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Abstract Solid and foamed polymeric materials demon-

strate a significant increase in stiffness with increasing

deformation rate, and existing hyper-viscoelastic constitu-

tive formulations are often limited in applicability across

large ranges of deformation rate and finite deformations.

The development of micro-level pore-based foam models

requires the mechanical properties of the constituent non-

porous material coupled with efficient and representative

constitutive models. In this study, the mechanical proper-

ties of non-porous polychloroprene were measured at low

deformation rates using a conventional hydraulic test

apparatus and at high deformation rates using a polymeric

split Hopkinson pressure bar apparatus. A constitutive

model was developed using an additive formulation to

describe the hyper-viscoelastic material response for large

deformations and a range of deformation rates from quasi-

static (0.001 s-1) up to 2700 s-1. The material coefficients

were determined using a constrained optimization tech-

nique that simultaneously fit all of the data, and iterated to

determine the required number of material constants. The

constitutive model was implemented into an explicit finite

element code and accurately predicted the response of non-

porous polychloroprene rubber (R2 = 0.996) over the

range of tested strain rates. Importantly, the finite element

implementation minimized the required computational

storage, addressing limitations in existing constitutive

models, and was computationally efficient, which was

necessary for the large finite element micro-scale

simulations of foamed polychloroprene undertaken in a

follow-on study.
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model � Large deformation � High strain rate � Split
Hopkinson pressure bar

Introduction

Many materials demonstrate nonlinear response over large

deformations and a significant increase in stiffness with

increasing deformation rate, which are important consid-

erations for analysis and design in energy absorption

applications and impact problems [1]. Measuring the

mechanical properties of low impedance materials such as

polymers at high deformation rates is therefore important

[2], and must be supported by representative constitutive

models for use in advanced modeling techniques such as

the finite element method to evaluate materials and

designs. Although mechanical testing techniques exist for

soft or low impedance materials, the accurate measurement

of mechanical properties requires appropriate sample

geometry and test methods [3, 4]. The mechanical response

of a polymer to an applied load is often described in terms

of the elastic (instantaneous) and time dependent (vis-

coelastic) response [5–7]. Ultimately, the stress at any

point in a material can be a function of strain, strain rate

and strain history (path dependent materials). For small

deformations and a modest range of strain rates, linear

treatments of the elastic and viscoelastic response are often

sufficient to describe material response. Larger deforma-

tions have commonly been addressed through the use of

hyperelastic descriptions [8, 9] coupled to linear
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viscoelastic formulations using a superposition approach

(quasi-linear viscoelasticity or QLV) [10]; however, when

the deformations are large ([50 %) and the strain rates

span multiple decades (less than 0.1 s-1 to greater than

1000 s-1) these models are not sufficient to describe the

significant nonlinearities in the material response. Large

deformation and a wide range of deformation rates are

often encountered in impact scenarios where materials may

be used for energy absorption and this is an important

consideration in representing materials in models to sup-

port analysis and design.

The motivation for the current study was to characterize

non-porous polychloroprene rubber so that these properties

could be used to predict the behavior of porous, foamed

polychloroprene at the micro-scale as part of a larger study

on the deformation mechanics of hyperelastic porous

media. This aspect is further discussed in Part II of this

study. To address this complex topic, a constitutive model

was required to address large deformations over a wide

range of strain rates, followed by implementation of this

model in a finite element code capable of incorporating

fluid/structure analysis to include the effect of nitrogen in

the foamed material. It was determined that existing vis-

coelastic and quasi-linear viscoelastic models could not

accurately represent the material response over the mea-

sured range of deformation and deformation rates. Imple-

mentation of a constitutive model in a finite element code

is often the ultimate goal of model development, but is

often not undertaken due to the significant level of effort

since many models are not developed for this purpose.

Therefore, the objectives of Part I of this study were to:

measure the mechanical properties of non-porous poly-

chloroprene rubber across a range of deformation rates and

large deformations, develop a descriptive constitutive

model, determine the constitutive model parameters, and

validate the constitutive model for use in an explicit finite

element model.

Background

Experimental Testing

In impact scenarios involving large deformations it is

particularly important to characterize a material over a

representative range of strains, which can be as high as

80–95 % engineering strain [3, 11, 12], to ensure the model

is predictive. The measurement of mechanical properties

for low impedance materials presents several challenges

including representative sample size, achievement of

dynamic equilibrium (uniform deformation) within the

specimen, and minimizing radial inertia effects [3]. For this

study, low (up to 0.1 s-1) and intermediate (*10 s-1)

