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Abstract
In this paper, the governing nonlinear ODE of the suspended stiffened catenary is reinvestigated. It is shown that strong 
nonlinearity arises from stiffened catenary length, which should be checked by an iterative numerical solution. The two 
concepts of stiffened catenary (guessed length) and natural catenary (known length) geometries of the suspended pipe, are 
compared and critically commented upon. In applying the theory to subsea pipeline installation, it is shown that natural 
catenary assumption, underestimates the installation stresses, particularly in shallow water and low laying depth. However, 
the true values of the stresses can be computed via stiffened catenary theory, in which the bending stiffness of the suspended 
pipe is not ignored. Thereafter, substantial iterative numerical solution of the governing nonlinear differential equation, in 
each load case is carried out. From these batch simulations, a surrogate expression is developed via optimization techniques. 
This model provides a correction factor by which, the accurate installation stress can be found. Moreover, the accuracy of 
results is verified by FEM analysis. It is concluded that for the initial estimation of the stresses, the simple natural catenary 
assumption, which is currently practiced can be used. However, the results should be corrected by the new surrogate expres-
sion, that has been produced in this paper. This can eliminate the underestimation of the installation stresses when a simple 
computational procedure is used.
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List of symbols
As  Steel cross-sectional area of the pipe
Ain  Insulation cross-sectional area of the pipe
C�2  Constant of empirical formula (34)
d  Laying depth
d  Dimensionless depth parameter
D  Outer diameter of steel pipe
E  Modulus of elasticity
g  Gravity acceleration
H  Touchdown tension
I  Second moment of cross-section (in bending)
Lg, Lf   Guessed length and final length of suspended 

pipe
Lg,Lf ,Lr  Dimensionless guessed and final and resulted 

lengths
Lc  Natural catenary length of suspended pipe
M  Bending moment in pipe cross-section

P  Hydrostatic pressure
rbend  Bending radius of natural catenary
s  Coordinate of cross-section of the suspended 

pipe
S.Uc, S.Us  Natural and stiffened catenary stress 

utilisation
ts, ti  Thicknesses of steel and insulation
T   The top tension that holds the suspended pipe
T   Top tension ratio
V  Shear force in pipe cross-section
W   Submerged weight of the pipe per unit length
x, y  Horizontal and vertical coordinate for sus-

pended pipe
xs  Layback distance
z  Dimensionless coordinate for s
�  Laying angle 
�  Bending stiffness parameter 
� , �  Fractional powers at empirical formula (34)
�  Complementary slope angle
�bc, �bs  Natural and stiffened catenary bending 

stresses
�a, �h  Axial and hydrostatic stresses
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�ec, �es  Natural and stiffened catenary von Mises 
stresses

�Y  Yield strength of the steel pipe
�  Correction factor
�s, �i, �w  Densities of steel, insulation, and seawater

1 Introduction

Regardless of the adverse effect of fossil fuels on climate 
change, the substantial demand exists for oil and gas in 
future decades. The remaining resources of the hydrocarbons 
are buried under the seabed and should be transported via 
subsea pipelines. These pipelines should be installed by the 
help of construction vessels either by S lay or J lay or reel 
lay methods that are described in [1].

It is well known now that the stresses in the empty pipe 
resulted by installation may be significant and should be 
considered and checked in design stage in any type of pipe 
laying operation [2]. The excessive bending of the pipe in 
touchdown point, sometimes is severe, that may cause the 
plastic deformation in the pipe, which should be avoided at 
any cost.

Therefore, subsea contactors are using sophisticated multi 
physic software to check stresses in the pipe by simulation 
of the installation process. One of these software is called 
Orcaflex [3] and is used to predict the stresses resulting from 
S laying in [4]. However, to calibrate the software prior to 
installation preliminary manual calculations are required [1]. 
This ensures that lengthy data, which is required to run the 
software, has been set correctly.

An important preliminary calculation for finding the 
installation stresses is based on the natural catenary theory 
for cables, chains and other suspended slender structures 
[5]. This theory has been used in the past decades in subsea 
applications [6] and still is practiced by subsea contractors 
and pipe layers [1]. However, the bending stiffness of the 
suspended pipe is ignored in this theory and cannot predict 
the touchdown stress accurately.

