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Abstract The classical Stokes matrices for the quantum differential equation of P
n

are computed using multisummation and the ‘monodromy identity’. Thus, we recover
the results of D. Guzzetti that confirm Dubrovin’s conjecture for projective spaces.
The same method yields explicit formulas for the Stokes matrices of the quantum
differential equations of smooth Fano hypersurfaces in P

n and for weighted projective
spaces.
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1 Introduction

For a Fano variety X one can define a Frobenius structure for its cohomology and the
latter induces a linear differential equation(or connection in one or more variables)
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Stokes matrices for the Q.D.E of some Fano varieties 139

which is called the quantum differential equation of X . This equation reflects geometric
properties of X and for many varieties X the quantum differential equation is explicitly
known, see [5,7]. For the cases that we consider, the quantum differential equation is
an ordinary linear differential equation in a complex variable z and it has two singular
points z = 0 and z = ∞. The point z = 0 is regular singular and the point z = ∞
is irregular singular. At z = ∞ the difference between formal (symbolic) solutions
and actual solutions in sectors is measured by Stokes data. The contribution of this
paper to the theory of quantum differential equations is an explicit computation of
the Stokes data by means of the formalism of multisummation. This formalism is the
work of many experts, see [10, Section 7.1], and in Sect. 2 we will explain how it
can be used to compute the Stokes data in a purely algebraic way. We note that for a
general irregular singularity there are only analytic methods for the determination of
the Stokes data. Thus quantum differential equations are rather special.

In the remaining part of this introduction we sketch, for the convenience of the
reader (without proof and any originality, compare [5,8,13,14]), some facts from the
theory of quantum cohomology. The relation with the above Stokes data and our results
concerning these are presented.

Let X be a (smooth) complex projective Fano variety. Put H∗(X, C) =⊕
d≥0 H2d(X, C). Let b1, . . . , br be a basis of H2(X, C). For t = ∑

ti bi , one defines
a deformation ◦t of the usual cup product ◦ on H∗(X, C). This deformation is called
the small quantum product. One writes formally qi = eti and ∂i = qi∂/∂qi . Further,
h̄ will denote a complex parameter. One defines a connection ∇, called the Dubrovin–
Givental connection, on the trivial vector bundle H2(X, C)× H∗(X, C) → H2(X, C)

by the formula

∇∂i = ∂i − 1

h̄
bi◦t , i = 1, . . . , r.

The quantum differential equations are the equations h̄∂iΨ = bi ◦t Ψ for i = 1, . . . , r
and for functions Ψ : H2(X, C) → H∗(X, C).

Above, we have supposed t ∈ H2(X, C). However, it is important to consider
also t ∈ H∗(X, C). In this case the deformation of the cup product is called the big
quantum product. For the corresponding ‘big quantum cohomology’ and ‘connection’
we refer to [2,4].

In the sequel we restrict ourselves to the small quantum product and to the case
r = 1, i.e., the case where the quantum differential equation is an ordinary linear
differential equation. For a detailed discussion we refer the reader to [5] and references
therein.

A ‘good Fano variety’ X is a Fano variety such that Dbcoh(X), the derived category
of the coherent sheaves on X , is generated as triangulated category by an exceptional
collection (Ei )

N
i=1. An object E is exceptional if Exti (E, E) equals C for i = 0 and

equals 0 for i > 0. Further, (Ei )
N
i=1 is an exceptional collection if each Ei is exceptional

and Extk(Ei , E j ) = 0 for any i > j and any k. In this situation the Gram matrix G of
X is defined by Gi j = ∑

k(−1)k dim Extk(Ei , E j ).
One of conjectures of Dubrovin [3] states that the Gram matrix of X coincides with

the Stokes matrix of the quantum differential equation of X (up to a certain equivalence
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140 J. A. Cruz Morales, M. van der Put

which we will make more explicit). For the complex projective space P
n−1, the ordered

set of line bundles O, O(1), . . . , O(n − 1) is an exceptional collection and the Gram
matrix G = (Gi j ) is given by Gi j = (n−1+ j−i

j−i

)
for i ≤ j and Gi j = 0 otherwise.

The inverse (ai j ) of G, which is equivalent to G, has the data ai j = (−1) j−i
( n

j−i

)
for

i ≤ j and ai j = 0 otherwise.
Now we will explain the relation between ‘our’ Stokes data and the Stokes matrix

considered in quantum cohomology by Dubrovin et al. The latter we will call ‘quan-
tum Stokes matrices’ and denote by Stqc. The irregular singularity of the quantum
differential equation at z = ∞ has Poincaré rank 1. This implies that a given for-
mal (or symbolic) fundamental matrix can be lifted to an actual analytic fundamental
matrix on a sector at z = ∞ of opening slightly larger than π . Moreover, these lift-
ings are unique. Let �right and �left denote two of these lifts, then Stqc is defined
by �right = �left Stqc.

The multisummation theory produces for every singular direction d of the differ-
ential equation a Stokes matrix, denoted by Std . This expresses the relation between
multisummation of the formal fundamental matrix left and right of the singular direc-
tion d. One concludes that Stqc equals the ordered product

∏
d Std taken over the

singular directions d in an interval of length π (in fact d ∈ [0, 1/2) in our notation). It
turns out that each Std has only one interesting entry. The collection of these entries
will be called the Stokes data. We note that ‘our’ Stokes data are closely related to
what are called ‘Stokes factors’ in [8].