deformation rate testing was undertaken on a hydraulic test

apparatus, while high deformation rate testing

(*2700 s-1) was undertaken using a polymeric split

Hopkinson pressure bar (PSHPB) apparatus, which is often

used for compression testing of low impedance materials

[3, 11–14]. The apparatus comprises three 25.4 mm

diameter acrylic bars. The incident and transmitter bars

were 2.4 m in length with 1000 X semi-conductor strain

gauges [3] located at the bar mid-points. The striker bar

was 710 mm in length, to avoid wave superposition effects

in the incident and transmitted bar signals. Although

polymeric bars are known to result in wave attenuation and

dispersion [12, 15], this can be readily addressed using

viscoelastic wave propagation methods. In this study, the

experimental method of Bacon [16] was used with a one-

dimensional wave propagation analysis [3, 14] to deter-

mine a set of wave propagation coefficients. Although

other methods have been used to address the challenges of

testing low impedance materials with metallic bars

including pulse shaping [17] and load cells mounted at the

bar ends the current study used a PSHPB apparatus. The

primary benefits of the polymeric bars include a longer

load application or rise time (*115 ls compared to

*10 ls for metallic bars) to allow for equilibrium of the

sample and achieve uniform deformation, an improved

impedance match with the test sample compared to

metallic bars resulting in an improved measured signal to

noise ratio, and a large striker bar length allowing for large

deformations to be attained.

Hyper-viscoelastic Constitutive Model

Viscoelastic or deformation rate effects are often modeled

through the superposition of the viscoelastic stress contri-

bution (rvij) to the hyperelastic Cauchy stress (reij) (Eq. 1)

and this has been implemented in many finite element

codes including explicit time domain (e.g. LS-Dyna [6])

and implicit finite element codes (e.g. Abaqus [7]).

rij ¼ reij þ rvij ð1Þ

The hyperelastic (nonlinear elastic) response can be

described by many different forms [18] such as the Ogden

model (Eq. 2).

seii ¼ Jreii ¼ ki
oW

oki
¼

XNk

k¼1

lk ~kaki � 1

3
ak

� �
þ p ð2Þ

where:

ak ¼ ~kak1 þ ~kak2 þ ~kak3 : ð3Þ

In the previous equation, k is the stretch, l and a are

material constants that number from 1 to Nk and p is an

arbitrary volumetric pressure term. The number of material
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constants, Nk, are determined by the algorithm used to fit

the material model to the experimental data and are usually

limited to three. Including viscoelastic or strain history

effects in numerical codes can be challenging due to the

strain path dependency of the material and was primarily

enabled by the development of the convolution integral

(Appendix 1, [19]) (Eq. 4). The approach used for imple-

mentation in an explicit or time-domain finite element

code, is described as:

rvij ¼
XNk

k¼1

2ck

Z t

0

e�bk t�/ð Þ de
dev
ij

d/
dt ð4Þ

where the deviatoric strains are given by:

edevij ¼ eij �
1

3
eijdij: ð5Þ

The numerical implementation of Eqs. 4 and 5 use a

Prony series approximation for the relaxation function,

where c is a constant as described in Appendix 1.

The primary issue with these models is the inability to

predict the strain rate sensitivity of rubber–like materials

through the convolution integral alone. As discussed by

Malvern [20], the convolution integral provides a ‘‘fading

memory’’ which acts over a period of time similar to that of

a stress relaxation or creep test. In this study, the Ogden

model was used to describe the hyperelastic component.

Although this model is often presented with an additive

viscoelastic Prony Series as described in Appendix 1, ini-

tial investigations determined that this method could not

adequately model the material response over the large

range of strain rates considered. Yang et al. [5] developed a

model to account for higher loading rates based on the

summation of a hyperelastic Mooney–Rivlin model [9] and

a modifier on the convolution integral. The form of the

viscoelastic contribution was defined as:

rv ¼ �pv þ F tð Þ � X
t

/¼�1
C /ð Þf gFT tð Þ ð6Þ

where X is a functional describing how the strain history

acts upon the stress, and pv is an arbitrary pressure. They

assumed this functional to be of the form

X
t

/¼�1
C /ð Þf g ¼

Z t

�1
U I1; I2ð Þm t � /ð Þ _Ed/ ð7Þ

where the strain rate, _E, is given by

_E ¼ 1

2
_F
T � Fþ FT � _F

� �
: ð8Þ

The function, U, was assumed to be:

U ¼ A4 þ A5 I2 � 3ð Þ ð9Þ

where I2 is the second invariant of stretch and A4, A5 are

material constants. The function m is defined as a Prony

series with one coefficient. Through the combination of the

Mooney–Rivlin hyperelastic model and the viscoelastic

addition, Yang et al. were able to obtain reasonable fits to

data at high rates of strain for two similar rubbers. How-

ever, the implementation of the model in Yang et al. was

limited by their choice of a Prony series with only one

coefficient. Additionally, their model required storage of

the entire deformation gradient (9 variables) as well as the

six stress components (15 memory locations for each ele-

ment), which is computationally prohibitive for large finite

element models. For example, the 570,000 element model

presented in the second part of this study requires 8.6

million storage locations, compared to 3.4 million for the

present model, which must be accessed for each compu-

tational cycle.