Therefore, to overcome this, the stiffened catenary theory 
is developed and is based on the bending stiffness of the pipe 
[7]. The governing equation is strongly nonlinear but it has 
been linearized [7] for finding an approximate solution. The 
method is still used with some modifications in [8], and a 
simplified version of it, is used in flexible risers theory [9].

In a comparative study between analytical methods and 
finite element methods (FEM) in [10] it is emphasized, that 
only a numerical and iterative solution is required to provide 
the accurate results for the installation stresses. FEM formula-
tion that is employed in software is described in [11], is not 
suitable for preliminary calculations. Apart from that when 
dynamic stresses are concerned, analytical methods are based 

on mode summation techniques [12] or an equivalent line-
arized simplified model described in [13].

Installation engineers are concerned about accurate static 
stress analysis and how they can correct their simplified cate-
nary calculations. This enables predicting accurate stresses, to 
be compared with allowable stress. Dynamic stresses are sepa-
rate issues and addressed in [12] and [13]. They are expressed 
with a Dynamic Amplification Factor (DAF).

In this paper, initially the stiffened catenary theory is 
described and reformulated. This new formulation enabled 
the natural catenary to be concluded from the stiffened cate-
nary. The solution of governing nonlinear ode is iterative and 
computationally intensive, such that it needs initial guess for 
the suspended length. Then iterations should continue until 
the guessed length and computed length are very close. These 
intensive computations, has been done by numerically built in 
algorithms in MATLAB [14] for each load case.

Thereafter for substantial numbers of laying depths and top 
tensions, the solution has been repeated such that a contour 
map is provided for finding the accurate stresses in the touch-
down vicinity of the pipe. When the map is compared with the 
one provided by the natural catenary assumption, concludes 
that in shallow waters, the natural catenary assumption pro-
vides underestimated stress, and a correction is required. A 
third map for correction factor is also provided, which can be 
used for correcting the natural catenary results. Finally, the 
correction factor map is converted to a simple empirical for-
mula via optimisation techniques. This formula is verified by 
FEM analysis and helps engineers to find accurate installation 
stress.

2  Nonlinear differential equation 
for stiffened catenary

In Fig. 1, the schematic diagram of a reel type subsea pipe 
laying is shown. It seems that the suspended pipe with 
length s can be expressed as a natural catenary geometry.

In offshore oil and gas industries, for hydrocarbons 
transport, two types of pipes exist. The flexible type pipes 
have low bending stiffness and they can be bent into small 
bending radius up to 1 m and still remain elastic. However, 
the rigid pipes that have very high bending stiffness, and 
when reeled around a 10 m radius, they turn into plastic 
deformation and should be unreeled before laying into 
seabed. It is reasonable to assume the suspended flexible 
pipes possess a natural geometry, whereas the suspended 
rigid pipes have the stiffened catenary shape.

In order to study the stiffened catenary geometry, the 
free body diagram of a differential length of the suspended 
pipe in Fig. 1, is shown in Fig. 2.
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For static equilibrium the sum of moments about any 
point on infinitesimal element of Figs. 2, 3, should be zero 
i.e.

Which results:

From bending theory of the beams we can write:

Substituting (3) into (2) we will find:

The laying depth is d,and the weight per unit length of 
the submerged pipe is W, also the touchdown tension in 

(1)

∑

M = 0 (M + dM −M) − H ds cos � + V ds sin � = 0

(2)
dM

ds
= H cos � − V sin �

(3)M = −E I
d�

ds

dM

ds
= −E I

d2�

ds2

(4)−E I
d2�

ds2
= H cos � − V sin �

the pipe is H, then following dimensionless parameter is 
defined:

Similarly for the top tension T, in Fig. 1 another dimen-
sionless parameter is defined.

The modulus of elasticity of pipe material E, and the  2nd 
moment of cross section of the pipe I, then a dimension-
less parameter is defined that represents bending stiffness 
of the pipe.

(5)H =
H

W d

(6)T =
T

W d

Fig. 1  Subsea rigid pipe laying (reel lay)

Fig. 2  Free body diagram of a pipe segment

Solving nonlinear ODE

i. Find from (9) and from (6)

ii. Consider dimensionless length z in (8)

iii. Numerically solve the nonlinear ODE (12) to find slope versus z.

Guess length

W, T and d are known first find H
from (11) then from (7)

True submerged length Lf

and true stress ?

Yes

Yes

Resulted length

Find the resulted length (dimensionless ) from (13)

Yes

Is satisfied?

