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Abstract
Dynamic interface instabilities such as Rayleigh–Taylor, Kelvin–Helmholtz, and Richtmyer–Meshkov are important in a 
number of physical phenomena. Besides meriting study because of their role in natural events and man-made applications, 
they can also be used to study constitutive properties of materials in extreme conditions. Both RTI and RMI configurations 
have been used to study the strength of solids at high strain rates, though RMI has largely been limited to zero or ambient 
pressure. Recently, advances in imaging have allowed tamped RMI experiments to be performed in which the pressure is 
maintained above ambient. In this study, we examine the tamped RMI for determining material strength. Through simula-
tion, we explore the behavior of the jetting material and examine the sensitivity of jetting to material properties. We identify 
simple scaling laws that relate the key physical parameters controlling jetting, which are compared to previous results from 
the literature. We use these scaling law and other considerations to examine issues associated with tamped RMI experiments.

Keywords Shock · Strength · Richtmyer–Meshkov instability

Introduction

Instabilities at interfaces between two dissimilar materi-
als such as the Kelvin–Helmholtz (KHI) , Rayleigh–Tay-
lor (RTI), and Richtmyer–Meshkov (RMI) instabilities are 
important in a number of physical phenomena and man-
made applications. While the KHI is driven by shearing of 
the interface, both RTI and RMI are controlled by normal 
loading of the interface. RTI is characterized by accelera-
tion loading of the interface with the lighter material driven 
into the denser material, while RMI is characterized by a 
shock propagating across the interface with the materials 
in either orientation. In real applications, these instabili-
ties often occur simultaneously, sequentially, or at differ-
ent length scales, but in the laboratory efforts are usually 
made to isolate only one. Zhou [1, 2] has comprehensively 
reviewed RTI and RMI, while Brouillette [3] provides a 
review of RMI, focusing on fluids and gases. A thorough 

mathematical treatment of the KHI can be found in Fried-
lander and Lipton-Lifschitz [4], and its role in explosive 
welding is reviewed by Carpenter and Wittman [5]. Finally, 
Bakhrakh et al. [6] provides a review of work performed on 
these three instabilities in the former Soviet Union.

While these instabilities are of interest because of their 
importance to other phenomena and applications, they have 
also been exploited as a means to probe material behavior 
since their evolution is affected by properties such as viscos-
ity, surface tension, and, of particular interest here, strength. 
Early work by Barnes et al. [7, 8] examined the evolution 
of RTI in solid samples driven by explosive products. Simi-
lar work has continued [9–11], and the approach has been 
extended to laser-drive configurations to reach higher pres-
sures (c.f. Remington et al. [12]). The RMI has also been 
used as a means to “measure” material strength [13–18]. 
We use the term measure to denote the process of estimating 
strength from an RMI experiment through analytical expres-
sion or simulation calibrated to experimental measurements. 
Mikhailov [19] provides a nice overview of the use of insta-
bilities to study material behavior in the former Soviet Union 
and Russia.

The paper is laid out as follows. “The Richt-
myer–Meshkov Instability” section provides an overview 
of the RMI and reviews previous work on it. In “Analysis 
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Methods” section, the details of the modeling approach are 
given, while “Simulation Results” section provides results 
from simulations exploring the sensitivities of the tamped 
RMI configuration. “Scaling” section presents results for a 
large ensemble of simulations that are used to study scaling 
relationships for tamped RMI. In “Relationship to Experi-
ments” section, we discuss implications for experiments 
that are drawn from the simulations in “Simulation Results” 
and “Scaling” sections. Finally, conclusions are drawn and 
recommendations for future work are given in “Conclusions 
and Future Work” section.

The Richtmyer–Meshkov Instability

In this section, we first define the key terms of the RMI. 
We then review the previous theoretical, computational, and 
experimental work for the case where one side of the inter-
face is vacuum. Finally, we examine previous work for sys-
tems with two materials that have density of the same order.

Configuration and Terminology

The configuration associated with the RMI is illustrated in 
Fig. 1. Two materials are in contact with one another. They 
are denoted 1 and 2 without regard to their properties. We 
will refer to material 1 as the driver and material 2 as the 
tamper. The interface between the two materials is assumed 
to have an imperfection idealized as a sine wave of wave-
length � and initial amplitude �o . The severity of the imper-
fection is described by the non-dimensional product of the 
amplitude and the wave number (k), which is given by

Larger values of k�o promote greater instability. While some 
treatments of RMI, including the seminal work of Richtmyer 
[20] assume small perturbations of the interface ( k𝜂o ≪ 1 ), 
none of the cases considered herein satisfy that criterion. A 
shock of amplitude P1 (ignoring strength effects) propagates 
from the left at velocity U1 through material 1, bringing it to 
a mass velocity of u1 . Eventually, it reaches the interface and 
distorts it. Because of the different impedances of the two 
materials, the material 2 is shocked to pressure P2 and veloc-
ity u2 , and an unloading or reloading wave propagates back 
into material 1 taking it to the same pressure and velocity.

A key to the behavior of the interface is the Atwood num-
ber, a non-dimensional parameter describing the relative 
densities of the two materials

Thus, positive A indicates the shock propagates from a lower 
density material to a higher density one, while a negative 
value denotes the converse. As with k�o , increased mag-
nitude of A promotes instability development. Note that if 
material 2 is vacuum, then A = −1 , an important case for 
RMI. If �2 = �1 then A = 0 and there is no driving force for 
instability development.

If A < 0 and the factors promoting instability (e.g. k�o , 
∣ A ∣ ) are sufficient to outweigh those stabilizing the interface 
(e.g. viscosity, strength), then the imperfection inverts and 
material near x = 0 from 1 jets into 2. In the literature, such 
jets are generally referred to as “spikes”, while the regions 
of the sine wave 180 degrees out of phase are referred to 
as “bubbles”. This process is examined in more detail in 
“Baseline Case for A < 0” section. For the case of A = −1 , 
the formation of spikes that ultimately separate leads to the 
formation of particles referred to as ejecta (c.f. Buttler et al. 
[21]), but our interest lies elsewhere.

If A > 0 , the shock initially causes the amplitude to 
decrease, but after its passage the amplitude typically 
increases. However, there is no inversion of the imperfec-
tion. Here, we focus on the other case, saving the A > 0 case 
for future work.

Previous Theoretical and Modeling Work

A few treatments of RMI have been developed for materials 
with strength. They are generally extensions of solutions for 
fluids and utilize numerical simulations to provide insight or 
to calibrate constants. The notation and physical quantities 
in the formulae developed by the various authors can vary, 
and there is, at times, some ambiguity about the meaning of 

(1)k�o =
2��o

�
.

(2)A =
�2 − �1

�2 + �1
.

Fig. 1  Schematic of the initial configuration for an RMI experiment. 
The shock, shown in red, propagates through the driver, across the 
interface with the sinusoidal perturbation, and into the tamper (Color 
figure online)
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certain terms. Nevertheless, the results of these treatments 
are more alike than they are different.

