimorphism. In the
sequel, we fix some numbering of the connected components of �(G,O). Then
the group H1(G,Z) � Zm obtains a natural base consisting of vectors τ(g) =
(0, . . . , 0, 1, 0, . . . , 0), where 1 stands on the i th place if g is a C-generator of G
and vg belongs to the i th connected component of �(G,O). For g ∈ G the image τ(g)
is called the type of g.

Lemma 2.4 Let g1, g2 be two C-generators of a C-group (G, O), N the normal
closure of g1g

−1
2 in G, and f : G → G1 = G/N the natural epimorphism. Then

(i) (G1, O1) is a C-group, where O1 = f (O), and f is a C-homomorphism;
(ii) the map f∗ : �(G,O) → �(G1,O1) is a surjection;
(iii) if g1g

−1
2 belongs to the center Z(G) of the group G and vg1 and vg2 belong to

different components of �(G,O), then

(iii1) the number of connected components of the C-graph �(G1,O1) is less than
the number of connected components of the C-graph �(G,O),

(iii2) f : [G,G] → [G1,G1] is an isomorphism.

Proof Claims (i), (ii), and (iii1) are obvious. Toprove (iii2), note that N is a cyclic group
generated by g1g

−1
2 , since g1g

−1
2 belongs to the center Z(G). The type τ

(

(g1g
−1
2 )n

)

is non-zero for n 	= 0, since vg1 and vg2 belong to different connected components
of �(G,O). Therefore, to complete the proof, it suffices to note that the groups N and
[G,G] have trivial intersection, since τ(g) = 0 for all g ∈ [G,G]. 
�

AC-group (G, O) is called aC-finite group if the set of vertices ofC-graph �(G,O)

is finite or, the same, if the equipment O of G is a finite set.

Proposition 2.5 ([11]) Let (G, O) be a C-finite group. Then the commutator [G,G]
is a finite group.

As it wasmentioned in Sect. 1, to each finite equipped group (G, O), one can associate
a C-group (˜G, ˜O) defined as follows. The group ˜G is generated by the letters of the
alphabet Y = YO = {yg : g ∈ O} subject to relations

yg1 yg2 = yg2 yg−1
2 g1g2

= yg1g2g−1
1
yg1 .

Here ˜O = YO and there is a natural epimorphism βO : ˜G → G given by βO(yg) = g.
Note also that a homomorphism of equipped groups f : (G1, O1) → (G, O)

induces a C-homomorphism ˜f : (˜G1, ˜O1) → (˜G, ˜O) such that f ◦βO1 = βO ◦ ˜f .
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The ambiguity index of an equipped finite group 265

Let the elements of a subset S of an equipment O of a group G generate the group
G and O = SG , where SG is the orbit of S under the action Inn(G). Denote by FS a
free group freely generated by the alphabet YS = {yg : g ∈ S} and by RS the normal
subgroup of FS such that the natural epimorphism hS : FS → FS/RS � G gives a
presentation of the group G.

Claim 2.6 Let ˜RS ⊂ RS be the normal subgroup normally generated by the elements
of RS of the form w−1

i j ygi wi j y−1
g j

, where wi j ∈ FS and ygi , yg j ∈ YS. Then the C-

group (˜G, ˜O) has the presentation ˜G � FS/˜RS and the images of the elements of YS
are C-generators of ˜G.

Proof Denote by G1 = FS/˜RS . By Claim 2.2, G1 is a C-group with C-equipment
O1 = YG1

S and there is a natural epimorphism βS : (G1, O1) → (G, O) given by
βS(yg) = g for g ∈ S.

Assume that S consists of elements g1, . . . , gn ∈ O . If S 	= O then choose an
element gn+1 ∈ O \S. It is conjugated to some gi ∈ S. Denote by Rgn+1 the set of all
presentations of gn+1 in the form

gn+1 = w(g1, . . . , gn)
−1gw(g1, . . . , gn), g ∈ S. (2)

Note that if

gn+1 = wi (g1, . . . , gn)
−1giwi (g1, . . . , gn),

gn+1 = w j (g1, . . . , gn)
−1g jw j (g1, . . . , gn),

then w jw
−1
i giwiw

−1
j = g j , that is,

w j (yg1 , . . . , ygn )wi (yg1 , . . . , ygn )
−1 ygi

wi (yg1 , . . . , ygn )w j (yg1 , . . . , ygn )
−1 y−1

g j
∈ RS .

(3)

Similarly, if gn+1 = wi (g1, . . . , gn) and g−1
n+1gi gn+1 = g j for some gi , g j ∈ S, then

w(yg1 , . . . , ygn )
−1ygi w(yg1 , . . . , ygn ) y

−1
g j

∈ RS . (4)

Therefore, if S1 = S ∪ {gn+1}, FS1 is a free group freely generated by the alphabet
YS1 = {yg : g ∈ S1}, Rgn+1 is the set of words of the form

w(yg1 , . . . , ygn )
−1ygw(yg1 , . . . , ygn ) y

−1
gn+1

defined by all relations (2), and ˜RS1 is the normal closure in FS1 of the set ˜RS ∪ Rgn+1,
then G1 � FS1/

˜RS1 in view of relations (3) and (4).
Note that if we have a relation g−1

i g j gi = gk for some gi , g j , gk ∈ S1 then

y−1
gi yg j ygi y

−1
gk ∈ ˜RS1 .
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266 F. A. Bogomolov, V. S. Kulikov

If S1 	= O , then we can repeat the construction described above and obtain a pre-
sentation G1 � FS2/

˜RS2 , and so on. After several steps we obtain a presentation
G1 � FO/˜RO . Note that, by induction, we deduce that for any relation in G of the
form g−1

i g j gi = gk for some gi , g j , gk ∈ O we have y−1
gi yg j ygi y

−1
gk ∈ ˜RO . There-

fore, there is a natural C-homomorphism f : (˜G, ˜O) → (G1, O1). By Claim 2.3, f
is a C-isomorphism. 
�

For an equipped finite group (G, O), consider a presentation of G of the following
form. Let us take a free group F = FO freely generated by the alphabet XO =
{xg : g ∈ O}. Consider a normal subgroup RO ⊂ F such that F/RO � G. Let
hO : F → F/RO � G be the natural epimorphism.