For the complex projective space P
n−1 the conjecture of Dubrovin has been proved

by Guzzetti [8]. The matrix Stqc (the product
∏

d Std ) is a unipotent matrix and is, a
priori, rather complicated with respect to the given basis, see [8, Section 6]. This basis
is changed (this is the equivalence mentioned before) by a permutation, by putting signs
and the action of a braid group. The quantum differential equation lives in a family
(in fact induced by the big quantum product), parameterized by C

n \ the diagonals, of
similar equations where the singular directions at z = ∞ vary. The braid group action
is derived from loops in this family. Guzzetti showed that Stqc has, w.r.t. a new basis
and up to signs, the form (ai j ) which proves the Dubrovin’s conjecture for P

n−1.
In this paper we prove for the Stokes data {x�k}0≤k,�<n;k 
=� of P

n−1, see Theo-
rem 3.1, that:

• For odd n and 0 ≤ � < k one has x�k = −(−1)k−�
( n

k−�

)
and x�k = −xk�.

• For even n and 0 ≤ � < k one has x�k = −(−1)k−�
( n

k−�

)
if k − � ≤ n/2 and

x�k = (−1)k−�
( n

k−�

)
if k − � > n/2.

• For even n and 0 ≤ k < � one has x�k = (−1)�−k
( n
�−k

)
.

Theorem 3.1 proves again Dubrovin’s conjecture for P
n−1 and we observe that the

above matrix (ai j ), equivalent to Stqc, can rather simply be expressed into the Stokes
data {x�k}. The Stokes data can be read off from the monodromy identity which com-
pares the topological monodromy at z = 0 with the Stokes matrices Std and the formal
monodromy at z = ∞. The same method leads to further results: computations of the
Stokes data for weighted projective spaces (Remark 3.2 and Proposition 3.3) and for
Fano hypersurfaces (Theorem 4.1).
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Stokes matrices for the Q.D.E of some Fano varieties 141

Recent papers on computation of quantum Stokes matrices are [11,13,14]. The first
one proposes another proof of Dubrovin’s conjecture for P

n . In the other two papers
quantum Stokes matrices are computed for Grassmannians (based on the results for
P

n) and for cubic surfaces.
After completing the calculations of this paper we became aware that a related

discussion (from a physical point of view) to our work is presented in [15], for the
case of projective spaces. However, the argument in loc.cit. concerns the computation
of the Stokes matrices for the so-called tt∗ equations, see [1]. The question whether
these equations are related to the equations for the quantum cohomology and, in
particular, whether their Stokes matrices coincide, is discussed in [6].

The paper is organized as follows. In Sect. 2 we give a brief presentation of the
theory of Stokes matrices emphasizing the relevant facts for our computation. In Sect. 3
we present the explicit computation for the case of (weighted) projective spaces and
in Sect. 4 we extend that computation to the case of smooth Fano hypersurfaces. In
the sequel q will be replaced by z and the parameter h̄ is taken to be 1. We will often
write δ for zd/dz. The quantum differential equation in operator form for P

n−1 then
obtains the simple form δn − z.

2 Stokes matrices and monodromy identity

A linear differential operator of order n, analytic in the neighbourhood of z = ∞, has
a scalar form

(

z
d

dz

)n

+ an−1

(

z
d

dz

)n−1

+ · · · + a1z
d

dz
+ a0

with all a j in the field C({z−1}) of the convergent Laurent series in z−1. The scalar
operator can be transformed into a matrix differential operator zd/dz + A where the
entries of the matrix A are in C({z−1}).

As a differential module over C({z−1}), the scalar equation above translates into a
vector space M of dimension n over this field, equipped with a C-linear operator δM

satisfying

δM ( f m) = z
d

dz
( f ) · m + f δM (m),

for f ∈ C({z−1}), m ∈ M . Note that for a suitable basis of M , the matrix A above is
the matrix of δM with respect to this basis.

The formal classification of M is the classification of the differential module
C((z−1))⊗ M over the field C((z−1)) of the formal Laurent series in z−1. In general,
a root z1/m of z for certain m ≥ 1 is needed for the formulation of the classification
that we describe now.

There are distinct elements q1, . . . , qs ∈ z1/m
C[z1/m], called the generalized eigen-

values of M , such that C((z−1/m))⊗ M is a direct sum of (differential) submodules
N1, . . . , Nr over C((z−1/m)). The differential module N j has a basis such that the
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142 J. A. Cruz Morales, M. van der Put

operator δN j has the form q j · id + � j , where � j has entries in C. The elements q j

and the decomposition C((z−1/m))⊗ M = N1 ⊕ · · · ⊕ Nr are unique. The elements
� j are not unique.