Some of the first work reported on RMI in solids is that of 
Piriz et al. [13, 14]. They considered the case of A = +1 and 
found that the late-time amplitude of the interface imperfec-
tion is given by

where Y is the flow strength of the material. The constant 
factor was set at 0.29 through comparison to numerical sim-
ulations of the RMI configuration.

Dimonte et al. [15] performed simulations of the A ≈ −1 
case, finding a result for the maximum spike amplitude 
(ignoring the leading constant term) of

where umax
sp

 is the maximum spike velocity. For the cases 
examined, umax

sp
 can be reasonably approximated as k�ou1 , 

so that their result is quite similar to that of Piriz et al. 
They also provide a limiting criterion for spike arrest: 
𝜌1(u

max
sp

)2∕Y1 < 10 ± 1 . If the inequality is not satisfied, then 
the spike does not arrest and instead breaks up, leading to 
ejecta.

Both [22] and [23] performed hydrocode simulations of 
the RMI for A = −1 and found results similar to those of 
Piriz et al., albeit with slightly different constant prefactors.

Because they considered a range of A, the findings of 
[24] and [25] are discussed below in “The Case of ∣ A ∣< 1

” section.

Previous Experimental Work

While there have been many studies of RMI in liquids and 
gases (see [3] and references therein), only a small number 
have been performed with solids to measure strength. Strain 
rates in these experiments were of order 107 s−1 , though 
strain rates and total strain varied across the regions of the 
sample. Most were performed into vacuum ( A = −1 ), with 
only the work by Olles et al. [26] and Hudspeth et al. [27] 
involving a tamped configuration ( A > −1 ); they are dis-
cussed in the next section.

Buttler et al. [28] examined jetting of tin and copper, 
using both proton radiography and laser Doppler interfer-
ometry to monitor the growth of the spikes. Although much 
of their attention was devoted to ejecta characteristics, they 
found that k�o could be varied to achieve negligible grow 
of the spikes, spikes that formed and grew but arrested, or 
spikes that grew without arresting and eventually broke up. 
They extracted strength values for copper using a relations 

(3)k(�∞ − �o) = 0.29(k�o)
2
�u2

2

Y
,

(4)kh∞
sp
= 0.24

�1(u
max
sp

)2

Y1

similar to that of Piriz et al. [13, 14] utilizing the arrested 
spike length. Although their analysis was based on the 
assumption of elastic-perfectly plastic behavior, they argued 
that this is inadequate.

Jensen et al. [16] tested cerium metal, utilizing both high-
speed X-ray radiography and interferometry to monitor spike 
formation and growth. They used the expression of Dimonte 
et al. [15] to calculate the strength from the measured spike 
velocity. Measurements from radiography were found to 
lead to smaller uncertainties than those from interferom-
etry. In their experiments, the cerium samples were cycled 
through a solid-solid phase transformation but returned to 
the ambient phase upon release. In a similar study, [29] per-
formed magnetically-driven, cylindrically-convergent RMI 
experiments on tin using proton radiography. Manipulat-
ing the initial shock pressure caused the samples to release 
into solid, liquid, or mixed states, which affected the spike 
growth behavior.

Prime et al. studied jetting of copper [17] and tantalum 
[18] but utilized only interferometry as a diagnostic. They 
pointed out issues associated with damage and, as a result, 
adopted peak spike velocity as their metric for evaluating 
strength. This also permits useful data to be extracted from 
spikes that do not arrest. By comparison to hydrocode sim-
ulations, they were able to extract strengths, though they 
found that their simulations were also sensitive to both 
resolution and the artificial viscosity formulation used. In 
contrast to Buttler et al. [28], they argued that simple elas-
tic–plastic constitutive models were sufficient for simulating 
the jetting process. Their goal in doing so was to obtain a 
value of strength for one specific set of conditions that would 
then be used in the calibration of a more sophisticated con-
stitutive model.

The Case of ∣ A ∣< 1

The studies discussed above all involve one component of 
the system being vacuum so that A = ±1 . This leads to the 
limitation that the results are obtained for zero pressure since 
most of the plastic deformation occurs after a release wave 
from the free surface has propagated back into the driver. 
Adding a tamper to back the driver as shown in Fig. 1 allows 
the driver to remain at a nonzero pressure. If A < 0 , then 
P1 > P2 ; the converse is true if A > 0

Though other values of A have been explored in the fluids 
literature, there are few such reports from the shock physics 
community. Benjamin and Fritz [30] studied the jetting of 
Wood’s metal tamped with water ( A ≈ −0.8 ). Wood’s metal 
is an alloy with a low melting point (70 ◦C), so the passage 
of the shock melts it. Thus, this study did not address the 
issue of strength in a tamped configuration.
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The most significant study of tamped RMI is the work 
reported by Bakhrakh et al. [6] and Mikhailov [19]. They 
performed explosively-driven RMI experiments with 
recovery for several metal pairs with values of A rang-
ing from − 0.16 to + 0.22. In Bakhrakh et  al. [6], an 
abrupt loss of stability is attributed to shock melting, but 
Mikhailov [19] revises that conclusion to indicate that sta-
bility is lost well before melting occurs or is lost during 
release.

A few recent studies [31–33] have utilized laser-driven 
loading for 0 < A < 1 . Samples were recovered, and post 
mortem examination of the imperfection growth was cor-
related to strength. Both 2-D and 3-D configurations were 
studied. The length scales in these studies were significantly 
smaller than in the others discussed, and strain rates were 
of order 107 s−1.

Recently, synchrotron radiation has been utilized to diag-
nose RMI experiments driven by planar impact. Olles et al. 
[26] examined copper drivers tamped by deuterated water. 
Hudspeth et al. [27] utilized the same configuration, but their 
objective was to probe the strength behavior of the tam-
per material, a SiO2 powder. This was possible because the 
strength of the copper was independently established in the 
two studies. Through numerical simulations of the problem, 
they were able to estimate the strength of the material of 
interest by matching the spike growth behavior observed 
experimentally.

Of the theoretical treatments mentioned earlier, only 
Mikaelian [24] considered the case of arbitrary A. He found 
that the length of the arrested spikes is given by

Here � and Y  , the effective density and strength for the two-
material configuration, are given by

and

If A = −1 the relationship differs from that of Piriz et al. 
only in the constant prefactor.

Chen et al. [25] considered the case where material 1 is an 
elastic–plastic solid and material 2 is a fluid. They arrived at 
a slightly different relationship for the spike length. Ignoring 
the elastic term, they find

where �s is the density of the solid material and F(A) is 
given by

(5)k(�∞ − �o) =
1

3
A2(k�o)

2
�u2

2

Y
.

(6)� = �1 + �2.

(7)Y = Y1 + Y2.

(8)k�max = F(A)A2(k�o)
2
�su

2
2

Y
,

The constants � and � are found to have values of 0.0034 and 
3.0374, respectively, through fitting to simulation results. 
For the case of A = −1 , this reduces to a value of 0.222, 
which is similar to values of 0.24 [15] and 0.22 [22] found 
previously.