We can associate to (G, O) a group G = F/[F, RO ]. Denote by αO : G → G
the natural epimorphism. By Claim 2.2, (G, O) is a C-group, where O = hO(XF

O).
Evidently, there is a natural epimorphism ofC-groups κO : (G, O) → (˜G, ˜O) sending
κO(xg) = yg for all g ∈ O and such that αO = βO ◦κO . TheC-group (G, O) is called
the universal central C-extension of the equipped finite group (G, O). It is easy to
see that αO : G → G is a central extension of groups, that is, ker αO is a subgroup of
the center Z(G).

We have

ker αO ∩ [G,G] = (RO ∩ [F,F])/[F, RO ].

By Hopf’s integral homology formula, we have

H2(G,Z) � (RO ∩ [F,F])/[F, RO ].

Denote by h2(G) the order of the group H2(G,Z) and denote by K(G,O) the subgroup
of (RO ∩[F,F])/[F, RO ] generated by the elements of RO of the form [w, xg], where
g ∈ O and w ∈ F, and let k(G,O) be its order.

Theorem 2.7 For an equipped finite group (G, O) we have

h2(G) = k(G,O)a(G,O).

Proof We have ker κO ⊂ ker αO . Therefore, ker κO ⊂ Z(G). Let us show that for
some n � 0 there exist a sequence of C-groups G0 = F/R0, . . . ,Gn = F/Rn , a
sequence of C-homomorphisms

ϕi : (Gi , Oi ) → (Gi+1, Oi+1), 0 � i � n − 1,

where (G0, O0) = (G, O), and a C-homomorphism κ : (Gn, On) → (˜G, ˜O) such
that
(i) κ = κ ◦ϕ, where ϕ = ϕn−1 ◦ · · · ◦ ϕ0;
(ii) for each i the homomorphism ϕi : [Gi ,Gi ] → [Gi+1,Gi+1] is an isomorphism;
(iii) κ∗ induces a one-to-one correspondence between the connected components of

the C-graphs �(Gn ,On)
and �(˜G,˜O).
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The ambiguity index of an equipped finite group 267

Indeed, let us put R0 = RO and consider the map κ∗. If it induces a one-to-one cor-
respondence between the connected components of the C-graphs �(G,O) and �(˜G,˜O),
then n = 0 and it is nothing to prove.

Otherwise, for some g ∈ O there is a vertex vyg of�(˜G,˜O) whose preimage κ−1∗ (vyg )

contains at least two vertices, say vxg and v g (here g is an element of XF), of �(G,O)

belonging to different connected components of �(G,O).

Denote by R1 the normal closure of RO ∪ {xgg−1} in F and consider the natural
homomorphism ϕ0 : G → G1 = F/R1. The element xgg−1, considered as an element
of G, belongs to ker κ . Therefore, xgg−1 ∈ Z(G).

Denote by κ1 : G1 → ˜G the homomorphism induced by κ . By Lemma 2.4,
the homomorphism ϕ1 is a C-homomorphism of C-groups. It is easy to see that
ϕ0 : [G0,G0] → [G1,G1] is an isomorphism and the number of connected compo-
nents of the C-graph �(G1,O1)

is less than the number of connected components of the
C-graph �(G,O).

Assume now that κ1∗ is not a one-to-one correspondence between the connected
components of the C-graphs �(G1,O1)

and �(˜G,˜O). Then for some g1 ∈ O there is a

vertex vyg1 of �(˜G,˜O) which preimage κ−1
1∗ (vyg1 ) contains at least two vertices vxg1

and v g1 of �(G1,O1)
belonging to different connected components of �(G1,O1)

.
Hence we can repeat the construction described above and obtain a C-group

(G2, O2) and C-homomorphisms ϕ1 : G1 → G2 = F/R2, κ2 : G2 → ˜G such that
ϕ1 : [G1,G1] → [G2,G2] is an isomorphism and the number of connected compo-
nents of the C-graph �(G2,O2)

is less than the number of connected components of the
C-graph �(G1,O1)

. Since the number of connected components of the C-graph �(G,O)

is finite, after several (n) steps of our construction we obtain the desired sequences of
C-groups and C-homomorphisms.

Now, consider the C-homomorphism κ : Gn → ˜G. The C-graph �(˜G,˜O) consists
of connected components �1, . . . , �m . Let

{

vgi1 , . . . , vgili

}

be the set of the vertices

of �i . We have O = {gi j }1�i�m,1� j�li . Then �i = κ −1∗ (�i ) are the connected
components of �(Gn ,On)

. Let

κ −1
n

(

vygi j

) = {

vxgi j , v gi j1 , . . . , v gi jri j

}

, gi jk ∈ On, 1 � k � ri j .

Since the graph�i is connected, there arewordswi jk in letters of XO and their inverses
such that

gi jk = wi jk xgi j w
−1
i jk , 1 � k � ri j .