The constitutive model that was developed for the cur-

rent study sought to address the limitations seen by the

relative insensitivity of the linear viscoelastic constitutive

models to deformation rates that are commonly available in

commercial finite element codes, as well as the storage

limitation in the model proposed by Yang et al.

Methods

Mechanical Testing of Polychloroprene

Mechanical testing was undertaken on samples of a poly-

chloroprene rubber, a cross-linked elastomer (Rubatex

LLC), over a wide range of strain rates (0.001–2700 s-1).

Test samples were manufactured using a special cutting

technique, required to achieve consistent samples due to

the flaccid nature of the material. A custom sharpened

coring tool (10 mm in diameter, Fig. 1a) in a milling

machine was used to cut cylindrical samples from the

original sheet material at a feed rate of 3.75 mm/s with the

tool spinning at 1500 rpm. Distilled water was used as a

lubricant in order to reduce friction between the tool and

material, which could otherwise lead to non-uniform

sample geometry. The specimens were then cut to the

desired length (4 mm) by placing them into a custom fix-

ture (Fig. 1b). The hole in the fixture was slightly smaller

than that of the sample creating a small interface force to

hold the sample in place while cutting with a sharp utility

knife. Again, distilled water was used as a lubricant to

minimize friction and generate samples with parallel faces.

Mechanical testing was undertaken to measure the

compressive mechanical properties using two different test

apparatus to obtain the desired strain rates. A quasi-static

testing apparatus (Fig. 2) comprising a standard hydraulic

test frame with a Model 407 controller (MTS, MN, USA)

was used in displacement control mode to obtain high

resolution data in the lower strain rate regime of
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0.001–10 s-1. Load was measured with a 2225 N (500 lbf)

load cell (Strain Sert, model FL05U(C)-2SP); necessary to

provide appropriate measurement resolution for this low

stiffness material, and displacement was accurately mea-

sured using a linear variable differential transformer

(LVDT) (Omega, type LD-320-7.5) which was capable of

measuring engineering strains up to 80 %. The specimen

was compressed between two parallel aluminum platens

that were lapped after machining to ensure a smooth sur-

face and lightly lubricated with lithium-based grease. The

time that the specimen was in contact with the grease was

minimized to prevent any effect on the material, but was

necessary to prevent barreling or non-uniform deformation

of the specimen. Three test samples at each strain rate were

found to be sufficient since the material demonstrated rel-

atively low variability.

The dynamic experiments were performed using a

PSHPB apparatus [3, 14]. The bars were made from acrylic

(PMMA) to provide good impedance match with the poly-

chloroprene rubber. The ends of the bars were lubricated

with a thin layer of high pressure lithium grease, which was

necessary to minimize frictional effects and prevent bar-

reling of the sample during the test. Tests were conducted

within 1 min of placing the sample in contact with the

lubricant. A custom fixture was used to align the sample with

the center of the bars to minimize any off-axis loading. From

previous testing on RTV rubbers [21] and ballistic gelatin

[3], it was determined that a specimen length of 4 mm was

suitable for the characterization of this material. In order to

prevent any preloading of the samples, the gap between the

bars was set to the measured gauge length of the sample

using precisely machined slip gauges. This allowed the bars

to contact the sample without preloading it.

Dynamic equilibrium in the samples was evaluated

using the measured forces at end of the incident and

transmitted bars determined from the incident, transmitted

and reflected strain waves (Fig. 3). The waves were prop-

agated to the bar ends using experimentally determined

wave propagation coefficients [3, 14] and the bar end for-

ces were calculated from these waveforms (Fig. 4). The

forces at the bar ends coincide well during the loading

section of the curve from 0 to 0.0012 s up to the peak load

in the test. It can be seen that the forces begin to diverge

later in time, particularly after 0.0014 s; however, this

occurs during the unloading phase and is beyond the region

of interest in the test (e.g. following the peak load). A

minimum of three samples were tested at each strain rate

and the results were averaged for the data analysis,

described in detail below. It should be noted that the quoted

strain rates are nominal values since the strain rate did vary

over the duration of the test; however, the actual strain rate

history was used when computing the specimen response

and fitting the material models developed in this study.

Fig. 1 a Coring tool for

cylindrical samples, b sample

length cutting fixture

Sample

LVDT

Plattens

Actuator

Fig. 2 Quasi-static compressive test apparatus with sample
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Fig. 3 Typical incident, reflected and transmitted waves for a

dynamic test (2700 s-1)
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Hyper-viscoelastic Constitutive Model Development

The constitutive models described previously were inves-

tigated with the measured mechanical data, but were lim-

ited in their ability to model the entire strain and strain rate

range considered. The primary limitation was the inability

for QLV to match the material response across the wide

range of strain rates in the measured experimental data, and

the large memory requirements for other nonlinear meth-

ods. To address these limitations, an additive approach was

investigated, combining the Ogden hyperelastic constitu-

tive model and incorporating viscoelasticity through the

convolution integral, combined with a Rivlin-type series

modifier to account for non–linear effects (Eq. 10) based

on the invariants of the stretch tensor on a principal basis.