The significantly more complicated cylindrically con-
vergent RMI configuration was examined numerically by 
Lopez Ortega et al. [34] and Wu et al. [35]. The former 
performed continuum simulations, while the latter study uti-
lized classical molecular dynamics. While only values of A 
close to -1 were examined in both studies, corresponding to 
a dense gas fill, it was shown that the value of A at the solid/
gas interface could change dramatically due to the greater 
compressibility. For the case of A = −0.818 initially, A actu-
ally became positive as the shock converged.

Analysis Methods

Simulations of the RMI configuration were conducted using 
the Sandia hydrocode CTH [36], which is well-suited to 
treating strong shocks and large deformations in fluids and 
solids. The simulations were, in general, conducted in the 
two-dimension (2-D) planar geometry shown in Fig. 1 under 
plane strain conditions. Because of the periodicity of the 
problem, rigid boundaries were prescribed at the bounda-
ries at x = ±�∕2 with λ = 2 mm. A flyer plate of material 1 
strikes the driver (also material 1) at a velocity V sending a 
shock wave into it and the tamper. The impactor and tam-
per are made large to ensure that the interface can evolve 
without being affected by the boundaries in the y direction. 
The evolution of the interface is monitored by tracking its 
position at x = 0 ( ys ) and x = �∕2 ( yb ). We define the length 
of the spike as

At the beginning of the simulation, �o = −2�o.
For simplicity, a Mie–Grüneisen [37] equation of state 

(EOS) with a quadratic Us − up form is used for both the 
driver and the tamper. Parameters for the tantalum (Ta) used 
as the driver are shown in Table 1. The tamper material 
is a sodium metatungstate ( Na6[H2W12O40] ) solution [38], 
which is amongst the densest liquids not presenting signifi-
cant health hazards. Since no EOS information is available 
for it, the EOS parameters are assumed to be those of water 
[39] except for the density, where a value of 3.10 g/cm3 is 
used.

Strength behavior of the driver is modeled using an elas-
tic-perfectly plastic (EPP) response with yield stress Y1 and 
Poisson’s ratio �1 = 0.385 . The tamper is generally treated 

(9)F(A) = �(� ∣ A ∣ +� + 2)2.

(10)� = ys − yb.
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hydrodynamically, though an EPP treatment with strength 
Y2 is used in some cases. A baseline resolution of 100 cells 
per wavelength is used; the effect of resolution is examined 
in “Simulation Resolution” section.

Simulation Results

In this section, we present results for simulations of RMI 
growth. We consider a specific example and then examine 
the effect of variations in the model parameters on the simu-
lation results.

Baseline Case for A < 0

In order to illustrate the tamped RMI, we consider a simula-
tion of jetting of Ta into a high-density tamper fluid ( Na2 
WO4 solution) as an example. A thick Ta impactor traveling 
at 2 km/s strikes the Ta driver with an initial perturbation 
given by k�o = 0.63 . The Ta driver is tamped by a high-den-
sity liquid with EOS properties given in “Analysis Methods” 
section. The resulting Atwood number is A = −0.69 . For 
simplicity, an elastic-perfectly plastic strength model with 
Y = 0.75 GPa is used for the Ta, and the tamper is treated 
hydrodynamically (i.e. no strength). Results that are quali-
tatively similar are obtained if a more physically-motivated 
strength model such as the PTW model [40] is used, though 
different empirical and semi-empirical models calibrated for 
Ta were found to give different values of the arrested spike 
length.

Images from a simulation of this configuration with an 
impact velocity of 2 km/s are shown in Fig. 2. Rows of 
Lagrangian tracers at increasing distance from the edge of 
the Ta driver are used to illustrate its deformation. By the 
second image at 0.5 μs after impact, the shock has traveled 
into the tamper, accelerating the trough of the sine wave in 
the Ta so that the interface is nearly flat. By the third image 
at 1.0 μs, the sine wave has inverted so that the Ta has jetted 
into the tamper. Because material has flowed inward to form 
the spike, the vertical tracer spacing decreases as the hori-
zontal spacing increases. The two rightmost lines of tracers 
bulge outward significantly, but the center part of the other 
two bulge slightly to the left. In the fourth and fifth images 
at 1.5 and 2.0 μs, this pattern persists as the front region of 

the spike stretches only minimally. However, the material 
outside the spike continues to shear, leading to additional 
distortion of the tracer pattern.

The evolution of the spike amplitude for the simulation 
shown in Fig. 2 is shown in Fig. 3a. The spike amplitude 
grows with a gradually decreasing rate. The spike is seen 
to arrest with an amplitude of about 0.91 mm. The velocity 
histories for the spike and bubble are shown in Fig. 3b. Both 

Table 1  Material EOS model parameters used in simulations

Material �o (g/cm3) Co (km/s) s1 s2 �  (GPa)

Tantalum 16.654 3.39 1.22 0.05 1.60
Sodium meta-

tungstate 
solution

3.100 1.50 2.00 0.00 0.50

Fig. 2  Images of a simulation of Ta impactor (dark) impacting a Ta 
driver (light), which jets into a high-density liquid tamper (medium). 
Tracer particles are shown in the driver to illustrate the deformation 
patterns. Images are shown for the a initial state and at b 0.5 μs, c 1.0 
μs, d 1.5 μs, and e 2.0 μs after impact
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initially experience a strong shock at nearly the same time. 
Following that, the velocity of the spike (bubble) increases 
(decrease) to a maximum (minimum) and gradually falls 
(increases), in most cases, to a value close to the initial shock 
amplitude.

The spike growth process illustrated in Fig. 2 is complex, 
involving large deformations and high strain rates at ele-
vated pressures. Here, we examine that process and quantify 
the factors of strain, strain rate, and pressure. In the simu-
lation, we distribute a 20 × 20 grid of Lagrangian tracers 
similar to the arrangement shown in Fig. 2 over the region 
within �∕2 of the driver/tamper interface. The Lagrangian 
tracer points move with the material as it deforms, and we 
track the pressure and plastic strain rate at each of those 
points, recording those values at a fixed time interval of 
5 ns. For each time step, we assume that the strain rate is 

constant so that the increment in plastic strain can be taken 
to be:

The total plastic strain can be found by summing the incre-
ments from Eq. 11 over time. Strains at individual points 
as high as 2.0 are found, though the strain levels generally 
decay away from the driver/tamper interface. For compari-
son, if the interface perturbation is not present, then the total 
plastic strain for a specific point from the initial shock and 
the release from the tamper is approximately 0.25, signifi-
cantly less than for the regions deforming the most in the 
RMI configuration.

The strain rates associated with the initial shock in the 
driver are calculated to be over 107 s−1 , but that value is not 
physically meaningful since it is largely determined by the 
resolution of the simulation and the artificial viscosity used 
to spread the shock front. The real strain rates are probably 
even higher, though how high is unclear because of the diffi-
culties in resolving high-pressure shock rise times and a lack 
of data on tantalum. Crowhurst et al. [41] reported strain 
rates of order 1010 s−1 in aluminum shocked to around 40 
GPa. In the planar case, a release wave will propagate from 
the driver/buffer interface, eventually unloading the driver 
and impactor to P2 . Since the release wave forms a rarefac-
tion fan as it propagates, the strain rate will decrease as the 
distance from the tamper interface increases. At 1 mm from 
the interface, this results in strain rates of the order of 106 s−1.