One defines symbols zλ for every λ ∈ C, log z and e(q) for every q ∈⋃
n≥1 z1/n

C[z1/n], by the rules zλ1+λ2 = zλ1 zλ2 , z0 = 1, z1 = z, e(q1 + q2) =
e(q1)e(q2), e(0) = 1 and δ(zλ) = λzλ, δ(log z) = 1, δ(e(q)) = q ·e(q). On a sector
at z = ∞ these symbols have an obvious interpretation (e.g., the interpretation of e(q)

is e
∫

qdz/z), but not on a full neighbourhood of z = ∞.
Let γ denote the automorphism of

⋃
n≥1 C((z−1/n)) defined by γ zλ = e2π iλzλ

for all λ ∈ Q. The natural action of γ on the symbols is given by the formulas
γ zλ = e2π iλzλ for all λ ∈ C, γ log z = 2π i + log z, γ e(q) = e(γ q).

Symbolic solution space. Let U be the C((z−1))-algebra generated by these sym-
bols. Then U is a universal Picard–Vessiot ring for the differential field C((z−1)),
which means that for every differential module M over C((z−1)), the C-vector space
V = ker(δ, U ⊗ M) has the property that the obvious map U ⊗CV 
→ U ⊗ M is
an isomorphism. Moreover, U is minimal with this property and U has only triv-
ial differential ideals. The space V is called the symbolic solution space of M . Let
b1, . . . , bd be a basis of M over C((z−1)). The elements of V are sums

∑d
j=1 α j b j ,

where α j ∈ U are (by definition) expressions using formal power series, and the
symbols zλ, log z, e(q).

The decomposition U = ⊕
q Uq with Uq = e(q)C((z−1))[{zλ}, log z] induces a

decomposition V = ⊕
q Vq with Vq = ker(δ, Uq ⊗ M). Further, γ acts as a C-linear

automorphism on V and has the property γ (Vq) = Vγ q . The action of γ on V is called
the formal monodromy.

Thus we have associated to M a tuple (V, {Vq}, γ ) of a finite dimensional C-
vector space V , a subspace Vq for every q in the set of generalized eigenvalues⋃

n≥1 z1/n
C[z1/n], an element γ ∈ GL(V ) such that V = ⊕

Vq and γ Vq = Vγ q for
every q. This construction yields in fact an equivalence of Tannakian categories, see
[10] for more details.

Singular directions and multisummation. For a pair of distinct eigenvalues (q, q̃),
one considers the operator

z
d

dz
− (q − q̃) = z

d

dz
− (czλ + · · · )

with λ > 0, c 
= 0 and the dots are terms ∗zμ with 0 < μ < λ. The solution of the
equation is y = eczλ/λ+···. Let d ∈ R stand for the direction e2π id at z = ∞. Then a
real number d is called a singular direction for the pair (q, q̃) if and only if ce2π iλd/λ

is real and negative.
Let M be a differential module over C({z−1}). Multisummation in a direction d is

a C-linear bijection md from the symbolic solution space V of M to the space of the
actual solutions of M in a sector around the direction d. The map md exists (and is
unique) if d is not a singular direction for any pair (q, q̃) of eigenvalues of M .
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Stokes matrices for the Q.D.E of some Fano varieties 143

Stokes maps. Let a differential module M over C({z−1}) be given and let (V, {Vq}, γ )

be the tuple corresponding to C((z−1))⊗ M . Let d be a direction. Then the Stokes
map Std for this direction has the form Std = 1 + ∑

Md,q ,̃q , where the sum is taken
over all pairs (q, q̃) such that Vq , Vq̃ 
= 0 (i.e., q and q̃ are eigenvalues for M), d is a
singular direction for (q, q̃) and

Md,q ,̃q : V
projection−−−−−→ Vq

linear−−−→ Vq̃
inclusion−−−−−→ V .

This Stokes map is obtained by comparing the multisummation maps md−ε and md+ε

(with small enough ε > 0) from V to actual solutions of the differential equation in a
sector around the direction d. Further, γ −1Std γ = Std+1. We note that a direction d
can be singular for more than one pair (q, q̃).

For a given differential module M over C({z−1}), there is an algorithm computing
the tuple (V, {Vq}, γ ). The entries of the Stokes maps can be expressed as certain
involved integrals and, in general, these cannot be made explicit.

Now we have associated to a differential module M over C({z−1}) a tuple
(V, {Vq}, γ, {Std}) with the properties stated above. This yields an equivalence
between the Tannakian categories of the differential modules over C({z−1}) and the
category of these tuples, see [10, Theorem 9.11].

Change of variables. The inclusion K = C({z−1}) 
→ Kn = C({u−1}) with z = un

and n > 1 induces a functor which associates to a differential module M over K the
differential module Kn ⊗ M over Kn . The corresponding morphism between tuples
maps a tuple (V, {Vq}, γ, {Std}) to the tuple

(
V, {Vq̃}, γ̃ , {S̃td}). It can be verified that

Vq̃ = Vq for q̃(u) = q(un), γ̃ = γ n and S̃td = Stnd . Using this, one can compare the
singularities of, for instance, (zd/dz)n − z and (ud/du)n − nnun where z = un .