Stop

Yes No

Find accurate stiffened Catenary

a) Consider r g fL L L and from the final nonlinear ODE (15)

b) Numerically solve the nonlinear ODE (15) to find slope � versus z.

c) Find the accurate installation bending stress bs� from (16).

Fig. 3  Flow chart for computational algorithm in stiffened catenary
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The complexity arises from the fact that, stiffened cate-
nary length of the suspended pipe is unknown. Therefore 
we need to introduce the guessed length Lg  for it, to be 
able to set up the governing equation. Thereafter a dimen-
sionless parameter represents, the coordinate s across the 
pipe (see Fig. 1) and also differential ds.

It is obvious that Lg > d and another dimensionless 
parameter defines the ratio by:

From the equilibrium in vertical direction the vertical 
force V can be found from:

From the equilibrium of the external forces in Fig. 1, 
we have:

The top tension T is decided by installation engineer 
residing on construction vessel. They can change T via 
device known by tensioner that holds the suspended pipe. 
By guessing Lg , the touchdown tension can be found from 
(11) and also vertical force from (10). Then substituted 
into Eq. (4) results the governing nonlinear differential 
equation.

Through change of variables shown in (6), (8) and (9) 
a strongly nonlinear 2nd order differential equation can be 
found in which all the parameters are dimensionless. The 
final form of that equation with boundary conditions are:

There is not any analytical solution for Eq. (12) which 
should be solved numerically. The outputs of the solver 
gives the complementary slope of the pipe � versus z and 
from that, the following dimensionless suspended length 
will be resulted by:

(7)�
2
=

E I

W d3

(8)z =
s

Lg
ds = Lg dz 0 < z < 1

(9)Lg =
Lg

d

(10)V = W s = W zLg

(11)T =
√

H2 +W2L2
g

(12)

d2𝜃

dz2
=

⎛

⎜

⎜

⎜

⎝

cos 𝜃

�

�

�

�

�

T
2

L
2

g

− 1 − z sin 𝜃

⎞

⎟

⎟

⎟

⎠

L
3

g

𝛼
2

𝜃�z=0 = 0 𝜃�z=1 = 𝛼

0 < z < 1

It is also obvious that the results in (13) leads to Lr ≠ Lg , 
which means that the guessed length Lg is not correct. There-
fore, an iterative procedure should be implemented, to change 
Lg and repeat solving (12) again. After substantial number of 
iterations that can be conducted via an intelligent optimization 
method, we can reach following situation:

The following final nonlinear ode will be solved at the end 
of iterative process.

Thereafter, from � versus z in (15) and using (3), the bend-
ing moments in each cross section can be found. This leads 
to the maximum bending stress that will occur during instal-
lation from this equation, in which D is the outer diameter of 
the pipe.

The summarised computational steps are described clearly 
in Fig. 3 as a flow chart.

3  Simplified equation for natural catenary

Installation engineers are interested to check that, plastic 
deformation does not occur during laying operation. They are 
checking the bending stress via a simplified model. This model 
assumes the natural catenary shape in which bending stiffness 
that is related to E I in (7) is negligible. This may be valid for 
moorings or flexible pipes and risers. Moreover, if the laying 
depths is very high (7) can result:

Substituting (17) into (15) leads to:

(13)Lr =

⎛

⎜

⎜

⎝

1

∫
0

cos � dz

⎞

⎟

⎟

⎠

−1

(14)

|

|

|

Lr − Lg
|

|

|

≤ �

Lr ≅ Lg = Lf

Lf = Lf d

(15)
d2�

dz2
=

⎛

⎜

⎜

⎜

⎝

cos �

�

�

�

�

�

T
2

L
2

f

− 1 − z sin �

⎞

⎟

⎟

⎟

⎠

L
3

f

�
2

(16)�bs = ±E
D

2 Lf

d�

dz

|

|

|

|max

(17)�
2
≅ 0

(18)cos �

√

√

√

√

√

T
2

L
2

c

− 1 − z sin � = 0
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Equation (18) expresses the natural catenary shape, in 
which Lc is the catenary length, which can be expressed in 
terms of laying angle � that is shown in Fig. 1.