To quantify the states at which the plastic strain occurs in 
the RMI simulation, we bin the increments in plastic strain 
for all 400 tracer points (Eq. 11) according to the values of 
pressure and strain rate at which they occur and plot them 
in Fig. 4. Since we are using an elastic-perfectly plastic con-
stitutive model and the tracers are equally spaced initially, 
the plastic strain value shown in the plot is proportional to 
the plastic work done in the region of interest. There are 
three main features seen in the plot. The large arc going 
from zero pressure to ∼ 75 GPa and reaching a strain rate 
of 1.3 × 107 s−1 results from the arrival of the initial shock 
as discussed above. The second, smaller arch from ∼ 75 to 
∼ 35 GPa at strain rates around 106 s−1 is from the release 
when the shock reaches the tamper. Both these features are 
found in simulations where the interface perturbation is not 
present. The third feature, the pronounced spike in accu-
mulated plastic strain, is due to the growth of the spike in 
the RMI configuration. As seen in the inset, its peak is at 
approximately 24 GPa and a plastic strain rate of about 105 
s−1 . Clearly, the vast majority of the plastic deformation due 
to the RMI occurs at or near those conditions. Thus, even 
though a wide range pressures and strain rates occur in the 
RMI configuration, assigning a specific pressure and strain 
rate for the purposes of calibration of a strength model is not 

(11)𝛥𝜖p = 𝛥t�̇�p.

(a)

(b)

Fig. 3  Results from simulations with the strength varied: a spike 
amplitude evolution and b spike and bubble velocity histories
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unreasonable. Further, this observation supports the use of 
an EPP strength model for simulations used to estimate an 
average strength, with that strength value then used to cali-
brate more complex strength models for those conditions. 
However, if the spikes exhibit significantly less growth than 
seen here, this approach would be less appropriate since the 
plastic strain due to the RMI configuration would be less 
dominate. While the pressure and strain rate are relatively 
constant, there is some temperature rise due to plastic work: 
peak temperatures of about 1400 K are estimated. Signifi-
cant work hardening of the material would also complicate 
usage of RMI results to calibrate a constitutive model. If that 
model is then used for a problem where there is significantly 
different work hardening than the RMI because the overall 
strain level is much lower or higher, then some error will be 
introduced. Finally, we note that there is no significant accu-
mulation of plastic strain at negative pressures, but there are 
regions that do develop them despite the tamper. The effect 
of damage in those regions will be examined in “The Role 
of Damage” section.

Sensitivity to Strength

In the following sections, we examine the sensitivity of 
spike growth to the simulation parameters. Since this paper 
focuses on the role of strength in tamped RMI, we examine 
that aspect first in Fig. 3. Results for spike amplitude from 
EPP simulations are shown in Fig. 3a. Strength values of 
Y1 ≈ 0.75 GPa and greater result in spike arrest, and for the 
highest values of Y1 the spike region barely inverts. Spike 

and bubble velocity histories for those same strength val-
ues are shown in Fig. 3b. The maximum value of the spike 
velocity decreases as Y increases, and the velocity decays 
more rapidly to the equilibrium value with increased Y as 
well.

In the tamped RMI configuration, both the driver and 
tamper can be fluid or have strength. Mikaelian [24] sug-
gested that the sum of the strengths of the two materials is 
the relevant parameter. In Fig. 5 we show results for three 
ways of distributing the strength between the driver and 

Fig. 4  Accumulated plastic 
strain from the volume within 
�∕2 of the driver/tamper inter-
face plotted against the pressure 
and plastic strain rate at which it 
occurs. The inset shows a close-
up view of the region of peak 
accumulated strain

Fig. 5  Spike amplitude evolution for different distributions of 
strength between the driver and tamper. Insets illustrate the arrested 
spike shape at late time



269Journal of Dynamic Behavior of Materials (2021) 7:262–278 

1 3

tamper: Y1 = 0.75 GPa and Y2 = 0 ; Y1 = Y2 = 0.375 GPa; 
and Y1 = 0 and Y2 = 0.75 GPa. To first order, constant val-
ues of the sum Y1 + Y2 do give similar results, but there are 
some differences. A fluid driver ( Y1 = 0 ) gives the greatest 
spike growth, while the equal distribution of strength gives 
the least; the case of the fluid tamper ( Y2 = 0 ) is intermedi-
ate. The insets show the shapes of the arrested spikes for 
the three cases. While the three are similar, the spike for the 
fluid driver case has a flat front, and that for the equal dis-
tribution case is more rounded overall. For cases of smaller 
spike growth, the effect of the strength distribution is less 
pronounced. We have not examined conditions where the 
spikes grow further or break up, but one would expect the 
effect of the strength distribution to be even greater.

Role of A and k�o

Varying the other two controlling parameters of the RMI, 
the wave parameter k�o and the Atwood number A, will 
also affect the spike evolution. To investigate the effect of 
varying A, we increased and decreased �2 by 50%, which 
changes A by about 20%. This change in density causes P2 
to change as well, as illustrated by the P − u diagram in 
Fig. 6a. Increasing the tamper density increases P2 to 31 
GPa, while decreasing it gives 13 GPa. Note that one could 
maintain a constant value of P2 with the denser tamper by 
decreasing the impact velocity to 1.65 km/s. Such a change 
would result in a lower initial shock pressure, resulting in 
a lower temperature for the driver during the RMI growth 
phase. The mass velocity u2 could similarly be held constant 
by adjusting the impact velocity. Also shown in the figure 
for comparison are the Hugoniots for tin (Sn) and mercury 
(Hg), which have a low melting point and are a fluid, respec-
tively. The spike evolution for increased and decreased �2 
are shown in Fig. 6b with the results shown previously for 
A = −0.69 . For higher tamping (increased �2 ), spike growth 
is suppressed, while the opposite occurs for lower tamp-
ing. In the latter case, the spike eventually fails and the tip 
separates.

Similar effects are seen as k�o is varied as seen in Fig. 7. 
For lower values, spike growth is reduced, leading to spikes 
similar to that for the A = −0.56 case. Increasing it leads 
to enhanced spike growth, with the k�o = 0.79 case giving 
results similar to the A = −0.83 case. For even higher values, 
the spike “mushrooms” as seen in the inset. Such mushroom-
ing only occurs in RMI when there is tamping.

EOS of Driver and Tamper

To investigate the sensitivity of the RMI to the EOSs of the 
driver and tamper, we independently varied the Mie–Grü-
neisen parameters co and s by 25% for each of the materials. 
The spike length is found to be somewhat sensitive to the 

EOS parameters for the driver: there is about a 10% change 
when co of the tantalum is varied by ±25% , and about a 
3% change when s1 is varied. Varying the parameters of 
the tamper results in a change of 2% or less in the spike 
length. Some of the effect from varying the parameters can 
be explained through changes in the interface velocity u2 , but 
there are other effects that play a role. In particular, we note 
that Mikaelian [42] suggests the use of an effective Atwood 
number accounting for compressibility. Nevertheless, the 
EOS parameters appear to play only a modest role in the 
RMI, so precise knowledge of the EOSs are not required. 
It should be mentioned that phase transformations such as 
those studied by Jensen et al. [16] and Freeman et al. [29] 
could have a much more pronounced effect than the varia-
tions considered here.