The selection of this approach was based on investigation

of the available models for the experimental data, and

considering several different possible forms for the con-

stitutive model, not presented here for brevity.

X1

i¼0;j¼0;k¼0

Aijk I1 � 3ð Þi I2 � 3ð Þ j I3 � 3ð Þk; A000 ¼ 0 ð10Þ

Rewriting Eq. 22 (Appendix 1) in terms of the principal

viscoelastic stresses, svii (here the Kirchhoff stress is used

instead of the Cauchy stress where s = Jr), principal

stretches, ki, and including the modifier terms gives:

svii tð Þ ¼
Z t

�1
CG t � /ð Þ dki tð Þ

d/
d/þ pv (no summation)

ð11Þ

where pv is the viscoelastic contribution to the arbitrary

pressure and the modifier, C, is given as:

C �
X

Apqr I1 � 3ð Þp I2 � 3ð Þq I3 � 3ð Þr ð12Þ

Here p, q and r each range from 0 to the number of terms

required in the fit to the material data. The third invariant,

I3, is approximately equal to 1 for an incompressible

material and so the last term in Eq. 12 was not included.

Therefore, Eq. 12 can be expressed as

C �
X

Apq I1 � 3ð Þp I2 � 3ð Þq ð13Þ

which, when expanded, gives:

C ¼
X

Apq I1 � 3ð Þp I2 � 3ð Þq

¼ A00 þ A01 I2 � 3ð Þ þ A02 I2 � 3ð Þ2þA10 I1 � 3ð Þ
þ A11 I1 � 3ð Þ I2 � 3ð Þ þ � � �

ð14Þ

Following the evolution of the time marching technique

to solve the convolution integral (described in Appendix 1)

the increment in viscoelastic stress (Eq. 32, Appendix 1),

can be written as:
Z tþDt

t

CG t þ Dt � /ð Þ dki /ð Þ
d/

d/

¼
XNk

k¼1

C
ck
bk

ki t þ Dtð Þ � ki tð Þ
Dt

1� e�bkDt
� �

ð15Þ

The history variable (Eq. 36, Appendix 1), was then

given as:

XNk

k¼1

Hk tð Þ �
Z t

0

C
XN

k¼1

cke
�bk t�/ð Þ dki /ð Þ

d/
d/ ð16Þ

As with Eq. 38 (Appendix 1), Eqs. 15 and 16 were

combined to give

svii t þ Dtð Þ ¼
XNk

k¼1

e�bkDtHk tð Þ þ C
ck
bk

ki t þ Dtð Þ � ki tð Þ
Dt

1� e�bkDt
� �� 	

þ pv no summationð Þ

ð17Þ

The total state of stress was then determined using

Eq. 17 with Eq. 2 through the linear sum sTii ¼ seii þ svii (no
summation). The total principal stresses were expressed as

sTii t þ Dtð Þ ¼ seii þ svii (no summation)

¼
XNd

d¼1

ld ~kadi � 1

3
ad

� �
þ p

þ
XNk

k¼1

e�bkDtHk tð Þ þ C
ck
bk

ki t þ Dtð Þ � ki tð Þ
Dt

1� e�bkDt
� �� 	

þ pv

ð18Þ

where p and pv are scalars which can be summed as pT to

give:
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Fig. 4 Force–time curves for a dynamic test demonstrating

equilibrium

J. dynamic behavior mater. (2015) 1:237–248 241

123



sTii t þ Dtð Þ ¼
XNd

d¼1

ld ~kadi � 1

3
ad

� �

þ
XNk

k¼1

e�bkDtHk tð Þ no summationð Þ

þ C
ck
bk

ki t þ Dtð Þ � ki tð Þ
Dt

1� e�bkDt
� �

þ pT :

ð19Þ

The general solution procedure for Eq. 19 used a time

marching technique as described in Appendix 2, which was

beneficial for implementation into an explicit finite element

program. A material subroutine was written, verified and

used in the data analysis and curve fitting. It should be

noted that after the total principal stresses are calculated

using Eq. 19, the stresses are rotated back to the standard

basis using sij ¼ sininj (summation in force). However, in

the case of uniaxial tests the principal and standard bases

are the same so rotation is not necessary in this specific

case.