Obviously, the elements ui jk = [

wi jk, xgi j
] = gi jk x

−1
gi j belong to [Gn,Gn] ∩ ker κ .

Therefore, ui jk as elements of F belong to RO ∩ [F,F].
Consider the group Gn+1 = F/Rn+1, where the group Rn+1 is the normal closure

of Rn ∪ {ui jk}1�i�m,1� j�li ,1�k�ri j in F. Then, by Claim 2.2, Gn+1 = F/Rn+1 is a

C-group and the natural map κ1 : Gn+1 → ˜G, induced by κ , is a C-homomorphism.
Moreover, ker ϕn of the natural epimorphism ϕn : Gn → Gn+1 is a subgroup of
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268 F. A. Bogomolov, V. S. Kulikov

[Gn,Gn] � [G,G] = [F,F]/[F, RO ] generated by the elements ui jk = [

wi jk, xgi j
]

,
where 1 � i � m, 1 � j � li , and 1 � k � ri j .

To complete the proof, it suffices to note that κ1∗ induces a one-to-one correspon-
dence between the sets of vertices of the C-graphs �(Gn+1,On+1)

and �(˜G,˜O), since all

ui jk = gi jk x
−1
gi j belong to ker ϕn . Therefore, κ1 is an isomorphism. 
�

Lemma 2.8 Let the order of g ∈ O be n and let [xg, w] ∈ ([F,F] ∩ RO)/[F, RO ] ⊂
F/[F, RO ]. Then the order of the element [xg, w] is a divisor of n.
Proof The elements xng and [xg, w] belong to the center of the group F/[F, RO ].
Therefore,

[

xng , w
] = xn−1

g [xg, w]x1−n
g

[

xn−1
g , w

] = [xg, w][xn−1
g , w

] = · · · = [xg, w]n

is the unity of F/[F, RO ]. 
�
From Lemma 2.8 and Theorem 2.7 we have

Proposition 2.9 Let the equipment O of an equipped finite group (G, O) consist of
conjugacy classes of elements of orders coprime with h2(G). Then a(G,O) = h2(G).

3 Proof of Theorem 1.1

By definition, the Bogomolov multiplier b0(G) of a finite group G is the order of the
group

B0(G) = ker

[

H2(G,Q/Z) →
⊕

A⊂G

H2(A,Q/Z)

]

,

where A runs over all abelian subgroups of G.

Remark 3.1 Note that it suffices to consider only restrictions to abelian groups with
two generators in order to determine that the element w ∈ H2(G,Q/Z) is contained
in B0(G).

There is a natural duality between H2(G,Q/Z) and H2(G,Z) since the groups
Q/Z and Z are Pontryagin dual (see, for example, [15]). Both groups are finite for
finite groups G and hence the duality implies an isomorphism of H2(G,Q/Z) and
Hom(H2(G,Z),Q/Z) as abstract groups.

By Theorem 2.7, we have the inequality h2(G) � a(G,O) for any equipped finite
group (G, O). By [11, Corollary 2], we have a(G,O) � a(G,G\{1}) for each equipment
O of G. Therefore, to prove Theorem 1.1 it suffices to show that for the equipped
finite group (G,G \{1}) its ambiguity index a(G,G\{1}) is equal to b0(G).

In notation used in Sect. 2 and by Theorem 2.7, we have

a(G,G\{1}) = h2(G)

k(G,G\{1})
,
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where k(G,G\{1}) is the order of the subgroup KG\{1} of the group

(

RG\{1} ∩ [

FG\{1},FG\{1}
])

/
[

FG\{1}, RG\{1}
] � H2(G,Z)

generated by the elements of RG\{1} of the form [w, xg], where g ∈ G \{1} and
w ∈ FG\{1}.

Lemma 3.2 Let for some w1, w2 ∈ FG\{1} the commutator [w1, w2] belong to
RG\{1}. Then [w1, w2], considered as an element of FG\{1}/

[

FG\{1}, RG\{1}
]

, belongs
to KG\{1}.

Proof First of all, note that if [xg, w] ∈ KG\{1}, then [xg, w] = [

w, x−1
g

] =
[

x−1
g , w−1

] = [

x−1
g , w

]

in KG\{1}, since KG\{1} is a subgroup of the center of the

C-group GG\{1} = FG\{1}/
[

FG\{1}, RG\{1}
]

and these four commutators are conju-
gated to each other in FG\{1}. Similarly, [w, xg] = [

xg, w−1
] = [

w−1, x−1
g

] =
[

x−1
g , w−1

] ∈ KG\{1}, since [w, xg] is the inverse element to the element [xg, w]. Note
also that for anyw1 the elementw1[w, xg]w−1

1 belongs to KG\{1} if [w, xg] ∈ KG\{1}.
Next, the elements w−1

1 and w−1
2 , considered as elements of G, are equal to some

elements g1 and g2 of G. Therefore, if [w1, w2] ∈ RG\{1} then

w1xg1 , w2xg2 , [xg1 , xg2 ], [w2, xg1 ], [w1, xg2 ] ∈ RG\{1}.

In addition, we have [w1, w2xg2 ] ∈ [

FG\{1}, RG\{1}
]

and

[w1, w2xg2 ] = [w1, w2]
(

w2[w1, xg2 ]w−1
2

)

.