The equilibrium of external forces is also valid and 
rewritten in this form:

Whilst parameters T, d and W are known prior to instal-
lation, the touchdown tension H can be found from [5, 6]:

Then Lc can be computed from (20) and thereby the 
recommended laying angle � is found from (19). Moreo-
ver, the layback distance xS that is shown in Fig. 1, can be 
found from:

The natural catenary shape can be found by manipulat-
ing the expression (18) into this form:

Then the radius of curvature formula, is applied to the 
natural catenary in (23). This is assumed a the bending 
radius at any cross section of the suspended pipe (see 
Fig. 1). The final form can be found by substituting (23) 
into the curvature formula [5] that results:

Through the assumption in (24), the bending stress at 
any cross section can be found from D the outer diameter 
of the suspended pipe as follows:

Finding bending stress from (25) is much easier than 
finding from (16). In order to find the stress utilisation 
two other types of stresses during installation should be 
considered. The weight per unit length of the pipe W can 
be found from:

In Eq. (26) �s and �in are densities of the steel pipe and 
insulator, whereas As and Ain are cross-sectional areas the 
steel and insulator in the pipe and ti is the insulator thickness. 

(19)tan � =
W Lc

H

(20)T =

√

W2L2
c
+ H2

(21)H = T −W d

(22)xS =
H

W
sinh−1 (tan �)

(23)y =
H

W

[

cosh
(

W

H
x
)

− 1
]

(24)rbend =
H

W
cosh2

(

W

H
x
)

(25)�bc = ±E
D

2 rbend

(26)W =
(

�sAs + �inAin − �w
�

4

(

D + 2 ti
)2
)

g

The hydrostatic stress at pipe cross section depends on the ts 
or the thickness of steel pipe and is given by:

The hydrostatic pressure P depends on the water column 
height (d − y) and density �w above local cross section of the 
pipe, and is given by:

Apart from bending and hydrostatic stresses, because ten-
sion in each cross section the axial stress exists as well. A 
compressive force resulted by pressure on the blind flange 
at touchdown point appears that effects the value of the axial 
stress. The final form of �a is:

The effective Mises stress can be defined according to 
following formula:

In (30) the bending stress is easily calculated via (25) 
and results �ec based on assumption that suspended pipe has 
natural catenary shape. However, if bending stress is formi-
dably calculated via (16), it results �es from this formula:

Finally, the stress utilisation S.U depends on yield stress 
value for steel �Y . It is required that both maximum �ec and 
�es remain below �Y.

4  Numerical example

A pipe with diameter is D = 323.9 mm and the thickness is 
ts = 15.9 mm , made from steel with density  7850Kg∕m3 
and yield strength �Y = 448 MPa . It will be laid subsea with 
water density is 1025 kg∕m3 . We want to study the stress 
utilisation in the laying depth range 300m < d < 2300m and 
the top tension ratios in the range 1.6 < T =

T

W d
< 2.6 . If 

we want to consider the bending stress by natural catenary 
assumption via Eq. (25) then the S.Uc will change according 
to the contour plot, shown in Fig. 4. It can be seen that such 
pipe never faces plastic deformation in any laying depth and 
top tension, because always S.Uc < 1.

(27)�h = −P
D

2 ts

(28)P = �wg (d − y)

(29)�a =
T(y) −

�

4

(

D + 2 ti
)2
P

As

(30)�ec =

√

(

�a + �bc
)2

+ �2
h
−
(

�a + �bc
)

�h

(31)�es =

√

(

�a + �bs
)2

+ �2
h
−
(

�a + �bs
)

�h

(32)S.Uc =
�ec

�Y
S.Us =

�es

�Y
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The maximum value in Fig. 4 is S.Uc = 0.4961 and occurs 
at depth 2300 m and T = 2.6

If we want to consider the bending stress by stiffened 
catenary assumption via Eq. (16) then the S.Us will change 
according to the contour plot, shown in Fig. 5. It can be seen 
that such pipe may face plastic deformation because in some 
laying depth and top tension, S.Us > 1 . Figure 5 is produced 
after two hours of CPU time, whereas Fig. 4 is produced 
in less than 1 min CPU. It is obvious that in low depth, the 
�
2 is significant and natural catenary assumption produces 

substantial error.
The maximum value in Fig. 5 is S.Us = 1.285 and occurs at 

depth 300 m and T = 1.6 . We can conclude that in low depth 
the natural catenary assumption is erroneous. Moreover, the 
low top tension is also harmful. Fortunately the top tension 
can be decided by installation engineer and can be increased 

easily. Herein we define a correction factor, that relates the true 
stress utilisation from (16) i.e. S.Us , to the S.Uc and given by:

The contour plot for the correction factor is shown in Fig. 6. 
It shows that at low depth, the natural catenary assumption is 
too erroneous, such that it leads to correction factor above 2. 
The red stars in the plot shows that in low depth, the low top 
tension can cause plastic deformation, in touchdown cross sec-
tion of the laid pipe.