Constitutive Model Parameter Estimation

Non-linear models, such as that proposed in Eq. 19, require

specific care and data processing to accurately estimate the

material constants. Prior to determining the constants for

the constitutive model, the experimental data was manip-

ulated into a form that was compatible with the constitutive

model. The deformation tensor Fij for the uniaxial case

assuming incompressibility can be written as

Fij ¼
k1 0 0

0 k�1=2
1 0

0 0 k�1=2
1

2
4

3
5 ð20Þ

Using Eqs. 17 and 19, and the fact that the stresses

s22; s33 ¼ 0 since the tests are uniaxial, the arbitrary

pressure, pT, can be calculated as follows: at each time step

the principal stretches, ki, are determined from the defor-

mation gradient, then the material constants l; a; k and b
are known along with the history variable Hk which is

available from the previous time step. Since the total

principal stresses s22; s33 are equal to zero, Eq. 19 can be

rearranged to give:

pT ¼�
XNd

d¼1

ld ~kadi � 1

3
ad

� �

�
XNk

k¼1

e�bkDtHk tð Þ � C
ck
bk

k2 t þ Dtð Þ � k2 tð Þ
Dt

1� e�bkDt
� �

:

ð21Þ

If the arbitrary hyperelastic and viscoelastic pressure

components are desired, they can be solved for individually

using a similar analysis. It should be noted that this

pressure is arbitrary and does not necessarily represent the

actual pressure within the material due to the incompress-

ibility assumption. Given that the bulk modulus of the

material greatly exceeded the stresses created in the

material during testing, neglecting compressibility was

considered valid.

The data from each experimental test was resampled in

such a manner to ensure that equal spacing between stretch

points was achieved as well as equal numbers of points for

each curve. The data was manipulated to this form to

prevent biasing of the coefficients to one of the curves or

one area of a particular curve (i.e. if one of the six curves

used had 1000 points instead of 100, when the fitting of the

material constants was performed, the coefficients would

be biased towards the curve with 1000 points). Similarly, if

one area of a curve had more points (for example 1000

points between stretches of 1 to 0.8 and 100 points from

0.79 to 0.2) the coefficients would be biased towards that

area.

Several challenges were encountered when attempting

to use conventional linear regression fitting procedures

such as those found in commercial programs (e.g. [22]).

The difficulty was in the determination of the convolution

integral, which as discussed in the previous section,

requires a time marching approach that does not lend itself

to common approaches and so specialized programs are

required for parameter fitting [23]. To address this

requirement, a program was written in MATLAB [24] to

calculate the material parameters using constrained opti-

mization techniques. This technique was based on an

approach where the difference between all of the experi-

mental curves and predicted curves was minimized

simultaneously, while ensuring that the coefficients of the

material model remained positive, as required from the

derivation. An iterative approach including changing the

number of material constants was performed to optimize

the number of parameters and their values for the consti-

tutive model. A discussion of the optimization technique

and the methodology for choosing the initial values for the

material constants parameters can be found in [25].

Results and Discussion

Mechanical Compression Test Results

A minimum of three tests were performed at each strain

rate and the data was resampled to give equal increments in

strain so that an average curve for each strain rate could be

created, since this was required for the constitutive model

parameter estimation. The mechanical test data was found

to be very consistent between samples at the same strain

rate, with examples shown in Fig. 5 (0.001 s-1) and Fig. 6
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(2700 s-1). Only minor deviations from the average curve

were noted at lower strain rates (0.001–7.9 s-1). The tests

performed at 2700 s-1 (Fig. 6) demonstrated the largest

spread between tests; however, the data was considered

very consistent up to a compressive stretch of 0.4.

The polychloroprene rubber investigated in this study

demonstrated a dependence on strain rate over the entire

loading history, as shown in the resulting average curves

(Fig. 7). This is further highlighted (Fig. 8) when consid-

ering stress values at different values of stretch versus

strain rate, plotted on a logarithmic scale. As the strain rate

increased from 0.001 to 2700 s-1, the resulting stress

values increased from -1.75 to -15.5 MPa at a stretch of

0.4. Similarly, at a stretch of 0.2 the stress increased from

-8.75 to -74.25 MPa over the same increase in strain rate.

Additionally, the polychloroprene rubber exhibited a non–

linear viscoelastic effect (Fig. 8) since the values of stress

did not increase linearly with the logarithm of strain rate.

Constitutive Model Parameter Determination

and Comparison

Table 1 shows the results for the maximized coefficient of

determination or R2 value for the experimental tests con-

ducted. As indicated in the table, an excellent R2 value of

0.9962 was achieved using the constitutive model. This

result was achieved with one set of Ogden parameters, two

nonlinear modifier terms and five sets of Prony series

constants, where the b parameters span six decades ranging

from 10-7 to 10-1, corresponding to the strain rate range of

the experimentally measured data. It should be noted that,

commonly, one set of Prony series constants is used for

each decade in time corresponding to the deformation rate.

However, enforcing additional parameters did not improve

the curve fit and was therefore the number of parameters

optimized by the algorithm was used.