Therefore, [w1, w2] ∈ RG\{1} ∩ [

FG\{1},FG\{1}
]

(as an element of KG\{1}) is the
inverse element to the element [w1, xg2 ] ∈ KG\{1} and hence [w1, w2] ∈ KG\{1}. 
�

To complete the proof of Theorem 1.1, note that, by Lemma 3.2, for each imbed-
ding i : H → G of an abelian group H generated by two elements the image of
i∗ : H2(H,Z) → H2(G,Z) is a subgroup of KG\{1} and the group KG\{1} is gener-
ated by the images of such elements. Therefore, the group

K⊥
G\{1} = {

ϕ ∈ Hom(H2(G,Z),Q/Z) : ϕ(w) = 0 for all w ∈ KG\{1}
}

coincides with the group B0(G) and a(G,G\{1}) = h2(G)/k(G,G\{1}). 
�

4 Quasi-covers of equipped finite groups

In this section we use notation introduced in Sect. 2.
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4.1 Definitions

Let f : (G1, O1) → (G, O) be a homomorphism of equipped groups. We say that f
is a cover of equipped groups (or, equivalently, (G1, O1) is a cover of (G, O)) if
(i) f is an epimorphism such that f (O1) = O;
(ii) ker f is a subgroup of the center ZG1 of G1;
(iii) f∗ : H1(G1,Z) → H1(G,Z) is an isomorphism.
Let f : (G1, O1) → (G, O) be a homomorphism of equipped finite groups. We say
that S ⊂ O1 is a section of f if f|S : S → O is a one-to-one correspondence. Denote
by OS ⊂ O1 the orbit of S under the action of the group of the inner automorphisms
of G1.

Let f : (G1, O1) → (G, O) be an epimorphism of equipped groups such that
ker f ⊂ ZG1. We say that f is a quasi-cover of equipped groups (or, equivalently,
(G1, O1) is a quasi-cover of (G, O)) if there is a section S of f such that OS = O1.

Below, we will assume that for a quasi-cover f of equipped groups a section S is
chosen and fixed.

4.2 Properties of quasi-covers

Lemma 4.1 Let f : (G1, O1) → (G, O) be a cover of equipped finite groups and
S ⊂ O1 a section. Then G1 is generated by the elements of S.

Proof Denote by GS the subgroup of G1 generated by the elements of S. Obviously,
ϕ = f|GS : GS → G is an epimorphism and ker ϕ ⊂ ker f ⊂ ZG1. Therefore,
to prove lemma it suffices to show that ker f ⊂ GS . To show this, let us consider
the natural epimorphism f1 : G1 → G2 = G1/ker ϕ and the natural epimorphism
ψ : G2 → G induced by the cover f . Obviously, ψ : (G2, f1(O1)) → (G, O) is
a cover of equipped finite groups and ψ|H : H → G is an isomorphism, where
H = f1(GS). Therefore, G2 � kerψ × G. Consequently, kerψ = 0, since
ψ∗ : H1(G2,Z) → H1(G,Z) is an isomorphism and kerψ is an abelian group. 
�

If S is a section of a cover f : (G1, O1) → (G, O), then Lemma 4.1 implies that
OS = SG1 is an equipment of G1 and f : (G1, OS) → (G, O) is also a cover of
equipped groups.

Below, we fix a section S of a cover f : (G1, O1) → (G, O). Then the cover f can
be considered as a quasi-cover.

In notation used in Sect. 2, consider the universal central C-extension αO : (G, O)

→ (G, O) of an equipped finite group (G, O). We have two natural epimorphisms
hO : FO → G = FO/RO and βO : FO → G = FO/[FO , RO ] such that hO =
αO ◦βO .

Lemma 4.2 Let f : (G1, O1) → (G, O) be a quasi-cover of equipped finite groups.
Then there is an epimorphism αS : (G, O) → (G1, OS) of equipped groups such that
αO = f ◦αS.

Proof By Lemma 4.1, there is an epimorphism hS : FO → G1 defined by hS(xg) =
ĝ ∈ S for all g ∈ G, where ĝ = f −1

|S (g). Denote by RS = ker hS . Obviously, we have
f ◦hS = hO . Therefore, RS ⊂ RO .
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Let us show that the group [FO , RO ] is a subgroup of RS . Indeed, consider any
w ∈ RO . Then, as an element of G1, the element w ∈ ker f and, consequently, w

belongs to the center of G1. In particular, it commutes with any generator ĝ ∈ S of
G1 and hence [w, xg] ∈ RS , that is, [FO , RO ] ⊂ RS . The inclusion [FO , RO ] ⊂ RS

implies the desired epimorphism αS . 
�
We say that a cover (respectively, a quasi-cover) of equipped finite groups

f : (G1, O1) → (G, O) is maximal if for any cover of equipped finite groups
f1 : (G2, O2) → (G1, O1) such that f2 = f ◦ f1 is also a cover (respectively, quasi-
cover) of equipped finite groups, the epimorphism f1 is an isomorphism.

Theorem 4.3 For any cover (respectively, quasi-cover) of equipped finite groups
f : (G1, O1) → (G, O), there is a maximal cover (respectively, quasi-cover)
f2 : (G2, O2) → (G, O) for which there is a cover f1 : (G2, O2) → (G1, OS) such
that

(i) f2 = f ◦ f1;
(ii) ker f2 � H2(G,Z) (respectively, [G,G] ∩ ker f2 � H2(G,Z)).

Proof Consider the epimorphism αS : (G, O) → (G1, OS) defined in the proof of
Lemma 4.2. The group ker αS is a subgroup of the center of G.

Since (G, O) is a C-group and O consists of M conjugacy classes, where M �
|O| = rkFO , then H1(G,Z) = G/[G,G] = ZM . Let τ : G → ZM be the natural
homomorphism (that is, τ is the type homomorphism G → H1(G,Z), see Sect. 1).
The image τ(ker αS) is a sublattice of maximal rank in ZM . Let us choose a Z-free
basis a1, . . . , aM in τ(ker αS) and choose elements gi ∈ ker αS , 1 � i � M , such
that τ(gi ) = ai .