(a)

(b)

Fig. 6  Effects of varying the Atwood number A: a P − u diagram 
showing pressure states achieved and b spike amplitude evolution. 
Inset images show the spike configurations at late times
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In addition to the changes in the EOSs considered above, 
we also consider a more dramatic change. Rather than uti-
lizing a fluid as the tamper, one could use a powdered form 
of a metal with a relatively low melting point. For example, 
we consider tamping using a tin (Sn) powder with density 
3.1 g/cm3 , which corresponds to a porosity level of about 
57%. This provides the same value of A = −0.69 as that used 
previously. Using a simple P − � model [43] to describe the 
removal of porosity in the tin powder, we find that P2 = 17 
GPa, somewhat lower than the 24 GPa for the baseline case. 
Given the 505 K melting temperature of tin under ambi-
ent pressure, we would expect porous tin to be completely 
melted or at least so hot as to have no significant strength 
under that shock loading. The simulation show that the 
spike amplitude increases only by about 2.5%, even though 
the Atwood number changes significantly so that its final 
value is Af = −0.42 . Thus, it appears that even if the driver 
and tamper have very different compressibilities, the spike 
growth is controlled, at least to first order, by the initial value 
of A. Additional discussion of the use of metal powder tam-
pers can be found in “Tamper Materials” section.

The Role of Damage

Prime et  al. [17, 18] found that their experiments with 
A = −1 were quite sensitive to damage that occurs in the 
sample due to the release from the free surface. While the 
tamped configuration does lead to release propagating into 
the driver, the pressure is maintained at P2 , which reduces 
the role of damage. As shown previously (see Fig. 4), there 
is no appreciable plastic work done in the presence of nega-
tive pressure for the sodium metatungstate solution tamper. 
To examine the effect of damage, we utilized the simple 

Johnson-Cook fracture model [44] for the Ta driver. While 
the Johnson-Cook fracture model is relatively simplis-
tic and may not be suitable for all cases that might be of 
interest, it does provide an easy way to evaluate the role of 
damage. For A = −1 , a significant effect on the jet length 
is found. If water is used as the tamper ( A = −0.89 ), only 
about a 5% increase in spike length is found due to the addi-
tion of the damage model. We note that the result is rela-
tively insensitive to the damage model parameters. For the 
sodium metatungstate tamping ( A = −0.69 ), though, we 
find no significant effect on spike length due to the damage 
model. Examination of the damage fields indicate that for 
water tamping there is a relatively small region of slightly 
( D < 0.1 , where D is the scalar damage parameter that varies 
from 0 in the undamaged state to 1 if fully damaged) dam-
aged material near the bubble. For sodium metatungstate 
solution tamping, the damaged region is smaller and even 
less damaged ( D < 0.05 ). Based on these results it appears 
that even modest tamping, say A > −0.90 minimizes the 
effect of damage on a ductile driver. However, a less ductile 
driver material or a material with a lower spall strength may 
still be susceptible to damage at that level of tamping. Thus, 
a more careful evaluation of damage is probably merited 
when studying a material at low levels of tamping.

Dimensionality

Most experimental and simulation work on RMI with solids 
has been performed in a 2-D configuration. While studies of 
RTI indicate that the instability grows more rapidly in 3-D 
[45], Bakhrakh et al. [6] report that under some conditions 
the strength of the material can cause 3-D instabilities to 
grow more rapidly. The same conclusion is reached for RMI 
in fluids by Chapman and Jacobs [46], but there does not 
appear to be a definitive study for RMI involving strong sol-
ids. Sternberger et al. performed 2-D and 3-D RMI experi-
ments with tantalum [32] and copper [33]. Unfortunately, 
differences in wavelength between the two configurations 
made comparisons difficult. Here, we evaluate the effect of 
dimensionality using a slightly different approach.

In simulations, the 2-D configuration with many wave-
lengths can be treated as periodic by using rigid lateral 
boundaries, as has been done here. To avoid expensive 
three-dimension calculations, we consider an axisymmetric 
configuration, which we will refer to as 2-DA. As can be 
seen in Fig. 8a, � grows somewhat faster initially and reaches 
larger magnitudes for the 2-DA case. In fact, while all of the 
2-D cases shown arrest, only one of the 2-DA cases does in 
the time shown.

The 2-D configuration with periodic wavelengths can be 
treated with rigid boundaries at x = ±�∕2 , which is com-
putationally convenient. Treating the 2-DA simulations 
with a rigid boundary at r = �∕2 does not correspond to a 

Fig. 7  Spike amplitude evolution for variations in the wave parameter 
k�

o
 . Inset image shows mushrooming of the spike at late times for 

k�
o
= 1.26
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periodic condition, though it is reasonably close to a hex-
agonal arrangement of perturbations. In order to compare 
the 2-D and 2-DA configurations in another manner, we 
consider a single perturbation surrounded by a flat region 
of the driver: an isolated perturbation. For this case, we 
report the amplitude as � = ys − y∞ where y∞ is the posi-
tion of the driver far away from the perturbation. As seen 
in Fig. 8b, 2-DA perturbations again grow faster and more 
than 2-D ones. The two configurations are only slightly 
different for the 2-DA case, but in 2-D, perhaps somewhat 
surprisingly, periodic perturbations lead to larger spikes 
than does an isolated one.

Experimentally, Bolis et al. [47] used an axisymmetric con-
figuration in RTI experiments. The axisymmetry of the prob-
lem allowed them to use multiple flash X-ray setups to track 

the spike evolution. The enhancement of spike formation seen 
in Fig. 8 suggests that an axisymmetric configuration could 
be useful to enhance spike formation when it is marginal. The 
ability to arrange separated axisymmetric perturbations on the 
plane of the driver could also be exploited to utilize radiogra-
phy capabilities better.

Simulation Resolution

Previous studies [17], [32], [33], [34] found that calculations 
of RMI growth were sensitive to cell size, so this aspect was 
investigated by refining the cell size from the baseline case of 
�∕�x = 100 . The spike evolution as a function of cell size is 
shown in Fig. 9. Each reduction in cell size results in a slightly 
greater late-time arrested spike length �∞ . Fitting a power law 
relationship (see inset of figure) gives �∞ → 1.133 mm as 
�x∕� → 0 , an error of about 20% for the baseline resolution. 
Examination of behavior for a less severe initial perturbation 
( k� = 0.31 , see Fig. 7) and a stronger one ( k� = 0.94 ) indi-
cate that the relative errors are consistent across a reasonably 
wide range of conditions. Since our purpose here is to examine 
broad trends, issues of resolution are not of great concern. On 
the other hand, if one is trying to calibrate a strength model 
to RMI growth characteristics, then resolution effects should 
be accounted for.

