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A Brief History of Ejecta Physics

1950s and 1960s

There exists anecdotal evidence that ejecta research began 
in the 1950s, but little of this early research was docu-
mented publicly. In Russia, the ejecta phenomenon was 
first observed in plate impact experiments, and shown 
to be dependent on the initial surface roughness [1]. The 
Los Alamos PHERMEX radiographic facility was used to 
study the production and interaction of jets from shocked 
surfaces, starting from its very first shot in 1963 [2]. By 
1969, Bristow and Hyde [3] describe the results of a mature 
program in the UK using photographic imaging of ejecta 
processes to infer whether melt had occurred at the surface 
of shocked materials. They showed that drive nonuniform-
ity and subsurface fragmentation (spall/scabbing) were also 
contributory factors in determining the nature of ejecta 
produced.

1970s

The earliest published ejecta research was done by James 
Asay [4]. Asay went on to develop a non-radiographic 
ejecta diagnostic, the eponymous Asay foil [5]. Later, he 
developed a prescriptive model of ejecta, where he asso-
ciated the amount of mass ejected from a shocked surface 
to the volume of surface defects, the rise time of the shock 
impulse, the yield strength of the material, and the phase of 
the material on release, i.e., liquid or solid [6]; interestingly 
he also observed that ejecta production was independent 
over broad ranges to the peak loading stress P

S
. Los Ala-

mos National Laboratory (LANL) also became active in 
the development of ejecta diagnostics, as released by Hop-
son and Olinger [7].

Ejecta physics is a young field, having developed over the 
last 60 years or so. Essentially, ejecta forms as a spray of 
dense particles generated from the free surface of metals 
subjected to strong shocks, but the detailed mechanisms 
controlling the properties of this particulate ejecta are only 
now being fully elucidated. The field is dynamic and rap-
idly growing, with military and industrial applications, and 
applications to areas such as fusion research.

This Special Issue on Ejecta reports the current state of 
the art in ejecta physics, describing experimental, theoreti-
cal and computational work by research groups around the 
world. While much remains to be done, the dramatic recent 
progress in the field, some of it first reported here, means 
that this volume provides a particularly timely review.

In this foreword, we provide a brief historical overview 
of the development of ejecta physics, to define the context 
for the work in the rest of this Special Issue.
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1980s

In the 80s, more research is reported, most notably from 
France [8–12]. These were measurements of the ejecta 
source from shock loaded roughened surfaces of Ta, Sn 
and Pb-alloys. The diagnostics included soft radiography 
and the Asay foil technique. Livermore National Labora-
tory (LLNL) also reported studies of ejecta from shock 
loaded Pb [13]. In this period we also see the introduction 
of piezoelectric probes, which were developed as an alter-
native means of direct measurement of ejecta momentum 
[14]. The 80s also saw first reports on ejecta transport [15], 
models for particle drag [16] and on the dynamic sizing of 
ejecta from shock loaded materials through use of forward 
Mie scattering techniques and a streak camera [17].

By the end of the 80s, in a period of about 15 years, 
multiple ejecta source measurement techniques were in use 
(soft radiography, the Asay foil and piezoelectric probes), 
ejecta production from solids and liquids had been docu-
mented, and initial transport and sizing experiments per-
formed. This research was reported from France, the UK 
and US.

1990s

During this decade, ejecta research expanded further. Most 
notably, the first reported dynamic ejecta sizing with Holo-
graphic techniques are reported from LANL [18]. We now 
see reported research from Russia in planar and cylindrical 
geometries [1], and another report of LLNL research [19].

In [20], Cloutman developed a detailed Monte-Carlo 
numerical model for ejecta production and transport, based 
on previous work on the modeling of diesel sprays.

By the end of the 90s we now see reports of ejecta 
research from France, Russia, the UK and US. The research 
had focused on measuring the ejecta source term from 
solid- and melted-metals with radiography and Asay foils, 
the size of the source from Mie scattering and holographic 
techniques, and initial studies of ejecta transport in gases. 
An initial prescriptive source model had been proposed, but 
no physics model had emerged.