Denote by HS a group generated by the elements gi , 1 � i � M , and denote by
KS = [G,G] ∩ ker αS . Then it is easy to see that HS � ZM is a subgroup of the
center of G, the intersection HS ∩ [G,G] is trivial, and ker αS � KS×HS .

Denote by G2 = G/HS the quotient group and by αHS : G → G2 and f1 : G2 →
G1 the natural epimorphisms. We have αS = f1◦αHS . Denote also by O2 = αHS (O).
Then it is easy to see that αHS : (G, O) → (G2, O2) and f1 : (G2, O2) → (G1, OS)

are central extensions of equipped groups.
By construction, it is easy to see that [G,G] ∩ ker αHS is trivial and ker f1 ⊂

[G1,G1] is a subgroup of the center of G1. Therefore, the epimorphism f1 is a cover
of equipped groups. In addition, it is easy to see that αO = f1◦αHS and f2 =
f ◦ f1 : (G2, O2) → (G, O) is a cover (respectively, quasi-cover) of equipped groups.
We have

KS � ker f1 ⊂ αHO

([G,G] ∩ ker α0
) = αHO (H2(G,Z)) ⊂ [G2,G2].

Therefore, if k fi = |ker fi |, i = 1, 2, is the order of the group ker fi and k f is the
order of ker f , then

h2(G) = k f2 = k f1k f . (5)

Since we can repeat the construction described above to the cover (respectively, quasi-
cover) f2 and applying again equality (5), where the new f is our f2 and the new f1
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is a cover existence of which follows from assumption that the old f2 is not maximal,
we obtain that the new f1 is an isomorphism, that is, the covering f2 is maximal. 
�

In the case when f1 : (G,G \{1}) → (G,G \{1}) is an isomorphism of equipped
finite groups, the maximal cover f2 : (G2, O2) → (G,G \{1}), constructed in the
proof of Theorem 4.3, will be called a universal maximal cover.

Corollary 4.4 For any equipped finite group (G, O) there is a maximal cover of
equipped groups. For any cover (respectively, quasi-cover) f : (G1, O1) → (G, O)

of equipped finite groups, k f = |ker f | � h2(G) (respectively, k f = |ker f ∩
[G1,G1]| � h2(G)) and f is maximal if and only if k f = h2(G).

4.3 The ambiguity index of a quasi-cover of an equipped group

Let (˜G, ˜O) be the C-group associated with an equipped group (G, O) and
βO : (˜G, ˜O) → (G, O) the natural epimorphism of equipped groups (see definitions
in Sect. 2).

Theorem 4.5 Let f : (G1, O1) → (G, O) be a quasi-cover of equipped finite
groups. Then there is a natural C-epimorphism κS : (G, O) → (˜G1, ˜OS) such
that κO = ˜f ◦κS and αO = βO ◦ ˜f ◦κS = f ◦βOS◦κS, where the C-epimorphism
κO : (G, O) → (˜G, ˜O) is defined in Sect. 2 and the C-epimorphism ˜f : (˜G1, ˜OS) →
(˜G, ˜O) is associated with f .

Proof In notation used in the proof of Lemma 4.2, we have an inclusion RS ⊂ RO of
normal subgroups of FO which induces f : G1 = FO/RS → G = FO/RO .

Let ˜RS ⊂ RS be the normal subgroup normally generated by the elements of RS of
the form w−1

i j xgi wi j x−1
g j

, where wi j ∈ FO and xgi , xg j ∈ XO . For any w ∈ RO and
any generator xg , g ∈ O , the commutator [xg, w] ∈ RS , since f is a central extension
of groups. Therefore,

[FO , RO ] ⊂ ˜RS . (6)

By Claim 2.6, ˜G1 � FS/˜RS . Therefore, (6) induces an epimorphism κS : G =
FO/[FO , RO ] → F/˜RS � ˜G1. Obviously, the C-epimorphism κS : (G, O) →
(˜G1, ˜OS) satisfies all properties claimed in Theorem 4.5. 
�

Let f : (G1, O1) → (G, O) be a cover (respectively, quasi-cover) of equipped
finite groups and ˜fS : (˜G1, ˜OS) → (˜G, ˜O) a C-epimorphism associated with
f : (G1, OS) → (G, O). Denote by k f the order of the group ker f ∩ [G1,G1]
and by k

˜fS the order of the group ker ˜fS ∩ [˜G1, ˜G1].
Corollary 4.6 Let f : (G1, O1) → (G, O)be aquasi-cover of equipped finite groups,
S a section of f . Then

h2(G) = a(G,O)k˜fS kS = k f a(G1,OS)kS,

where kS is the order of the group ker κS ∩ [G,G].
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Corollary 4.7 Let f : (G1, O1) → (G, O) be a cover (respectively, quasi-cover) of
equipped finite groups, S a section of f . Then for any equipment ̂O of G1 (respectively,
such that O1 ⊂ ̂O) we have an inequality a(G1,̂O) � h2(G). If f is maximal, then
a(G1,̂O) = 1.

Proof If f is a cover, then f : (G1, ̂O) → (

G, f (̂O)
)

is also a cover of equipped
groups and a(G1,̂O) � h2(G) by Corollary 4.6.

As it was mentioned in Sect. 1, we have a(G1,̂O) � a(G1,O1) if O1 ⊂ ̂O and if f is
a quasi-cover, then a(G1,O1) � h2(G) by Corollary 4.6.