Monodromy identity. Let the differential module M over C({z−1}) correspond to
the tuple (V, {Vq}, γ, {Std}). Let W be a solution space at a certain point p close to
z = ∞. One makes a loop around z = ∞ and analytic continuation along this loop
yields the topological monodromy mon∞ ∈ GL(W ). After some identification of W
with V one obtains the monodromy identity, see [10, Proposition 8.12]

mon∞ is conjugated to γ
∏

d∈[0,1)
d singular

Std ,

where the order of the maps Std in the product is counter clockwise.

3 Stokes matrices for δn − z

We summarize the results for the quantum differential operator δn−z which is the quan-
tum differential operator of P

n−1 (normalized by putting h̄ = 1). The irregular singular
point z = ∞ has (generalized) eigenvalues q j = e2π i j/n z1/n , j = 0, . . . , n − 1.

The symbolic solution space V at z = ∞ has a basis e0, . . . , en−1, uniquely deter-
mined (up to simultaneous multiplication by a constant) by normalizing the matrix ofγ .
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144 J. A. Cruz Morales, M. van der Put

Let Ek� ∈ End(V ) denote the map defined by Ek�e� = ek and Ek�e j = 0 for j 
= �.
For a direction d, the Stokes matrix Std ∈ GL(V ) has the form Std = 1 + ∑

x�k E�k ,
where the sum is taken over the pairs (k, �) such that the direction d is singular for
qk − q�. For k 
= � the pair (qk, q�) has in the interval [0, n) precisely one singular
direction and produces the constant x�k . Among n(n − 1) singular directions in [0, n)

(counted with multipicity) there are n − 1 in the interval [0, 1). The values x�k cor-
responding to the singular directions in [0, 1) are computed using the monodromy
identity. The other x�k are obtained by the formula γ −1Std γ = Std+1.

The ‘Stokes data’ for the equation is by definition {x�k}k 
=�. We note that x�k = x�′k′
if � ≡ �′, k ≡ k′ mod n. The result of this section is

Theorem 3.1 The monodromy identity yields the following formulas:
For n odd,

xlk =

⎧
⎪⎪⎨

⎪⎪⎩

−(−1)k−l
(

n

k − l

)

for n > k > l ≥ 0, k + l =
[

n

2

]

or

[
n

2

]

− 1,

(−1)l−k
(

n

l − k

)

for n > l > k ≥ 0, k + l = 3

[
n

2

]

+ 1 or 3

[
n

2

]

,

and xl+s,k+s = xlk for all s ∈ Z.

For n even,

xlk =

⎧
⎪⎪⎨

⎪⎪⎩

−(−1)k−l
(

n

k − l

)

for n > k > l ≥ 0, k + l = n

2
or

n

2
− 1,

(−1)l−k
(

n

l − k

)

for n > l > k ≥ 0, k + l = 3
n

2
or 3

n

2
− 1,

and xl+s,k+s = xlk for all s ∈ Z.

From the above one deduces for 0 ≤ k, � < n, k 
= �, the formulas:

• For n odd and 0 ≤ � < k one has x�k = −(−1)k−�
( n

k−�

)
and x�k = −xk�.

• For n even and 0 ≤ � < k one has x�k = −(−1)k−�
( n

k−�

)
if k − � ≤ n/2 and

x�k = (−1)k−�
( n

k−�

)
if k − � > n/2.

• For n even and 0 ≤ k < � one has x�k = (−1)�−k
( n
�−k

)
.

The second part of Theorem 3.1 is obtained from the first part by using the equalities
x�k = x�′k′ if � ≡ �′, k ≡ k′ mod n and the equalities x�k = x�+s,k+s for all s ∈ Z.

3.1 Generalised eigenvalues and formal monodromy

The scalar operator (zd/dz)n −z can be transformed into a matrix differential operator
(zd/dz) + A, where the entries of the matrix A are in C({z−1}). More precisely, the
matrix A has the form
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0
...

...
. . .

. . .
...

...
...

...
...

...
. . .

. . .
...

...

0 0 0 . . . 0 1 0
0 0 0 . . . 0 0 1
z 0 0 . . . 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In the case of (zd/dz)n − z, the differential module C((z−1/n))⊗ M has a basis
b0, . . . , bn−1 such that δb j = −q j b j with q j = ζ j z1/n and ζ = e2π i/n . The values
q j are the generalized eigenvalues and the matrix form of δ, with respect to this basis,
reads zd/dz − diag

(
z1/n, ζ z1/n, . . . , ζ n−1z1/n

)
.

The symbolic solution space V has the basis

{

e j = eζ j z1/n b j

n
: j = 0, . . . , n − 1

}

.

The elements b j are unique up to multiplication by a constant. From the identities
γ Vq = Vγ q it follows that these constants are chosen so that the formal monodromy
γ has the form e0 
→ e1 
→ · · · 
→ en−2 
→ en−1 
→ (−1)ne0. The sign (−1)n comes
from the observation that γ has determinant 1 on V .

In this case mon∞ can be identified with the topological monodromy mon0 at
z = 0 (because Z is the fundamental group of C

∗). This is a unipotent matrix with
characteristic polynomial (λ − 1)n .