We note that the power law exponent for mesh convergence 
for k�o = 0.63 is 0.42, while that for k�o = 0.31 is 0.75. Both 
of these are lower than the value of 0.97 reported by [32]. It is 

(a)

(b)

Fig. 8  Spike amplitude evolution for 2-D and 2-DA perturbations 
for varying wave parameters for the case considered previously 
( A = −0.69 , Y

1
= 0.75 GPa) with a rigid boundaries at x = �∕2 and 

b isolated conditions

Fig. 9  Spike amplitude evolution with cell size refinement. The inset 
shows the evolution of the spike amplitude and a power-law fit to the 
results and its limit value
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not clear if this large difference is due to the different configu-
ration ( A > 0 versus A < 0 here) they utilized or is associated 
with the computational approach used.

Scaling

Motivated by observations of the effect of the three dif-
ferent parameters A, k�o , and Y  as illustrated in Figs. 3, 
6b,  and 7, here we explore scaling relationships between 
spike growth and the key non-dimensional parameters. 
The first two parameters are non-dimensional, and Y  is 
incorporated into the term 1∕Ỹ = 𝜌u2

2
∕Y  (the tilde over-

symbol denotes a non-dimensional parameter) following 
the approach of Mikaelian [24]. While different expres-
sions for spike growth have been proposed as discussed in 
“The Richtmyer–Meshkov Instability” section, there has 
not been a comprehensive study of the role of the three 
non-dimensional parameters, especially in the non-linear 
regime. Scaling laws that might be found would be useful 
for designing experiments where different parameters can 
be varied simultaneously. In this section, we perform a 
large number of simulations by randomly sampling param-
eter values in order to establish an appropriate relation-
ship for all three that is valid into the non-linear regime. 
First, we focus on the spike length for simulations where 
a stable arrested spike is formed without separation or 
mushrooming, which is probably the preferred case when 
radiography is used. Second, we consider spike and bubble 
velocities, both their peak values and the time for them to 
equilibrate, since those quantities could be measured using 
laser interferometry.

To generate a data set with which to examine scal-
ing, we perform an ensemble of simulations by ran-
domly sampling some parameter values while holding the 
remaining parameters constant. We fix � = 2 mm, and the 
driver is taken to have the EOS parameters of tantalum 
(see Table 1). The Mie–Grüneisen EOS parameters of 
the tamper except the density are fixed as those given in 
Table 1, and we assume it behaves as a fluid ( Y2 = 0 ). In 
each simulation of the ensemble, values of tamper density 
�2 , strength of the driver Y1 , perturbation parameter k�o , 
and impact velocity Vimp are chosen uniformly from the 
ranges given in Table 2. The range of �2 gives values of 
A from −0.89 to −0.36. A total of 2000 simulations were 

performed with the parameters uniformly sampled across 
the given ranges. The simulations were generally run for a 
simulation time of 5 μs. From each simulation, we extract 
values of the maximum spike velocity umax

sp
 and �end , the 

spike amplitude at the end of the simulation. We also 
determine the value of u2 from a separate 1-D calculation.

Spike Length

We first focus on the length of the spikes that form and 
arrest. This quantity can be readily measured with radio-
graphic imaging, but it can, in principal, also be measured 
using laser velocimetry [16, 28]. This is more easily done for 
the A = −1 case, but it has been attempted with water tamp-
ing [26], though the optical behavior of the shocked liquid 
can complicate analysis. We screen the ensemble for those 
realizations for which �̇�∕u2 > 0.02 at 5 μs in an attempt to 
ensure that only results for arrested spikes are considered. 
This criterion is not always reliable, so we utilize the visu-
alization tool Slycat [48] to examine the results, particularly 
the outliers when plotted where �̇�∕u2 < 0.02 as well as those 
where 0.02 < �̇�∕u2 < 0.10 . In some cases, it was necessary 
to run the simulations beyond 5 μs to conclusively determine 
if the case arrested. Given, the large number of simulations, 
it is possible that some of those deemed to have arrested 
actually still displayed mushrooming or separation, though 
spot-checking did not reveal any examples. If the spike 
arrests, then there is a well-defined value of �∞ = �end , but 
if it separates or mushrooms then �∞ is not defined.

The results for non-dimensional spike length 𝜉∞ = 
�(�∞ + 2�o)∕� from the ensemble of simulations are plotted 

Table 2  Ranges for simulation parameters used in ensemble calcula-
tions

Material �2 (g/cm3) Y1 (GPa) k�o Vimp (km/s)

Minimum value 1.00 0.10 0.25 1.00
Maximum value 7.90 3.00 1.50 3.00

Fig. 10  Scaling of late-time spike amplitude for 2000 realizations of 
Ta tamped by a liquid in which A, k� , and Y

1
 are randomly varied over 

the ranges given in the text. Larger blue symbols indicate that the 
spike arrested, while smaller red ones indicate that the spike did not 
arrest (Color figure online)
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against the non-dimensional parameters A, k�o , and 1∕Ỹ  in 
Fig. 10. Simulations in which the spike arrests are denoted 
by blue symbols, while red symbols show those cases that 
do not arrest. By inspection, the exponents associated with 
these parameters that collapse the ensemble best are 2, 2, 
and 1, respectively. The exponents associated with k�o and 
1∕Ỹ , are consistent with previous results [13, 15, 24, 25], and 
that associated with A is the same as that from Mikaelian 
[24] and similar to that of Chen et al. [25].

A linear fit to the data that passes through the origin has 
a slope of 0.18 but does not fit the data well. Restricting the 
fit to low values of spike amplitude would give a somewhat 
higher slope to the fit in line with previous results [13, 15, 
24]. A power law form given by

fits the data well. We note that a separate ensemble of simu-
lations using copper drivers and a tamper with strength gave 
very similar values for the power law fit, as one would expect 
if the problem is indeed governed by the non-dimensional 
parameters used here.

The results that arrest become noticeably sparse for 
𝜉∞ > 20 , and the longest spike found is 𝜉∞ = 29.2 . Of 
course, it is possible that sampling more from the current 
phase space or a larger one would result in an example that 
gives a greater 𝜉∞ . We also note that the longest spikes 
generally arrest after necking has begun, suggesting that it 
would be very difficult to experimentally achieve values of 
𝜉∞ > 20 and be able to verify that they have arrested.

In the realizations that arrest, there is no significant cor-
relation between 𝜉∞ and A, but the maximal 𝜉∞ achieved 
increases nearly linearly with k�o as shown in Fig. 11a. Thus, 
the longest spikes all occur in realizations with relatively 
large k�o . The maximum value for 𝜉∞ initially increases 
approximately linearly with 1∕Ỹ  . After that, the maximum 
value increases a bit more before gradually falling off for 
larger values of 1∕Ỹ  . The largest value for which the spike is 
found to arrest is 1∕Ỹ = 377 , but arresting spikes were found 
for the entire range of A and k�o sampled.