If f is maximal, then k f = h2(G) by Corollary 4.4 and, therefore, if f is a cover
then f : (G1, ̂O) → (

G, f (̂O)
)

is also maximal. It follows from Corollary 4.6 that
a(G1,̂O) = 1 in the case of maximal covers, and a(G1,̂O) � a(G1,O1) = 1 in the case of
maximal quasi-covers f . 
�

Let f : (G1, O1) → (G, O) be a cover of equipped finite groups such that
f −1(O) = O1. We say that f splits over a conjugacy class C ⊂ O if f −1(C)

consists of at least two conjugacy classes of G1. The number s f (C) of the conjugacy
classes contained in f −1(C) is called the splitting number of the conjugacy class C
for f . We say that f splits completely over C if s f (C) = k f , where k f = |ker f |.

Let C be a conjugacy class in G. Consider the subgroups KC ⊂ KG\{1} of the
group

(

RG\{1} ∩ [

FG\{1},FG\{1}
])

/
[

FG\{1}, RG\{1}
] � H2(G,Z),

where KC is generated by the elements of RG\{1} of the form [xh, xg], h ∈ G \{1}.
Let kC be the order of the group KC .

Proposition 4.8 Let f : (G1, O1) → (G,G \{1}) be a universal maximal cover of
equipped finite groups and let C be a conjugacy class in G. Then h2(G) = s f (C)kC .

Proof For g ∈ C the preimage f −1(C) consists of the conjugacy classes of the
elements zxg , where

z ∈ ker f = (

RG\{1} ∩ [

FG\{1},FG\{1}
])

/
[

FG\{1}, RG\{1}
] � H2(G,Z).

Note that ker f ⊂ ZG1 and ker f acts transitively on the set of the conjugacy classes
C1, . . . ,Ck f (C) involving in f −1(C), z(Ci ) = C j if zg ∈ C j for g ∈ Ci .

Let xg ∈ C1, where g ∈ C . Then z(C1) = C1 if and only if for some w ∈ G1 we
have wxgw−1 = zxg , that is, z = [w, xg].

If f (w) = h then w = z1xh for some z1 ∈ ker f and, therefore, z = [xh, xg],
that is, z ∈ KC . The converse statement that each element z ∈ KC leaves fixed the
conjugacy class C1 is obvious. 
�
Proposition 4.9 Let f : (G1, O1) → (G,G \{1}) be a universal maximal cover of
equipped finite groups. Then a(G,O) = h2(G) if and only if f splits completely over
each conjugacy class C ⊂ O. If s f (C) = 1 for some conjugacy class C ⊂ O then
a(G,O) = 1.
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Proof We have k f = h2(G). The map g �→ xg is a section in O1. Denote by O
the equipment of G1 consisting of the elements conjugated to xg , g ∈ O . Therefore,
f : (G1, O) → (G, O) is a maximal cover of equipped groups and Proposition 4.9
follows from Corollary 4.6. 
�
Proposition 4.10 Let f : (G1, O1) → (G,G \{1}) be a universal maximal cover
of equipped finite groups and let C1 ⊂ O and C2 ⊂ O be two conjugacy classes
contained in an equipment of G. Then a(G,O) = 1 if s f (C1) and s f (C2) are coprime.

Proof The group ker ˜fS ∩ [˜G1, ˜G1] ⊂ H2(G,Z) contains two subgroups KC1 and
KC2 whose indices in H2(G,Z) are coprime. This fact and Corollary 4.6 imply the
statement. 
�
Proposition 4.11 Let f : (G1, O1) → (G,G \{1}) be a universal maximal cover of
equipped finite groups and let h2(G) = pq, where p and q are coprime integers. Let
C1 ⊂ O be a conjugacy class such that s f (C1) = q and let s f (C) be coprime with p
for each conjugacy class C ⊂ O. Then the ambiguity index a(G,O) = p.

Proof Similarly, the statement follows from Corollary 4.6, since the group ker ˜fS ∩
[˜G1, ˜G1] ⊂ H2(G,Z) is generated by subgroups KC1 of index p in ker f and sub-
groups of indices coprime to p. 
�

4.4 The ambiguity indices of symmetric groups and alternating groups

In [5], the following theorems were proved.

Theorem 4.12 ([5, Theorem 3.8]) Let ˜�d be a maximal cover of the symmetric group
�d . The conjugacy classes of �d which split in ˜�d are: (a) the classes of even per-
mutations which can be written as a product of disjoint cycles with no cycles of even
length; and (b) the classes of odd permutations which can be written as a product of
disjoint cycles with no two cycles of the same length (including 1).

Theorem 4.13 ([5, Theorem 3.9]) Let ˜Ad be the maximal cover of the alternating
group Ad . The conjugacy classes of Ad which split in ˜Ad are: (a) the classes of
permutations whose decompositions into disjoint cycles have no cycles of even length;
and (b) the classes of permutations which can be expressed as a product of disjoint
cycles with at least one cycle of even length and with no two cycles of the same length
(including 1).

Remind that, by definition, an equipment O of �d must contain a conjugacy class of
odd permutation since the elements of the equipment must generate the group.

It is well known that for the symmetric group �d , d � 4, and for the alternating
group Ad , d 	= 6, 7, d � 4, the order of the Schur multiplier h2(�d) = h2(Ad) =
2. The following theorems are straightforward consequences of Proposition 4.8 and
Theorems 4.9–4.13.