Figure 9 shows the experimental data and the results

from the constitutive model for the six strain rates. In

general there was a good correspondence between the

constitutive model and the experimental data over the

tested strain rates. At rates between 0.001 and 0.1 s-1 the
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Fig. 6 Stress–stretch response for polychloroprene rubber (2700 s-1)
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the strain rates tested
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data was well modeled with a slight under prediction of the

stress at stretches of approximately 0.2. Similarly, at 1 s-1

the stress was slightly over predicted at large deformations.

For the 7.9 s-1 case the stress was slightly under predicted

at stretches between 0.65 and 0.2. There was an excellent

correspondence at 2700 s-1 with only very minor devia-

tions of the model from the data. The R2 value for each

strain rate range was calculated to further illustrate the

excellent correspondence between the experimental and

constitutive model. As indicated in Table 2, the relative R2

values ranged from 0.9937 to 0.9996 for the 7.9 and

2700 s-1 cases respectively. The average of the R2 values

was 0.9962 (Table 2). As a test of the optimization solver,

the analysis was rerun with the same initial guesses as

recommended in Ref. [26]. Additionally, the optimization

analysis was rerun with the constants in Table 1 as the

initial guess. In both cases, the same set of parameters and

R2 value was identified by the algorithm.

Numerical Implementation of the Constitutive

Model

A user material model subroutine was written to incorpo-

rate the constitutive model into a commercial non-linear

explicit finite element program (LS-Dyna, LSTC [6]). To

verify the material model, single element simulations were

conducted and the output compared to the results of the

constitutive model and experiments using a cubic single

solid element model with unity dimensions. Displacement

constraints were applied to the element as shown in Fig. 10

where the red arrows indicate that the nodes had fixed

coordinates and the experimental displacement history was

applied to the nodes indicated by the open black arrows in

the x-direction. The experimental displacement history was

scaled to account for the unity element dimensions so that

the strain rate was maintained for the six single element

simulations. The stress and stretch for the unit element was

recorded for each of the simulations. The material model

parameters used were those determined previously for the

best R2 case.

In general, there was excellent correspondence between

the numerical and constitutive model results (Fig. 11).

There are some slight oscillations in the range of

±0.1 MPa for the numerical results for the 0.001–1 s-1

cases which were a result of the time scaling approach used

Table 1 Constitutive model material parameters

Best fit R2 = 0.99615

Number of Ogden coefficient sets: 1

Number of Prony series coefficients sets: 5

Number of modifier terms: 2

l1 = 199.7 (kPa) a1 = 1.118 (–)

c1 = 43.61 (kPa) b1 = 5.26E-07 (ms-1)

c2 = 6.381 (kPa) b2 = 2.38E-04 (ms-1)

c3 = 88.08 (kPa) b3 = 0.141 (ms-1)

c4 = 123.3 (kPa) b4 = 0.2478 (ms-1)

c5 = 147.9 (kPa) b5 = 0.2181 (ms-1)

A00 = 11.02 (–)

A01 = 94.42 (–)
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Fig. 9 Experimental data and constitutive model for the optimized R2

case

Table 2 Individual R2 com-

parison of experimental curves

to constitutive model

Strain rate (s-1) R2 (–)

0.001 0.99698

0.01 0.99707

0.1 0.99580

1 0.99373

7.9 0.99370

2700 0.99962

Average 0.99615

y
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z
z displacement constraint
y displacement constraint
x displacement constraint

applied displacement

Fig. 10 Schematic of the simulations performed on the single solid

element
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and the explicit nature of the numerical algorithm. To

further highlight the accuracy of the numerical models, the

R2 value for each curve was calculated between the

experiment and numerical models (Table 3) and ranged

from 0.9974 for the 1 s-1 case to 0.9999 for the 2700 s-1

with an average of 0.9983 for all cases demonstrating

excellent agreement.

Summary

The objectives of this study were to: measure the

mechanical properties of non-porous polychloroprene

rubber across a range of strain rates, determine the

parameters for a representative constitutive model and

implement and validate the constitutive model for use in a

large explicit finite element model. These developments

were essential to support the second phase of this study

investigating the mechanical response of porous poly-

chloroprene rubber at the micro-scale. The constitutive

model formulation developed in this study offers several

advantages over currently available models. As noted by

Ogden [8], the use of principal stretches highlights the

isotropic nature of the elasticity of the material and

through the use of invariants in the modifier term, the

material maintains its objectivity and no further rotations,

outside of those already required by the Ogden material

model, need to be considered. It was shown that the model

is capable of representing the mechanical behavior of

rubber to very small compressive stretches (as low as 0.2,

or 80 % compressive engineering strain). When imple-

mented into finite element programs, the deformation

gradient, F, is often available whereas _F as required by

the implementation in Eq. 8 requires further calculation

[6] and additional memory storage (an additional nine real

numbers), which was computationally prohibitive for the

large finite element calculations undertaken in Part II of

this study and addressing a limitation of existing models

(e.g. Yang et al.). Additionally, Yang et al.’s assumption

of only one coefficient for the Prony series was an arbi-

trary choice for ease of computation and the more general

approach presented in this manuscript provided a more

accurate representation of the properties for the poly-

chloroprene. Rather than assuming the number of Prony

series constants as was done in Yang et al., an iterative

approach was taken to determine the number of coeffi-

cients required to accurately represent the material data.