Spike and Bubble Velocities

While arrested spike length is an attractive experimental 
metric if high-speed radiography is available, velocime-
try is much more available for routine use. Partly for this 
reason, Prime et al. [17, 18] utilized the maximum spike 
velocity umax

sp
 as their experimental metric. The normalized 

maximum velocity from the ensemble of simulations is 
shown in Fig. 12 with the symbols again denoting whether 

(12)
�(�∞ + 2�o)

�
= 0.30

(

A2(k�o)
2
�u2

2

Y

)0.77

the spike arrests or not. Of course, as pointed out by Prime 
et al. maximum spike velocity can be utilized even for cases 
where the spike does not arrest. The data for the arresting 
cases are collapsed reasonably well using a scaling different 
from that used in Fig. 10, namely exponents of 1.5, 1, and 
0.2 on A, k�o , and 1∕Ỹ  , respectively. Thus, the maximum 
velocity is relatively insensitive to the value of Y1 for cases 
that arrest, which is consistent to what was seen previously 
in Fig. 3. Those cases that arrest are represented reasonably 
well by the linear fit shown in the figure. In contrast, those 
that do not arrest are more scattered due to the multiple types 
of behavior they display (e.g. breaking up, mushrooming), 
and many deviate significantly from the scaling mentioned 
above. Some are intermingled with the cases that arrest, and 
those cases are found to separate. Somewhat surprisingly, 
the highest of the velocities for the non-arresting cases are 
only slightly higher than those for the arresting cases. The 
effect of simulation resolution on umax

sp
 is small: only a 2.6% 

(a)

(b)

Fig. 11  Spike amplitudes for realizations in which it arrests (a) as a 
function of the wave parameter k�

o
 and b as a function of 1∕Ỹ
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error is found between the value for �∕�x = 100 and the 
estimate for the converged value.

Because certain case in “Spike Length” section took 
longer than the initial default run time to arrest, the time 
at which the spike arrests was examined further. For the 
simulations where the spike arrests, we extract the value 
of tcross , which is defined as the first time when usp = ubub . 
Referring back to the results in Fig. 3, tcross is about 3.7 μs 
for the Y = 0.75 GPa case. In some cases, usp and ubub can 
oscillate about a mean value ( u2 ) after tcross due to wave 

reverberations. This typically occurs for cases where the 
spike growth arrests rapidly. It is found that at tcross all 
the points along the driver/tamper interface are, to a good 
approximation, moving at the same velocity in the y direc-
tion. The normalized crossing time t̃cross from each of those 
simulations that arrest are shown in Fig. 13. The exponents 
associated with the parameters A, k�o , and 1∕Ỹ  that col-
lapse the ensemble best are 1, 1, and 1. Thus, we find that 
the t̃cross is much more sensitive to Ỹ  than ũmax

sp
 is. The effect 

of the simulation resolution on tcross is comparable to that 
on spike length: an error of about 16% is estimated for a 
resolution of �∕�x = 100.

Scrutiny of the data in the region where they are more 
scattered reveals that many of the simulations are moder-
ately to severely localized due to the spikes necking down 
near their base. Since cases that localize but still arrest are 
likely to be highly sensitive to the details of the simulation, 
we focus on the remainder. A power law fit to those results 
captures them well; the coefficients for that can be found 
in the figure. A linear fit to the data that fall below ten on 
the x-axis gives a slope of 0.11. The largest value of arrest 
time without significant necking is t̃cross ≈ 14 . This case has 
A = −0.385 , k�o = 0.468 , and Y1 = 0.132 GPa. In fact, all 
of the simulations with relatively large values of t̃cross had 
low values of Y1 , but there does not appear to be a strong 
correlation with A or k�o . We note that Piriz et al. [13] found 
a similar relationship for the time to achieve the maximum 
imperfection amplitude with linear dependence on k�o and 
1∕Y  , and their constant (0.092) was quite close to the 0.11 
value found here.

Relationship to Experiments

This examination of the tamped RMI configuration is 
intended to provide insight for future experimental studies. 
Tamped RMI experiments can be conducted on most mate-
rials, but if the experiment is intended to measure strength 
of either the driver or tamper then a few issues should be 
considered:

General Considerations

• An Atwood number that is large in magnitude provides 
the greatest flexibility in designing the experiment 
through greater spike growth. Thus, one might want to 
utilize materials that have very high or very low density. 
On the other hand, a large value of ∣ A ∣ will lead to a 
large difference between P1 and P2 as seen in Fig. 6a. 
This might be undesirable if the goal is to study the 

Fig. 12  Scaling of maximum spike velocity for 2000 realizations of 
Ta tamped by a liquid in which A, k� , and Y

1
 are randomly varied over 

the ranges given in the text. Larger blue symbols indicate that the 
spike arrested, while smaller red ones indicate that the spike did not 
arrest (Color figure online)

Fig. 13  Scaling of the time when the spike and bubble velocities are 
equal for the realizations of the ensemble where the spike arrests. 
Symbols shown in purple are cases where the spike localizes (Color 
figure online)
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strength behavior of the driver at P2 since there will be 
significant residual heating from the initial shock to P1 . 
Also, a smaller value of ∣ A ∣ will reduce the role of dam-
age in the behavior of the driver.

Driver Materials

• The driver material in the RMI should be ductile or fluid. 
Though brittle materials can behave similarly in RMI 
configurations to ductile metals, the complicated physics 
of brittle failure and post-failure behavior would make 
the interpretation of the experiment difficult.

• The strength of one of the two materials should, ideally, 
be zero (a fluid) or small and well-characterized. The use 
of a fluid is preferred, but there are constraints on that 
as discussed below. In lieu of a fluid, a soft metal that 
readily deforms can be used. Copper [26, 27] is a good 
choice since it is readily available and widely studied. 
Precious metals such as gold and platinum are attractive 
because of their high densities, ductility, and relatively 
low strength.

• If one of the materials is very, or even moderately, strong, 
design of a tamped RMI experiment can be challenging. 
Referring back to Fig. 3b, one sees that the Y = 2 GPa 
case results in little spike growth beyond the inversion for 
those values of A and k� . Thus, greater levels of strength 
will probably result in incomplete inversion unless the 
magnitude of the other parameters can be increased to 
compensate.

Tamper Materials

• As mentioned above, in an RMI strength experiment it 
is desirable to have one of the materials be a strengthless 
fluid—typically this would be the tamper. Liquids also 
have the advantage that they will conform to perturba-
tions such as those examined here. Water (1.0 g/cm3 ) or 
deuterated (heavy) water are well characterized and have 
been used in recent studies [26, 27]. The densest fluid 
at ambient conditions is mercury (13.6 g/cm3 ), though 
it presents numerous concerns for experimental work. 
Zinc chloride solution (1.88 g/cm3 ) [49], bromine (3.1 
g/cm3 ), thallium formate and thallium malonate (Clerici 
solution—4.25 g/cm3 ) [50] and liquid metal (gallium/
indium/tin/zinc—6.5 g/cm3 ) are others of intermediate 
density.

• Metals with low melting points such as Wood’s metal 
[30] have been utilized in RMI experiments because their 
low melting points would cause them to melt under shock 
loading. In fact, because they can be formed or cast into 
stable shapes, they may be more suited to experiments 
than fluids. Through casting at very modest temperatures, 
they can also conform to perturbations in the driver.