Theorem 4.14 Let O be an equipment of a symmetric group �d . Then a(�d ,O) = 2 if
and only if O consists of conjugacy classes of odd permutations such that they can be
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written as a product of disjoint cycles with no two cycles of the same length (including
1) and conjugacy classes of even permutations such that they can be written as a
product of disjoint cycles with no cycles of even length. Otherwise, a(�d ,O) = 1.

Theorem 4.15 Let O be an equipment of an alternating group Ad , d 	= 6, 7. Then
a(Ad ,O) = 2 if and only if O consists of conjugacy classes of permutations whose
decompositions into disjoint cycles have no cycles of even length and the classes of
permutations which can be expressed as a product of disjoint cycles with at least one
cycle of even length andwith no two cycles of the same length (including 1). Otherwise,
a(Ad ,O) = 1.

It is well known that in the case when d = 6, 7, the order of the Schur multiplier
h2(Ad) = 6.

For σ ∈ Ad denote by c(σ ) = (l1, . . . , lm) the cycle type of permutation σ , that
is, the collection of lengths li of non-trivial (that is li � 2) cycles entering into the
factorization of σ as a product of disjoint cycles. For a conjugacy class C in Ad the
collection c(C) = c(σ ) is called the cycle type of C if σ ∈ C . It is well known that
the cycle type c(C) does not depend on the choice of σ ∈ C and there are at most two
conjugacy classes in Ad of a given cycle type c.

The group Ad , d = 6, 7, has the following non-trivial conjugacy classes:
(I) two conjugacy classes of each cycle type (5), (2, 4), and (if d = 7) (7);
(II) two conjugacy classes of cycle type (3) and one conjugacy class of cycle type

(3, 3);
(III) one conjugacy class of cycle type (2, 2) and one conjugacy class of cycle type

(2, 2, 3) if d = 7.

Proposition 4.16 The ambiguity index a(Ad ,O), d = 6, 7, takes the following values:
(I) a(Ad ,O) = 6 if O contains only the elements of conjugacy classes of type (I);
(II) a(Ad ,O) = 2 if O contains only the elements of conjugacy classes of type (I)

and the elements of at least one conjugacy class of type (II);
(III) a(Ad ,O) = 3 if O contains only the elements of conjugacy classes of type (I)

and the elements of at least one conjugacy class of type (III);
(II+III) a(Ad ,O) = 1 if O contains the elements of at least one conjugacy class of

type (II) and the elements of at least one conjugacy class of type (III).

Proof Let f : (G1, O1) → (Ad ,Ad \{1}) be the universal maximal cover. Note that,
by [13], a(Ad ,Ad\{1}) = 1. Therefore, there exist elements σ1, . . . , σ4 in Ad such that
[xσ1 , xσ2 ] and [xσ3 , xσ4 ] in

([

FAd\{1},FAd\{1}
] ∩ RAd

)

/
[

FAd\{1}, RAd

]

have, respec-
tively, order two and three.

It is easy to see that for an element σ belonging to a conjugacy classC of type (I) the
centralizer Z(σ ) ⊂ Ad of the element σ is a cyclic group generated by σ . Therefore,
KC is the trivial group and hence s f (C) = h2(Ad). Therefore, by Proposition 4.9,
a(Ad ,O) = 6 if O contains only the elements of conjugacy classes of type (I).

Let σ be of cycle type (2, 2, 3). Without loss of generality, we can assume that
σ = σ1σ2, where σ1 = (1, 2)(3, 4) and σ2 = (5, 6, 7). Then the centralizer Z(σ ) ⊂
Ad of σ is Kl4×〈σ2〉, where Kl4 = 〈σ1〉×〈σ3〉 and σ3 = (1, 3)(2, 4). We have
[

xσ , x
σ3,σ

±1
2

] = [xσ1 , xσ3 ] in the group FAd\{1}/
[

FAd\{1}, RAd

]

. Therefore KC , where
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C has type (2, 2, 3), is a group of order at most two since the order of σ1 is two
(see Lemma 2.8) and it is of order two if and only if [xσ1 , xσ3 ] is not the unity in
FAd\{1}/

[

FAd\{1}, RAd

]

. But, the embeddings 〈σ1, σ3〉 ⊂ Ad ⊂ �d define a sequence
of homomorphisms

H2(〈σ1, σ3〉,Z) → H2(Ad ,Z) → H2(�d ,Z)

such that the image of the non-trivial element [xσ1 , xσ3 ] in H2(〈σ1, σ3〉,Z) is non-
trivial in H2(�d ,Z). Therefore, s f (C) = 3 for the conjugacy class C of cyclic type
(2, 2, 3) and, similarly, s f (C) = 3 for the conjugacy classC of cyclic type (2, 2), since
KC is a subgroup of H2(Ad ,Z) � Z/6Z generated by the elements of the second order
(see Proposition 4.8) and only the elements of KC1 and KC2 can generate the subgroup
of order two in H2(Ad ,Z).