2000s

In the first decade of the 21st century, more diagnostics 
were developed, and much more work was done on the 
ejecta source and sizing of the ejecta particles. Notably, 
understanding the difference between ejecta from solid ver-
sus liquid materials became a focus, as Asay had postulated 
that liquids eject much more mass than do solids, based 
on his studies of Pb [6]. For these reasons, Sn became an 
interesting material to study given its accessible phases: 
shocks from the solid �- to the solid �-phase, and releasing 

to either the solid �-phase (P
S
≲ 19.5 GPa), a mixed solid 

liquid phase (19.5 ≲ P
S
≲ 33 GPa), a 100% liquid phase 

(33 ≲ P
S
≲ 50 GPa), or from � to liquid on shock, and 

releasing to 100% liquid when P
S
≳ 50 GPa [21].

Work at LANL validated a new ejecta diagnostic, lith-
ium niobate piezoelectric pins [22], which are compact 
and lend themselves to use in constricted geometries. The 
LANL work also began the best controlled study of the 
ejecta source. That lengthy study, which continues today, 
focussed on Sn. The work investigated the Sn ejecta source 
by varying P

S
 with supported (flyer plates/guns) and unsup-

ported (high explosively driven, HE) shock loading tech-
niques, and by varying the surface finishes [23–31].

There was of course other research at other institutions. 
For example, ejecta from materials shock loaded with a 
laser drive were reported [32], where the researchers stud-
ied fragmentation of Sn, even capturing the fragments for 
post experimental reconstruction of the size and fragmenta-
tion patterns. Another sizing diagnostic, an optical micro-
scope, was reported in [33]. Direct numerical simulation of 
ejecta production was first reported in 2004 using molecu-
lar dynamics calculations [34, 35], and in 2007 using a 
continuum code [36].

At the end of the first decade of the 21st century much 
had been learned about ejecta. Notably, the realization that 
ejecta production is a special limiting case of Richtmyer-
Meshkov instability [37, 38] (RMI) where the Atwood 
number A

t
= −1 started to have a strong influence. This had 

been known in general terms for some time, but the knowl-
edge of how to apply the physics was incomplete.

2010s

The present decade has seen the application of proton 
radiography to study RM unstable phenomena, and ejecta 
studies began to focus more on RMI physics and RMI 
ejecta models; research on RMI models is now extensively 
reported [39–42].

The implementation of further Monte-Carlo models for 
modeling ejecta flows has been reported [43–46]. Further, 
simulations of ejecta formation from the nanometer to cen-
timeter scales was also reported [42, 47]. The effects of 
shapes of the surface perturbations on the surface perturba-
tions was first reported in [6], but the 2010s also saw the 
shape of the perturbations on the ejecta source studied with 
molecular dynamics (MD) simulations [47, 48].

Studies of the ejecta source also continued, with a report 
of work on Pb [49], and more results from the LANL Sn 
work [50]. The LANL source term work was extended 
to ejecta from a second shockwave [51, 52], and the full 
LANL Sn ejecta set for supported and unsupported shock 
loading at a single finish was released [53, 54].
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The ejecta source and RM sheet breakup has also been 
studied extensively with MD simulations [55–60], and 
more research on dynamic particle sizing diagnostics is 
reported, works that includes holography and Mie scatter-
ing [61, 62].

An area of ejecta research beyond the simple ejecta 
source is now being investigated rather broadly: trans-
port [63], and the investigation of the ejecta sizes is even 
being studied with transport dynamics [64–66]. Much work 
on transport is now beginning, including ejecta breakup 
dynamics in gases [67].

Importantly, out of ejecta research evolved a new 
approach to diagnose material strength at high strains and 
strain rates. The idea was first proposed and studied with 
simulations by Piriz et al. [68, 69]. Experiments based on 
the Piriz idea with A

t
> 0, extended to the situation where 

A
t
= −1, in the ejecta regime, are reported in [40, 70], and 

since then the approach has been extensively studied [71, 
72].
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