3.2 Singular directions

Put (ζ k − ζ �) = |ζ k − ζ �| ·e2π iφ(k,�) with, say, 0 ≤ φ(k, �) < 1. Now, d is a
singular direction for qk − q� if and only if cos(2πφ(k, �) + 2πd/n) = −1. Thus
d = d(k, l) = n(1/2 − φ(k, �)) is modulo n the only singular direction for the pair
(qk, ql).

Recall that the symbolic solution space V has basis e0, . . . , en−1. We denote
by Eab ∈ End(V ) the map given by Eabeb = ea and Eabec = 0 for c 
= b. One
has Eab Ebc = Eac. Moreover, the part of Std(k,l) corresponding to the pair (qk, ql)

has the form xlk Elk for a certain constant xlk . Then

Std = 1 +
∑

(k,l)
d=d(k,l) mod n

xlk Elk .

Our goal is to compute all constants xlk .

Computation of d(k, l). One observes that for λ ∈ (0, 1) ⊂ R, the formula (e2π iλ −
1) = |(e2π iλ − 1)|e2π iμ holds with μ = 1/4 + λ/2. This implies:
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146 J. A. Cruz Morales, M. van der Put

• For n > k > l ≥ 0 one has φ(k, l) = 1/4+(k+l)/2n and d(k, l) = n/4−(k+l)/2.
For n > l > k ≥ 0 one has φ(k, l) = 3/4 + (k + l)/2n and d(k, l) = 3n/4 − (k +
l)/2.

• For n odd and n > k > l ≥ 0, the possibilities for d(k, l) ∈ [0, 1) + Zn are given
by: k + l = [n/2], d(k, l) = 1/4 and k + l = [n/2] − 1, d(k, l) = 3/4.

• For n odd and n > l > k ≥ 0, the possibilities for d(k, l) ∈ [0, 1) + Zn are given
by: k + l = 3[n/2] + 1, d(k, l) = 1/4 and k + l = 3[n/2], d(k, l) = 3/4.

• For n even and n > k > l ≥ 0, the possibilities for d(k, l) ∈ [0, 1) + Zn are given
by: k + l = n/2, d(k, l) = 0 and k + l = n/2 − 1, d(k, l) = 1/2.

• For n even and n > l > k ≥ 0, the possibilities for d(k, l) ∈ [0, 1) + Zn are given
by: k + l = 3n/2, d(k, l) = 0 and k + l = 3n/2 − 1, d(k, l) = 1/2.

3.3 Equation for odd n

The monodromy identity for odd n is: mon∞ is conjugated to γ St3/4St1/4. Therefore,
Pn = det(−λ1 + γ St3/4St1/4) equals −(λ − 1)n . Further,

γ = E10 + E21 + · · · + En−1,n−2 + E0,n−1,

St3/4 = 1 +
∑

k+l=[n/2]−1
k>l

xlk Elk +
∑

k+l=3[n/2]
l>k

xlk Elk,

St1/4 = 1 +
∑

k+l=[n/2]
k>l

xlk Elk +
∑

k+l=3[n/2]+1
l>k

xlk Elk .

One observes that Pn is the determinant of a sparse matrix and guided by a few explicit
examples, verified by a MAPLE computation,

P3 = −λ3 + x01λ
2 + x21λ + 1,

P5 = −λ5 + x01λ
4 + x02λ

3 + x42λ
2 + x43λ + 1,

P7 = −λ7 + x12λ
6 + x02λ

5 + x03λ
4 + x63λ

3 + x64λ
2 + x54λ + 1,

P9 = −λ9 + x12λ
8 + x13λ

7 + x03λ
6 + x04λ

5

+ x84λ
4 + x85λ

3 + x75λ
2 + x76λ + 1.

one obtains the general formula for Pn and odd n:

Pn = −λn + 1 +
∑

k>l
k+l=[n/2] or [n/2]−1

xlk λn−(k−l) +
∑

l>k
k+l=3[n/2]+1 or 3[n/2]

xlk λl−k .
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From this and the equality γ −1Std γ = Std+1 one obtains

xlk =

⎧
⎪⎪⎨

⎪⎪⎩

−(−1)k−l
(

n

k − l

)

for k > l, k + l =
[

n

2

]

or

[
n

2

]

− 1,

(−1)l−k
(

n

l − k

)

for l > k, k + l = 3

[
n

2

]

+ 1 or 3

[
n

2

]

,

and xl+t,k+t = xlk for all t ∈ Z.
The proof of the formula for Pn consists simply of determining for each power of λ

the part of the sparse matrix which contributes to its coefficient in the determinant.
The verification is straightforward.

3.4 Equation for even n

According to the monodromy identity, mon∞ is conjugated to γ St1/2St0. Thus Pn =
det(−λ1 + γ St1/2St0) equals (λ − 1)n .

γ = E10 + E21 + · · · + En−1,n−2 − E0,n−1,

St1/2 = 1 +
∑

k>l
k+l=n/2−1

xlk Elk +
∑

l>k
k+l=3n/2−1

xlk Elk,

St0 = 1 +
∑

k>l
k+l=n/2

xlk Elk +
∑

l>k
k+l=3n/2

xlk Elk .