Let σ be of cycle type (3, 3). Without loss of generality, we can assume that σ =
σ1σ2, where σ1 = (1, 2, 3) and σ2 = (4, 5, 6). Then the centralizer Z(σ ) ⊂ Ad of σ

is 〈σ1〉×〈σ2〉. Therefore, [x σ , xσ ] is not the unity in FAd\{1}/
[

FAd\{1}, RAd

]

only if
σ = σ±1

1 , either σ = σ±1
2 , or σ = σ1σ

−1
2 , or σ = σ−1

1 σ2. We have

[

x
σ1σ

−1
2

, xσ

] = [xσ1 , xσ2 ]
[

x
σ−1
2

, xσ1

] = [xσ1 , xσ2 ]2

inFAd\{1}/
[

FAd\{1}, RAd

]

and, similarly,
[

xσ−1σ2
, xσ

] = [xσ1 , xσ2 ], since the elements
xσ x−1

σ2
x−1
σ1

and x
σ1σ

−1
2

xσ2 x
−1
σ1

belong to the center of the groupFAd\{1}/
[

FAd\{1}, RAd

]

.
Therefore, the group KC1 is a non-trivial group of order three if and only if KC2 is a
non-trivial group of order three, whereC1 is a conjugacy class of the cycle type (3) and
C2 is the conjugacy class of the cycle type (3, 3), and hence s f (C1) = s f (C2) = 2.
Now Proposition 4.16 follows from Propositions 4.9–4.11. 
�

5 Cohomological description of the ambiguity indices

In notation used in Sect. 2, for an equipped finite group (G, O) a subgroup
K(G,O) of H2(G,Z) was defined as follows: K(G,O) is the subgroup of

(

RO ∩
[FO ,FO ])/[FO , RO ] generated by the elements of RO of the form [w, xg], where
g ∈ O and w ∈ FO , and k(G,O) is its order.

Denote

B(G,O) = K⊥
(G,O)

= {

ϕ ∈ Hom(H2(G,Z),Q/Z) : ϕ(w) = 0 for all w ∈ K(G,O)

}

a subgroup of H2(G,Q/Z) dual to K(G,O). As in the proof of Theorem 1.1, it is easy
to show that

B(G,O) = ker

[

H2(G,Q/Z) →
⊕

A⊂G

H2(A,Q/Z)

]

,
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where A runs over all abelian subgroups of G generated by two elements g ∈ O and
h ∈ G. Let b(G,O) be the order of the group B(G,O). In particular, b(G,G\{1}) = b0(G).

The next theorem immediately follows from Theorem 2.7.

Theorem 5.1 For an equipped finite group (G, O) we have a(G,O) = b(G,O).

The group H2(G,Q/Z) is a direct sum of primary components, H2(G,Q/Z) =
�pH2(G,Q/Z)p, where primes p run through a subset of primes dividing the order
of of H2(G,Q/Z) and hence G. Therefore, we have the following

Proposition 5.2 If the set of conjugacy classes O consists of all classes of the elements
of prime orders then a(G,O) = b0(G). Moreover, it is sufficient to consider such classes
only for primes dividing h2(G).

Note that H2(G,Q/Z)p embeds into H2(Sylp(G),Q/Z)p where Sylp(G) is a Sylow
p-subgroup of G. Similarly, the p-primary component B0(G)p is a subgroup of
B0(Sylp(G)).

More explicit versions of Proposition 5.2 for different groups provide with simple
methods to compute B0(G).

6 An example of a finite group G with b0(G) > 1

The following groups were constructed in the article of Saltman [14]. Consider a
finite p-group Gp of order p9 which is a central extension of Ap = Z4

p, where Zp

is a cyclic group of order p. Denote the generators of Ap by xi , i = 1, . . . , 4. The
center of Gp is generated by pairwise commutators xi x j x

−1
i x−1

j = [xi , x j ] with one
relation [x1, x2][x3, x4] = 1. Thus there is a natural exact sequence

1 → Z5
p → Gp → Ap → 1.

The following lemma first appeared in different notation in [14] and then in [1] in the
current form.

Lemma 6.1 B0(Gp) = Zp.

Proof It is shown in [1] that for a central extension G of an abelian group A the
group B0(G) is contained in the image of H2(A,Q/Z) in H2(G,Q/Z) under the
cohomology map induced by projection πA : G → A.

The proof is based on analysis of the standard spectral sequence with E pq
2 =

H p(A, Hq(K ,Q/Z)) converging to H p+q(G,Q/Z) for p + q = 2, where K is a
kernel of πA.

The group H2(Ap,Q/Z) = Z6
p and it is generated by elements [xi , x j ]∗. The

kernel of the map H2(Ap,Q/Z) → H2(Gp,Q/Z) is Pontryagin dual to the center
Z5
p of Gp. Thus the image of H2(Ap,Q/Z) in H2(Gp,Q/Z) is a cyclic p-group

generated by one element w.
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Let us show that w is in B0(Gp). The element w defines an element in
H2(B,Q/Z) = Zp for any abelian subgroup B ⊂ Gp of rank 2. The fact that
the element w is in B0(Gp) is equivalent to the triviality of the restriction of w on any
abelian subgroup B ⊂ Gp of rank 2 [1].

Since w is induced from Ap its restriction is automatically trivial on any such B
with a projectionπA(B) contained in cyclic subgroup of Ap . Thus it is enough to check
that w is trivial on any abelian subgroup in Gp which surjects onto rank 2 subgroup
Z2
p ⊂ Z4

p = Ap.
However, Gp does not contain such subgroups. Indeed, assume x1, y1 ∈ Gp gen-

erate an abelian subgroup B of rank 2 in Gp which projects into the abelian rank 2
subgroup of Ap with generators x, y. Then the commutator [x, y] is contained in the
space of non-trivial relations for Gp.

We know, however, that the only non-trivial relation in Gp between commutators
of elements in Ap is [x1, x2][x3, x4] = 1. The element [x1, x2][x3, x4] in Z6

p cannot
be represented as [x, y] for a pair x, y ∈ Ap. Hence such a group B cannot exist
and any abelian subgroup of Gp projects into a cyclic subgroup of Ap. Therefore,
w restricts trivially onto any abelian subgroup with two generators in Gp and w is
contained B0(Gp). Since w is non-trivial the group B0(Gp) is non-trivial and equal
to Zp. 
�
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