If the correction factor data for every pipe, that produced 
Fig. 6, can be provided via the simulation, it enables the S.Us 
(difficult to find) to be calculated from S.Uc (easy to find). 
Therefore, an empirical formula that can represent contour 
plot in Fig. 6, will be very useful in estimation of true stress 
utilization during installation.

5  Empirical model with two parameters

A nonlinear predictive model with two dimensionless param-
eters d =

d

dmax

 (depth related), and  T =
T

W d
 (top tension related) 

can be suggested in this form:

The parameters C�2 , � , � in (34) can be found taking the 
logarithm of that expression that will change it into:

(33)� =
S.Us

S.Uc

(34)� ≅ C�2 d
�
T
�

log (�) ≅ log
(

C�2

)

+ � log
(

d
)

+ � log
(

T
)

Fig. 4  Contour plot of S.U. (natural catenary assumption)

Fig. 5  Contour plot of S.U. (stiffened catenary assumption) Fig. 6  Contour plot for stiffened catenary correction factor
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The above expression enables the linear regression 
techniques to be implemented for finding the parameters 
C�2, � , � . These parameters can be found using nonlinear 
regression analysis. Moreover, the powerful Nelder-Mead 
algorithm [15] which is built in MATLAB is also used, 
to find the fractional powers γ, β and in (34). Finally, the 
numerical expression of (34) for correction factor, will be 
in this form:

In Fig. 7 the computed correction factor, and the esti-
mated factor in (35), are drawn together. It shows that in 
higher correction factors, where severe error occurs as a 
result of natural catenary assumption, the estimated factor 
is very close to computed correction factor. This means that 
formula (35) for true stress utilisation is reliable. There-
fore, it is not necessary to follow an iterative solution for 
Eqs. (12), (13) and (14) which is a formidable task. Instead, 
we can follow an easy procedure as follows:

 i. Decide the top tension value at a particular laying 
depth.

 ii. Find W from (26) then touchdown tension from (21)
 iii. Find minimum bending radius from (24) followed by 

�bc of natural catenary from (25)
 iv. Find the �ec of natural catenary from (30) then S.Uc 

from (32)
 v. Find the correction factor � from (35) the true stress 

utilisation S.Us from (33)

When ‘ S.Us > 1 , the installation engineer will increase 
the top tension to decrease the stress such that S.Us < 1 . 

(35)
300 < d < 2300 d

max
= 2300 1.6 < T < 2.6

𝜇 ≅ 1.033 d
−0.5435

T
−0.2042

However, increasing the top tension may cause pipe ovali-
zation over the contact surface with the tensioner. It may 
be required to check the installation stress by high fidelity 
FEM analysis as well. In case stress is underestimated by any 
method, it should be discussed and commented.

As it can be seen Fig. 8 the error resulted using surrogate 
expression (35) in some depths and tension is up to 16%. 
Equation (35) is a simple surrogate formula so it is handy for 
installation engineers, by which the results can be corrected 
with reasonable accuracy.

For any pipe that should be installed, either Eq. (35) or 
the data file of Fig. 5 can be provided. Whilst using (35) 
provides reasonable error as shown in Fig. 8, the data file 
related to Fig. 5 can provide a look up table. From that look 
up table accurate result can be found. The overall procedure 
for doing stress calculation via natural catenary and correct-
ing it via (35), is summarised in a flow chart in Fig. 9.

6  Comparison of the results

Since the higher correction factor occurs at depth 300 m 
and T = 1.6 , this worst case scenario is analysed by 
ABAQUS which is a commercially available FEM soft-
ware [16]. The PIPE21 beam element, is used to model the 
suspended pipe via 300 elements. Due to strong nonlinear 
geometry of the suspended pipe, there are convergence 
warning messages in the data file. Therefore, the problem 
is also analysed by explicit version of the software [17] 
which did not produce any warning message. The explicit 
version provides reliable results only in severe dynamic 
loading that is shown in [18]. The stress maps of each ver-
sion are shown in Fig. 10. It shows that ABAQUS standard 
results for the Mises stress is reasonably close to stiffened 

Fig. 7  Estimated and calculated surfaces for correction factor Fig. 8  The error percentage using approximated formula (35)
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catenary and predicts the plastic deformation like (34) and 
stiffened catenary theory.