Guided by a few examples, verified by a MAPLE computation,

P2 = λ2 − x01λ + 1,

P4 = λ4 − x01λ
3 − x02λ

2 + x32λ + 1,

P6 = λ6 − x12λ
5 − x02λ

4 − x03λ
3 + x53λ

2 + x54λ + 1,

P8 = λ8 − x12λ
7 − x13λ

6 − x03λ
5 − x04λ

4 + x74λ
3 + x75λ

2 + x65λ + 1,

one deduces the general formula for Pn and even n.

Pn = λn + 1 −
∑

k>l
k+l=n/2 or n/2−1

xlk λn−(k−l) +
∑

l>k
k+l=3n/2 or =3n/2−1

xlk λl−k .

This implies

xlk =

⎧
⎪⎪⎨

⎪⎪⎩

−(−1)k−l
(

n

k − l

)

for k > l, k + l = n

2
or

n

2
− 1,

(−1)l−k
(

n

l − k

)

for l > k, k + l = 3
n

2
or 3

n

2
− 1,
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and xl+s,k+s = xlk for all s ∈ Z.

Remark 3.2 (Weighted projective spaces) Consider positive integers w0, . . . , wn with
gcd(w0, . . . , wn) = 1. For the weighted projective space P(w0, . . . , wn), which is
defined by C

n+1 \ {0}/C
∗, where t ·(z0, . . . , zn) = (tw0 z0, . . . , twn zn), we adopt the

quantum differential operator, given in [7], namely,

n∏

i=1

(wi h̄∂)(wi h̄∂ − h̄) · · · (wi h̄ − (wi − 1)h̄) − q,

where ∂ = qd/dq. After taking h̄ = 1 and replacing q by z and ∂ by δ = zd/dz the
operator reads

n∏

j=0

δ

(

δ − 1

w j

)

· · ·
(

δ − w j − 1

w j

)

− z. (1)

We note that the above formula is attributed to Corti and Golyshev and that in [9]
Dubrovin’s conjecture is extended to orbifolds. In particular, there is a conjecture for
weighted projective spaces. Unfortunately, the latter is not explicit enough to allow us
a comparison with the Stokes data. Here we will show that our computations of the
classical Stokes matrices for ordinary projective spaces extend to the case of weighted
projective spaces. The preprint [12], related to Proposition 3.3, appeared after this
paper was finished.

Proposition 3.3 Let {x�k} be the Stokes data for (1). Put s = ∑
w j . At z = ∞, the

generalized eigenvalues are ζ j z1/s with j = 0, . . . , s − 1, where ζ = e2π i/s . Thus
the above operator is formally equivalent to δs − z and the configuration of the Stokes
matrices is the same as for the ordinary projective space P

s−1. The formal monodromy
differs by a minus-sign if n is even.

The topological monodromy at z = 0 (or equivalently at z = ∞) has characteristic
polynomial

∏n
j=0(λ

w j − 1). The Stokes data {x�k} are determined by

• The monodromy identity ±Pn = ∏n
j=0(λ

w j − 1).
• x�k = x�′k′ if � ≡ �′, k ≡ k′ mod s.
• x�+t,k+t = x�k for all t ∈ Z.

In particular, the Stokes data consists of computable integers.

The proof is a straightforward computation. We note that it might be difficult to give
a closed formula (as in the P

n−1 case) for the x�k .

Example 3.4 (P(1, 2, 4)) The topological monodromy at z = ∞ is conjugated to
γ St3/4St1/4. The characteristic polynomial of this 7×7-matrix is −λ7 + x12λ

6 +
x02λ

5 + x03λ
4 + x63λ

3 + x64λ
2 + x54λ + 1, where these x�k are the nontrivial entries

of St3/4 and St1/4.
The topological monodromy at z = 0 has characteristic polynomial −(λ−1)(λ2 −

1)(λ4 − 1) and thus we find

x12 = 1, x02 = 1, x03 = −1, x63 = 1, x64 = −1, x54 = −1.
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4 Quantum differential operator δN−1 − zk(kδ+k−1)(kδ+k−2) · · · (kδ+1)

According to [5], the Dubrovin–Givental connection for a nonsingular hypersurface of
degree k ≤ N −1 in P

N−1 is given by δN−1 − zk(kδ+k −1)(kδ+k −2) · · · (kδ+1).
We prefer to write this operator differently (with m = k and n = N − k) as

δn+m−1 − mm z

(

δ + m − 1

m

)(

δ + m − 2

m

)

· · ·
(

δ + 1

m

)

, (2)

δ = zd/dz, n > 1, m > 1. For m = 1 we get the operator studied in Sect. 3. At the
end of this section we will comment on the case n = 1.

Theorem 4.1 The Stokes data for (2) is {x�k : 0 ≤ k, � ≤ n − 1, k 
= �} and
{z j : 1 ≤ j ≤ m−1}, {y j : 1 ≤ j ≤ m−1}. The values y j and z j depend on the choice
of a basis. However, the products y j z j , j = 1, . . . , m − 1, are computable elements
of Q(ζ ), where ζ = e2π i/m, and independent of this choice. Equality x�+s,k+s = x�k

holds for s ∈ Z and x�k = x�′k′ if � ≡ �′, k ≡ k′ mod n.
For n > 1 odd,

x�k =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)k−�+1
(

n + m

k − �

)

for n > k > � ≥ 0, k + � =
[

n

2

]

or

[
n

2

]

− 1,

(−1)�−k
(

n + m

� − k

)

for n > � > k ≥ 0, k + � = 3

[
n

2

]

+ 1 or 3

[
n

2

]

.