• Beyond liquids and low melting point solids, porous met-
als may be viable tamper materials. Most metal powders 
are likely to be around 50% of their crystalline density. 
If the material has a relatively low melting point and is 
soft, then the porous form will likely melt at least par-
tially when shocked. Pure metals such as tin, copper, sil-
ver, and gold would have densities of 3.64, 4.47, 5.25, 
and 9.66 g∕cm3 at 50% porosity. Utilizing an alloy (e.g. 
gold/silver) or varying the volume fraction by manipu-
lating the particle morphology or particle size distribu-
tion would add additional flexibility to tailor the tamper. 
Powdered metals will also conform to perturbations in 
the driver surface if their particle size is sufficiently small 
( d ≪ 𝜆, 𝜂o).

• For tampers less dense than water, polymer foams or even 
aerogels would be suitable, though one would need to 
ensure that the foam pore size is small compared to the 
dimensions �o and � . Such materials would likely expe-
rience large changes in density, changing A and, poten-
tially, the overall behavior. There are also a number of 
liquids that are less dense than water such as butane (0.60 
g/cm3 ). Cryogenic liquids are also a possibility though 
they would necessarily entail cold initials temperatures 
in the driver material.

Instrumentation

• The tamper material chosen has implications for the 
instrumentation that can be utilized. For example, syn-
chrotron radiation such as that available at the Advanced 
Photon Source [16] has been used to image through water 
[26] and SiO2 powder [27], but it would not penetrate any 
reasonable thickness of mercury or Wood’s metal. On the 
other hand, proton radiography [15, 28, 29] has much 
greater penetrating capability and could be used with, in 
principle, almost any tamper material.

• Water (or heavy water) and some solutions (e.g. zinc 
chloride [49]) are penetrable to light used in interfer-
ometers, though their use in this manner in tamped RMI 
experiments would likely require characterization of their 
optical characteristics. Velocity interferometry is more 
readily available than synchrotron X-rays or proton radi-
ography, but it is likely better suited to measuring umax

s
 

or tcross than arrested spike amplitude. The scaling laws 
shown in Figs. 12 and 13 for umax

s
 or tcross suggest that the 

latter quantity is more sensitive to Y. Also, because all 
points on the driver/tamper interface are moving at the 
same velocity at tcross , detailed knowledge of the optical 
properties of the tamper may be less critical. Though it 
remains to be seen if the quantity can be measured accu-
rately in experiments, the velocity records reported in 
some studies [16–18, 28] for A = −1 suggest that it may 
be possible.
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• Recovery and post mortem examination of samples has 
only been used in a few studies [6, 31–33], and only the 
studies by the LLNL group have attempted to be quanti-
tative. Further, recovery in shock experiments is fraught 
with difficulties so there is often some question about the 
states a sample experienced. Despite these issues, recov-
ery requires no special instrumentation and, in principal, 
provides complete freedom in the choice of materials 
used. Given these potential advantages, utilizing recovery 
of RMI samples merits additional study.

Conclusions and Future Work

In this study, we have examined the Richtmyer–Meshkov 
instability in a tamped configuration as a means to study the 
strength of materials under conditions of high strain rate 
and high pressure. This work extends previous studies utiliz-
ing RMI in the untamped configuration and provides useful 
information on designing such experiments. One impor-
tant finding is that the tamped configuration significantly 
reduces the role of damage by avoiding the development of 
tensile pressures. A second finding is that the vast majority 
of plastic work in the jetting driver occurs over a relatively 
small range of pressures and strain rates. This means that it 
appropriate to think of a tamped RMI experiment as prob-
ing the strength for specific conditions, and calibration to 
that condition using a simulation with an elastic-perfectly 
plastic model will provide the appropriate strength value for 
those conditions. By careful selection of the experimental 
parameters, the tamped RMI configuration should make it 
possible to map out the strength of materials as a function 
of strain rate and pressure, similar to the mapping shown 
by Prime et al. [18] using multiple experimental platforms.

We have examined the sensitivity of RMI growth to the 
parameters such as the Atwood number A, the wave param-
eter k�o , the strength of the materials, and others. We per-
formed an ensemble of simulations in which the parameters 
are varied over specific ranges. When the parameters are 
plotted in non-dimensional form, the cases in the ensemble 
where the spikes arrest collapse to a single curve. Somewhat 
different sensitivities to the input parameters were found 
when the arrested spike length and the maximum spike 
velocity were considered. Specifically, the spike length var-
ies as Y−1 , while the maximum spike velocity varies as Y−0.2 
for cases that arrest. However, by utilizing non-arresting 
cases the maximum spick velocity can be made a more sen-
sitive measure, and the ability to measure the quantity with 
velocimetry and to utilize cases where the jet does not arrest 
are attractive. An additional experimental quantity to meas-
ure, the time at which the spike and bubble velocities are 
equal, was suggested. This quantity can be measured using 
velocity interferometry, and it varies as Y−1 . It remains to be 

seen, however, if this quantity can be measured accurately 
in experiments.

To fully realize the potential of tamped RMI experiments, 
there is a need for improved understanding of potential tam-
per materials. In most of the simulations shown in “Simula-
tion Results” section, a sodium metatungstate solution is 
used. However, there are no known measurements of shock 
behavior for it, nor does any data exist for optical properties 
that might be needed in order for laser interferometry to 
be used with it. Other liquids or low-melting-point materi-
als may also prove useful as tampers, especially if one can 
handle the hazards associated with them. When utilizing 
radiography, metal powders that melt under shock loading 
seem to provide much greater flexibility than the relatively 
few high-density fluids that are known.

The focus of this study of the tamped RMI configura-
tion is its use in studying the strength of the driver material. 
However, if the behavior of the driver material is adequately 
known the configuration can be used to study the strength of 
the tamper material as has been reported by Hudspeth et al. 
[27] for SiO2 powder. Use of RMI in this manner merits 
further study to address outstanding questions. For example, 
the pressure and strain rate states experienced by the tamper 
(see Fig. 4) has not been investigated.

While we have extensively examined the case where A < 0 
( 𝜌1 > 𝜌2 ), little attention has been given to the case where 
A > 0 . This configuration may have some advantages in prob-
ing material strength due to the lack of unloading in either the 
driver or tamper. However, this configuration makes it difficult 
or impossible to monitor the interface with optical velocimetry 
and, thus, probably requires the use of radiography or recovery.

Finally, we note that something similar to the Richt-
myer–Meshkov instability involving a non-planar shock 
wave intersecting a planar interface can be realized through 
the use of a periodic “lens” as suggested by Bakhrakh et al. 
[6]. While this configuration will likely also require radiog-
raphy or recovery, it offers additional flexibility in design-
ing experiments. Further, this configuration could be used 
for samples for which it is impractical to make sinusoidal 
interfaces: e.g. very hard materials such as armor ceramics 
or high-strength steels. Such materials could be tested using 
flat samples. To date, though, this configuration appears not 
to have been used in a quantitative manner to “measure” 
material strength.
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