Limitations of the present method include fitting only to

uniaxial test data and the direct use of a Prony series,

rather than a physically representative model. However,

since the goal was to implement the model in a numerical

code, a Prony series approach was required and therefore

was directly pursued.

Finally, the use of principal stretches in both the

hyperelastic and viscoelastic stress contributions required

the storage of three components compared to that of the

standard implementation in finite element codes which

requires the storage of six components (assuming sym-

metry) further reducing the memory requirement and pro-

viding a model that was self-consistent.

Material parameters were determined using a nonlinear

optimization technique and the overall coefficient of

determination or R2 value was 0.9962, indicating that the

constitutive model was capable of representing the material

response over a large range of strain rates and stretches.

This model was implemented into an explicit finite element

program and the results were validated using single ele-

ment models (R2 = 0.9983) demonstrating the ability of

the numerical implementation to represent larger defor-

mations and a wide range of strain rates, an essential

requirement for the second part of this study concerning

micro-scale modeling of porous polychloroprene rubber.
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Fig. 11 Results of the single element numerical model compared to

the constitutive model for the best R2 case

Table 3 Individual R2 com-

parison of constitutive model to

numerical model

Strain rate (s-1) R2 (–)

0.001 0.99758

0.01 0.99661

0.1 0.99816

1 0.99741

7.9 0.99982

2700 0.99993

Average 0.99825
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Appendix 1: General Discretization
of the Convolution Integral

Recursive techniques can be used to solve the convolution

integral of the type F tð Þ ¼
R t

�1 k t � /ð Þ du
dt

/ð Þd/ using a

numerical time marching approach [27, 28]. This can be

explained through investigation of a generic convolution

integral as that given by

B tð Þ ¼
Z t

�1
G t � /ð Þ dA /ð Þ

d/
d/ ð22Þ

where, for this section only B and A can be stress and

strain quantities respectively (written in a one dimensional

form here) and G is an independent function of time. It is

usually assumed that the deformation starts at time zero

resulting in

B tð Þ ¼
Z t

0

G t � /ð Þ dA /ð Þ
d/

d/ ð23Þ

If a time marching technique is used and we take an

increment in time Dt, Eq. 23 becomes

B t þ Dtð Þ ¼
Z tþDt

0

G t þ Dt � /ð Þ dA /ð Þ
d/

d/ ð24Þ

which can be split into the two intervals 0; t½ � and

t; t þ Dt�ð resulting in

B t þ Dtð Þ ¼
Z t

0

G t þ Dt � /ð Þ dA /ð Þ
d/

d/

þ
Z tþDt

t

G t þ Dt � /ð Þ dA /ð Þ
d/

d/

ð25Þ

The kernel function, G t þ Dt � /ð Þ, can be approxi-

mated by a Prony series,
PNk

k¼1

cke
�bk tþDt�/ð Þ where Nk is the

number of terms in the Prony series. The second term in

Eq. 25 is then written as
Z tþDt

t

G t þ Dt � /ð Þ dA /ð Þ
d/

d/

¼
XNk

k¼1

ck

Z tþDt

t

e�bk tþDt�/ð Þ dA /ð Þ
d/

d/ ð26Þ

where ck and bk are constants. Using the exponential

property ec aþbð Þ ¼ ecaecb, Eq. 26 becomes

XNk

k¼1

ck

Z tþDt

t

e�bk tþDt�/ð Þ dA /ð Þ
d/

d/

¼
XNk

k¼1

ck

Z tþDt

t

e�bk tþDtð Þebk/
dA /ð Þ
d/

d/ ð27Þ

Applying the mean value theorem to Eq. 27 to extract

the A term from the integrand results in

XNk

k¼1

ck

Z tþDt

t

e�bk tþDtð Þebk/
dA /ð Þ
d/

d/

¼
XNk

k¼1

ck
dA nð Þ
d/

Z tþDt

t

e�bk tþDtð Þebk/d/ ð28Þ

where n 2 t; t þ Dt½ �. The integral can now be evaluated to

give

XNk

k¼1

ck
dA nð Þ
d/

Z tþDt

t

e�bk tþDtð Þebk/d/

¼
XNk

k¼1

ck
dA nð Þ
d/

e�bk tþDt�/ð Þ

bk

� 	






tþDt

t

ð29Þ

which simplifies to

¼
XNk

k¼1

ck
bk

dA nð Þ
d/

1� e�bkDt
� �

ð30Þ

If d/ is sufficiently small and equal to Dt; dA=d/ can

be approximated linearly by

dA

d/
¼ A t þ Dtð Þ � A tð Þ

Dt
ð31Þ

and finally Eq. 29 becomes
Z tþDt

t

G t þ Dt � /ð Þ dA /ð Þ
d/

d/

¼
XNk

k¼1

ck
bk

A t þ Dtð Þ � A tð Þ
Dt

1� e�bkDt
� �

ð32Þ

which can be implemented into a time marching

numerical approach.