For n even,

x�k =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)k −�+1
(

n+m

k −�

)

for n > k > � ≥ 0, k +� = n

2
or

n

2
− 1,

(−1)n+m+�−k+1
(

n+m

�−k

)

for n > � > k ≥ 0, k +� = 3
n

2
or 3

n

2
−1.

4.1 Differential operator δ4 − 27zδ2 − 27zδ − 6z

We start by investigating the case n = 2, m = 3 of Theorem 4.1, which is the quantum
differential equation of a hypersurface of degree 3 in P

4, see [5, p. 42, Example 3.6].
A matrix form for this equation is

z
d

dz
+

⎛

⎜
⎜
⎝

0 −1 0 0
0 0 −1 0
0 0 0 −1

−6z −27z −27z 0

⎞

⎟
⎟
⎠.

We proceed as in Sect. 3. The (generalised) eigenvalues at z = ∞ are q1 = √
27z1/2,

q2 = −√
27z1/2, 0. The symbolic solution space V at z = ∞ has the form V =
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Vq1 ⊕Vq2 ⊕V0 with Vq1 = Ce1, Vq2 = Ce2 and V0 = Ce3 ⊕Ce4. The basis e1, . . . , e4
is chosen so that the formal monodromy has the form

γ =

⎛

⎜
⎜
⎝

0 −1 0 0
1 0 0 0
0 0 ζ 0
0 0 0 ζ 2

⎞

⎟
⎟
⎠, ζ = e2π i/3.

We note that this basis is unique up to a transformation of the type e1 
→ λ1e1,
e2 
→ λ1e2, e3 
→ λ2e3, e4 
→ λ3e4 with all λ j ∈ C

∗.
The singular directions are 0 + 2Z for the differences q2 − q1, q2 − 0, 0 − q1 and

are 1 + 2Z for the differences q1 − q2, q1 − 0, 0 − q2. The Stokes matrix St0 has the
form

St0 =

⎛

⎜
⎜
⎝

1 0 x4 x5
x1 1 0 0
0 x2 1 0
0 x3 0 1

⎞

⎟
⎟
⎠, γ St0 =

⎛

⎜
⎜
⎝

−x1 −1 0 0
1 0 x4 x5
0 ζ x2 ζ 0
0 ζ 2x3 0 ζ 2

⎞

⎟
⎟
⎠

and St1 = γ −1St0γ . According to the monodromy identity, γ St0 is equivalent to the
topological monodromy at z = 0. The latter is seen to have the single eigenvalue 1
(and only one Jordan block). Thus, the characteristic polynomial of γ St0 is (λ − 1)4.
This yields the data for the entries of the Stokes matrices x1 = −5, x2x4 = −9ζ +18,
x3x5 = 9ζ + 27. It seems that we have not enough information to obtain values for
all x j . This is due, however, to the nonuniqueness of the basis vectors e3, e4. As an
example we can see that for a suitable choice of e3, e4 we will have, say, x4 = 1 and
x5 = 1 and further x1 = −5, x2 = −9ζ + 18, x3 = 9ζ + 27.

4.2 General case

The above operator is transformed in the usual way into a first order matrix dif-
ferential operator. The formal data for the symbolic solution space V at z =
∞ are: the (generalised) eigenvalues are 0 and q j = n

√
mm ζ

j
n z1/n for j =

0, 1, . . . , n − 1 with ζn = e2π i/n . This solution space V has the decomposition
V = Vq0 ⊕Vq1 ⊕ · · · ⊕Vqn−1 ⊕V0 with Vq j = Ce j for j = 0, . . . , n − 1 and
V0 = C f1 ⊕ · · · ⊕C fm−1. The basis vectors are chosen so that the formal mon-
odromy γ acts as e0 
→ e1 
→ · · · 
→ en−1 
→ (−1)n−1(−1)m−1e0 and γ f j = ζ

j
m f j

for j = 1, . . . , m − 1 and ζm = e2π i/m . We note that the basis f1, . . . , fm−1 of V0 is
unique up to multiplication by scalars. The computation of the ‘monodromy identity’
is done separately for n even and n odd.

Even n.

The singular directions d for qk − q� lying in [0, 1) + Zn are the same as in Sect. 3,
namely:

• For n > k > � ≥ 0: d = 0 and k + � = n/2; d = 1/2 and k + � = n/2 − 1.
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• For n > � > k ≥ 0: d = 0 and k + � = 3n/2; d = 1/2 and k + � = 3n/2 − 1.
• For qk − 0, the only singular direction in [0, 1) + Zn is d = 0 with k = n/2.
• For 0 − qk , the only singular direction in [0, 1) + Zn is d = 0 with k = 0.