The stress map in Fig. 10b, shows that explicit ver-
sion cannot predict the maximum Mises stress, because 
it is very low and inaccurate. The deformed shape of sus-
pended pipe seems very close to natural catenary, showing 
that explicit version of the software cannot satisfy static 
equilibrium, well enough. Therefore, it is essential to vali-
date results of FEM analysis, and to do this a comparison 
is made in Table 1.

It shows that natural catenary assumption (row 1) that is 
practiced by subsea pipe layers underestimates the instal-
lation stress particularly in low depth and does not predict 
plastic deformation thus misleading installation engineers. 
The stiffened catenary assumption (row 2) predicts plastic 
deformation and warns the installation engineers, but it 
needs solution of Eqs. 12–16 which is the formidable task 
for engineers.

However, the result of the empirical formula (34) 
that provides a correction factor and then predicts the 

Fig. 9  Flow chart for using 
correction factor to find true 
installation stresses

Natural catenary length Lc

but true stress utilisation?

Decide a top tension in range 1.2 2.6
TT

W d
< = <

W, and d are known decide a top tension T, then find
H from (21) then Lc from (20)

Yes

Yes

True stress utilisation correction factor

i. Find
max

dd
d

= and T from (6)

i. Find the correction factor µ from (35)

ii. True stress utilisation . sS U from (33)

ii

NoYes

Stop

Approximate Stress utilisation via natural catenary

I. Find approximate bending radius bendr from (24) and approximate bending stress bcσ
from (25)

II. Find true values of W from (26) hydrostatic stress hσ from (27) and axial stress aσ
from (28) and (29)

III. Find the ecσ of natural catenary from (30) then . cS U from (32)

. 1sS U ≤

Is satisfied?
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maximum Mises stress (row 3) is very easy and straight-
forward and accurate. It could be recommended to be used 
installation engineers instead of using FEM analysis. The 
rows 4 and 5 of Table 1 show that standard and explicit 

versions of ABAQUS predicts substantially different 
results and should not be used without any validation.

The �eFEM1(6th row in Table 1) is based on using sim-
ple plane pipe (beam) element PIPE21. It is assumed that 
hydrostatic load does not exist at touchdown. In the 3rd col-
umn of Table 2, the various components of the stress are 
summarised.

However, in seabed conditions, the hydrostatic load-
ing at the touchdown location cannot be ignored and it is 
considered at the depth 300 m (numerical example). It is 
obvious that as a result hoop stresses will occur, and it is 
not significant in this depth but changes the stress details. 
The results are tabulated in the 4th column of Table 2. The 
bottom fibres of the pipe cross-section face tensile bend-
ing stress (+ sign), whereas the top fibres face compressive 

Fig. 10  von Mises stress map a ABAQUS standard map b ABAQUS explicit map

Table 1  Comparison of the results (maximum von mises stress)

The method used Maximum von mises stress

Natural catenary theory �
ec
= 191.5 MPa

Stiffened catenary theory �
es
= 575.7 MPa

Empirical formula (34) �
esa

= 543.6 MPa

FEM analysis via ABAQUS standard �
eFEM1

= 499.2 MPa

FEM analysis via ABAQUS explicit �
eFEM2

= 21.7 MPa

Table 2  Stress details in FEM 
(ABAQUS implicit)

Stress type Symbol Stress value (without 
hydrostatic load)

Stress value 
(with hydrostatic 
load)

Mises stress at the bottom �
es−B 499.2 Mpa 514.85 Mpa

Mises stress at the top �
es−T 499.2 Mpa 514.63 Mpa

Bending (normal) stress at the bottom �
bs−B 499.2 Mpa 484.28 Mpa

Bending (normal) stress at the top �
bs−T −499.2 Mpa −514.63 Mpa

Hoop (hydrostatic) stress at the bottom �
hs−B 0.0 Mpa −30.56 Mpa

Hoop (hydrostatic)stress at the top �
hs−T 0.0 Mpa −30.56 Mpa
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bending stress (−sign). The maximum von Mises in the 4th 
column of Table 2, is closer to the stiffened catenary result 
since the hydrostatic stress is not ignored.