Similarly, if we apply the Prony series approximation

for the first term of Eq. 25 we get

Z t

0

G t þ Dt � /ð Þ dA /ð Þ
d/

d/ ¼
XNk

k¼1

Z t

0

cke
�bk tþDt�/ð Þ dA /ð Þ

d/
d/

ð33Þ

separating the exponential terms results in

¼
XNk

k¼1

Z t

0

cke
�bk t�/ð Þe�bkDt

dA /ð Þ
d/

d/ ð34Þ

which rearranged becomes

¼
XNk

k¼1

e�bkDt
Z t

0

cke
�bk t�/ð Þ dA /ð Þ

d/
d/: ð35Þ

If we substitute a Prony series, given by
PNk

k¼1

cke
�bk t�/ð Þ,

into Eq. 23 we get
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B tð Þ ¼
R t

0

PNk

k¼1

cke
�bk t�/ð Þ dA /ð Þ

d/
d/

�
PN

k¼1

Hk tð Þ
ð36Þ

where Hk tð Þ is defined as a history variable for each k and

Hk 0ð Þ ¼ 0. Substituting this result into Eq. 33 results in

Z t

0

G t þ Dt � /ð Þ dA /ð Þ
d/

d/ ¼
XNk

k¼1

e�bkDtHk tð Þ: ð37Þ

Substituting Eqs. 32 and 33 into Eq. 25 gives the

recursive formula

B t þ Dtð Þ ¼
XNk

k¼1

e�bkDtHk tð Þ

þ ck
bk

A t þ Dtð Þ � A tð Þ
Dt

1� e�bkDt
� �

: ð38Þ

Using a time marching approach, one can then evaluate

B t þ Dtð Þ using the values of A at t and t þ Dt and the

history variable Hk at t along with the constants ck and bk
where k ¼ 1 to Nk.

There are different variations of the convolution in the

literature which lead to different formulations. For instance

rviscoelastic ¼
Z t

0

gijkl t � /ð Þ d�kl /ð Þ
d/

d/; ð39Þ

relates Cauchy stress to true (logarithmic) strain,

Sviscoelastic ¼
Z t

0

Gijkl t � /ð Þ dE /ð Þ
d/

d/; ð40Þ

relates 2nd Piola-Kirchhoff stress to Green’s strain,

rviscoelastic ¼
Z t

0

g t � /ð Þ dr � /ð Þ½ �
d/

d/; ð41Þ

as implemented in the modified quasi-linear form by

Fung. Although Gijkl and gijkl are 4th order tensor quanti-

ties, they can be decomposed into scalar functions which

act on the deviatoric and hydrostatic components.

Appendix 2: General Stress Update Procedure

The general solution procedure used a time marching

technique as follows. At the current time increment

(n) with time step dt:

1. Given Fij solve for the principal stretches (eigenvalues)

ki ¼ U
p
ii and the principal directions (eigenvectors).

2. Calculate the principal hyperelastic Kirchhoff stresses,

seii, via Eq. 2 using ki and material coefficients.

3. Calculate principal invariants of U so that

I1 ¼ tr Uð Þ ¼ k1 þ k2 þ k3

I2 ¼
1

2
trUð Þ2�tr U2

� �h i

¼ k1 þ k2 þ k3ð Þ2� k21 þ k22 þ k23
� �

4. Calculate viscoelastic modifier, (Eq. 13).

5. Use recursive techniques to solve convolution integral

as follows (note that the history variables are set to

zero at the start of the calculation):

(a) (a) Calculate the stretch rate

_ki ¼
kni � kn�1

i

Dt
:

(b) Calculate the increment for each Prony series

coefficient and each direction (Eq. 16). These

are the new history variables.

(c) Store the new history variables and new princi-

pal stretches for the next time step.

(d) Calculate the increment in viscoelastic stress for

each direction (Eq. 17) by summing the new

history variables calculated in step 5b.

6. Sum the principal elastic and principal viscoelastic

stresses to obtain the total principal stresses, i.e. sTii ¼
seii þ svii (no summation on subscripts).

7. Calculate the dyadic product of the principal direction

vectors, ninj.

8. Calculate the Cauchy stress via rij ¼ siininj=J.

Note that in the above procedure r � s since J � 1.
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