Description of St0. For elements in End(Ce0 + · · · + Cen−1) we use the notation of
Sect. 3. Then St0 is the identity plus a number of maps, namely,

∑
k>�,k+�=n/2 x�k E�,k

and
∑

�>k,k+�=3n/2 x�k E�k and a map en/2 
→ y1 f1 +· · ·+ ym−1 fm−1 (the other base
vectors are mapped to 0) and for j = 1, . . . , m − 1 a map f j 
→ z j e0 (the other base
vectors are mapped to 0).

Description of St1/2. This Stokes matrix is the identity plus certain maps, namely,∑
k>�,k+�=n/2−1 x�k E�k and

∑
�>k,k+�=3n/2−1 x�k E�k .

The matrix γ St1/2St0 and its characteristic polynomial P can be computed. The
monodromy identity P = (λ − 1)n+m−1 leads to the statement that x�k have the form
±(n+m

∗
)

and that the y j z j are elements of Q[ζm]. As in Sect. 4.1, i.e., the case n = 2,
m = 3, one cannot compute y j and z j separately since this involves a definite choice
of the basis f1, . . . , fm−1.

Example 4.2 The case n = 4, m = 3 and ζ = e2π i/3.

γ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 −1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 ζ 0
0 0 0 0 0 ζ 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, St1/2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 x01 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 x32 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

St0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 x02 0 z1 z2
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 y1 0 1 0
0 0 y2 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Since the characteristic polynomial of γ St1/2St0 is (λ − 1)6, one finds x01 = 7,
x02 = −21, x32 = −7, y1z1 = 9(2ζ 2 + 1), y2z2 = −9(2ζ 2 + 1).

Let P denote again the characteristic polynomial of γ St1/2St0 for n even and m > 1.
One observes that (λ − 1)n+m = (λ − 1)P is the sum of (λm − 1)Q with

Q = λn −
∑

k>l
k+l=n/2 or n/2−1

xlk λn−(k−l) +
∑

l>k
k+l=3n/2 or 3n/2−1

xlk λl−k + 1

123



152 J. A. Cruz Morales, M. van der Put

and terms aλ j , a ∈ C, with 3n/2 < j < m + n/2. This leads to the formulas

x�k =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)k−�+1
(

n + m

k − �

)

for k > �, k + � = n

2
or

n

2
− 1,

(−1)n+m+�−k+1
(

n + m

� − k

)

for � > k, k + � = 3
n

2
or 3

n

2
− 1.

The elements y j z j are (in general complicated) expressions in Q(ζ ).

Odd n > 1.

The singular directions d in [0, 1) + Zn are

• For qk − q�:
– n > k > � ≥ 0, d = 1/4 with k + � = [n/2]; d = 3/4 with k + � = [n/2] − 1,
– n > � > k ≥ 0, d = 1/4 with k+� = 3[n/2]+1; d = 3/4 with k+� = 3[n/2].

• For qk − 0: d = 1/2 and k = [n/2].
• For 0 − qk : d = 0 and k = 0.

Example 4.3 The case n = 3, m = 3, ζ = e2π i/3.

γ =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 ζ 0
0 0 0 0 ζ 2

⎞

⎟
⎟
⎟
⎟
⎠

, St3/4 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 x21 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

,

St1/2 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 z1 0 1 0
0 z2 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

, St1/4 =

⎛

⎜
⎜
⎜
⎜
⎝

1 x01 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

, St0 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 y1 y2

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

.

The observation that the characteristic polynomial of γ St3/4St1/2St1/4St0 is (λ−1)5

yields x01 = 6, x21 = −6 and y1z1 = −9(ζ 2 + 1), y2z2 = 9ζ 2.

As in the case of even n one obtains for general odd n > 1 and m > 1 explicit
formulas for the entries x�k (the same notation as in the even case) of the Stokes
matrices, namely,

x�k =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)k−�+1
(

n + m

k − �

)

for k > �, k + � =
[

n

2

]

or

[
n

2

]

− 1,

(−1)�−k
(

n + m

� − k

)

for � > k, k + � = 3

[
n

2

]

+ 1 or 3

[
n

2

]

.

The elements y j z j are (in general complicated) expressions in Q(ζ ).

Comments on the case n = 1. In this case the operator is

δm − mm z

(

δ + m − 1

m

)(

δ + m − 2

m

)

· · ·
(

δ + 1

m

)

.
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The (generalized) eigenvalues at z = ∞ are q0 and 0. This equation is not really a
quantum differential equation and, moreover, there is no ramification at z = ∞.

For the symbolic solution space V there is given a basis e0, f1, . . . , fm−1 such that
Vq0 = Ce0, V0 has basis f1, . . . , fm−1 and the formal monodromy γ has the form
γ (e0) = e0 and γ ( f j ) = ζ j f j for all j and ζ = e2π i/m . The above basis is unique up
to multiplication by scalars. The singular directions are d = 1/2 and d = 0 and the
corresponding Stokes matrices involve (using the earlier notation) only {y1, . . . , ym−1}
and {z1, . . . , zm−1}. These elements are not unique, however, the products y j z j are
independent of the choice of e0, f1, . . . , fm−1 and are computable elements of Q(ζ ).

Example 4.4 For m = 3 one finds y1z1 = 3 + 3ζ , y2z2 = −3ζ . This example seems
unrelated to the quantum cohomology of a cubic surface, studied by Ueda in [14].
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