7  Further insights into motivations 
and methods in this paper

The key motivation for writing the article is related to the 
following reservations regarding Dixon’s solution in (1968) 
[7]:

1. It is an approximated series solution.
2. Assumes a natural catenary length for finding that series 

solution.
3. The complementary condition expressed by (13) in this 

paper is not checked in Dixon’s solution.

The proposed strategy in this paper is an iterative algo-
rithm. It checks the complementary condition (13) in each 
iteration. Regardless of iterative nature, for a particular 
depth and top tension, the analysis is fast enough and pro-
vides result in few seconds. The substantial computational 
time is required only for producing the expression (35) for a 
particular pipe and can be done offline.

If the collected data for a particular pipe in verity of 
depths and top tensions, that is computed by flow chart in 
Fig. 3 are available, then expression (35) is not required. 
However, the current practice for installation engineers is 
using natural catenary theory, since it is easier to find the 
result. Unfortunately, the results obtained by natural cate-
nary is valid only in very deep waters. The reason for inva-
lidity in natural catenary is the bending radius in (24), that is 
assumed to be the radius of curvature in the natural catenary 
expression in (23). Unfortunately, this assumption results 
higher bending radius and lower curvature and thereby lower 
bending stress in (25). The stiffened catenary theory is used 
to overcome this underestimation.

The surrogate expression (35) helps engineers to use an 
easy natural catenary method but find the correct results in 
both shallow and deep waters. By using (35) the sophisti-
cated computational procedure in this paper is not required, 
since it is embedded in the correction factor (35).

The ABAQUS results is only for comparison purpose. 
The initial position of the nodes is based on the natural 
catenary expression in (23). They are generated by MAT-
LAB then exported to ABAQUS. Upon loading (the top 
tension weight), the nodes move to the loaded positions. 
These new position of the nodes forms the stiffened catenary 
shape in ABAQUS. Although there is not much difference 
in the shape and length of stiffened and natural catenaries, 
the resulted stresses are substantially different as shown in 
Table 1 of this paper.

In Table 1, it is expected that ABAQUS implicit results 
be quite close to the “exact” solution obtained by numerical 
solution of non-linear differential Eq. (15). However, there 
is a noticeable difference because:

The nonlinear differential Eq. (15) is based on Euler–Ber-
noulli beam theory, but in (30) and (31) result hydrostatic 
stress (28) is considered. However, the PIPE 21 element in 
ABAQUS where �eFEM1 = 499.2 MPa(Table 1) the hydro-
static stress is ignored. In seabed conditions the hydrostatic 
stress cannot be ignored. Therefore, when we consider the 
hydrostatic stress in touchdown location the stress resulted 
from ABAQUS will change to �eFEM1 = 514.85 MPa 
(Table 2). Fortunately using Euler–Bernoulli beam theory 
resulted higher von Mises stress. Therefore, it is a conserva-
tive assumption, so it is suitable from safety point of view.

8  Applicability of the method and future 
works

It is obvious that in surrogate expression (35) the pipe thick-
ness is not mentioned. Equation (35) is valid for a particular 
pipe with a known submerged weight per unit length W by 
(26), in different laying depths and top tensions. These are 
two important parameters for installation engineers since it 
helps them to adjust the top tension during installation at 
any depth they want.

It is possible to find similar expressions in terms of pipe 
thickness using the approach in this paper. However, the 
insulation thickness, or extra parameters (for pipe in pipe), 
changes W significantly. Therefore, those extra parameters 
should also be included. This requires substantial computing 
time and can be done in the future.

Presently Eq. (35) is very useful for installation engineers 
when they want to install a particular pipe across the globe 
in different laying depths. They can also produce a library 
of surrogate expressions like (35) for various types of pipes 
they want to install in various depths.

9  Conclusions

In this paper, a new parameter called correction factor is 
defined for the subsea pipelines. This factor helps to find 
true stress utilisation during installation process, using 
a simple natural catenary assumption. The complexity of 
true stiffened catenary assumption is fully discussed and 
analysed. This resulted an empirical type of formula that 
can convert the result of easy natural catenary assumption, 
into the result of true and complicated stiffened catenary 
assumption. Thereafter, the validity of the results of nonlin-
ear FEM analysis of the suspended pipe has been discussed 
and commented upon. The conclusions can be summarised 
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in Table 3, that justifies the use empirical formula (34) for 
installation engineers and subsea pipe layers.
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