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Abstract
Power and energy systems around the world are expanding and evolving in tandem with technological advancement. In the 
current scenario, energy is a crucial requirement for the development for any country. Machine learning (ML) is used as a 
technology to address the requirement for quicker and more accurate analyses that would support the control and operation 
of modern power systems. In this paper, analysis is performed using Machine Learning and Deep Learning (DL) models to 
predict power estimation at a photovoltaic (PV) solar site with the capacity of 79.95 kW, installed in Dhar district, Madhya 
Pradesh (MP), India. The model's accuracy is evaluated using various statistical parameters, R2 score, Mean Square Error 
(MAE), Root Means Square Error (RMSE), Mean Square Error (MSE), Mean Absolute Error (MAE), Mean Absolute 
Percent Error (MAPE) and variance. The proposed method Linear Regression (LR) algorithm shows a maximum R2 score 
of 0.99994, a small error metric of MAE 0.0091, and an RMSE of 0.121, which indicate the highest accuracy model as 
compared to other algorithms. Accurate prediction of solar power without irradiance, season-wise (five seasons in India) 
and month-wise, is also predicted with high accuracy using ten different models of machine learning and one deep learning 
method, with comparison of its results with the existing work.

Keywords  Artificial Intelligence (AI) · Machine learning (ML) · Deep Learning (DL) · Photovoltaic (PV) · Root Mean 
Square Error (RMSE) · Mean Absolute Error (MAE)
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MSE	� Mean Squared Error
MNRE	� Ministry of New and Renewable Energy
NWP	� Numeric Weather Prediction
PM	� Particulate Matters
PML	� Perceptron type with Multiple Layers
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QRA	� Quantile Regression Averaging
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TSF	� Time Series Forecasting
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Introduction

Due to limited conventional resources and harmful impact on 
the environment, renewable energy sources like solar energy 
are the most attractive alternative replacement due to abun-
dant availability in most places in the world. Solar energy on 
the earth is sufficient to fulfil all the energy requirements of 
human beings. Total 173,000 terawatt hours (TWh) amount of 
energy strikes the Earth in one hour and the world electricity 
consumption by any means (including industrial, household, 
vehicle, cooling, heating purpose etc.) in 2022 is 25,500 TWh 
[1]. Due to the unpredictability of Photovoltaic (PV) cell solar 

energy, it is still unattractive to some consumers. To meet the 
demand for quicker and more accurate assessments that would 
support the operation and control of contemporary power sys-
tems, predictive analysis of a power system is required.

End-of-2021 renewable power capacity was 3064 GW, in 
accordance with the International Renewable Energy Agency 
(IRENA) Global, as shown in Fig. 1. With a 1230 GW capac-
ity, hydropower made up the greatest portion of the overall 
global output, but in the last few years, solar dominated the 
major portion of the expansion. The remaining energy was 
split equally between solar and wind power, with capabilities 
of 849 GW and 825 GW, respectively [2]. In India, accord-
ing to the Ministry of New and Renewable Energy (MNRE), 
solar power installed capacity has reached around 61.97 GW 
as of November 2022. Additionally, 23.14 GW of capacity is 
in various phases of bidding, while 60.66 GW of capacity is in 
various stages of implementation [3]. India stands 4th in solar 
PV deployment across the globe as on the end of 2022. In this 
work, we have used the meteorological data to estimate the 
solar power of PV panel technology using machine-learning 
algorithms. Prior to the machine learning methods, statistical 
tools are deployed by the researcher for estimation work.

The first linear model presented by Angstrom, presuming a 
completely clear sky, describes the linear relationship between 
the worldwide solar irradiation (H) and sunshine hour dura-
tion (S). In order to alter it as the Angstrom-Prescott relation, 
Prescott (1948) substituted the transparent sky given in Eq. 1, 
for the perfect clear sky assumption [4].

Hext is the monthly average daily extraterrestrial radia-
tion, while Sext is the maximum monthly average daily 

(1)
H

H
ext

= a + b
S

S
ext

Fig. 1   Global Renewable 
Energy Status (Source- Inter-
national Renewable Energy 
Agency (IRENA)
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sun-shining hour or day length. To anticipate solar radiation, 
various horizons (the length of the real solar-related mete-
orological data) have been used as input. Weekly predictions 
are considered long-term forecasts, and minute-by-minute 
forecasts of solar power are considered short-term forecasts 
[5, 6]. Statistical models, including non-linear and linear 
traditional models like persistence, Autoregressive Inte-
grated Moving Average (ARIMA), Autoregressive Moving 
Average (ARMA) are employed to capture the stochastic 
nature of solar energy. Numerous drawbacks exist for dif-
ferent techniques, including their computational cost and 
inability to modify time-varying time-series systems. The 
persistence model predicts the future value of the radiation 
from the present value, but it is inaccurate for more than 1-h 
estimation and sudden weather changes. ARMA is the com-
bination of autoregressive (AR) and moving average (MA), 
based on the set of data generated or obtained sequentially, 
known as time series data, to estimate future values. The 
main disadvantages of ARMA are its high computational 
complexity, difficulty in ensuring convergence, and station-
ary time series. ARIMA was developed to deal with nonsta-
tionary time series data. This is the most accurate model, but 
it is unstable in terms of both fluctuating observations and 
altered model specifications. ARIMA parameters defined 
manually, therefore, finding the most accurate fit is a time-
consuming process [7].

The difficulties and time of computation minimized by 
adopting Artificial Neural Networks (ANN) techniques. 
ANN-based techniques have several advantages over tradi-
tional ones, which include higher accuracy, simplicity in 
updating, ease of maintenance, and the ability to handle 
incomplete inputs [8]. Neural networks are capable of car-
rying out a wide range of tasks, including nonlinear estimat-
ing, grouping, pattern recognition, and optimization. The 
different ANN techniques for solar energy estimation are 
utilized [9–11]. Mellit et al. [12] used a multilayer percep-
tron model to estimate the worldwide sun irradiation 24 h in 
advance, where daily mean air temperature and daily mean 
irradiance values are the input parameters. S. K. Aggarwal 
et al. [13] used a Feedforward Neural Network (FFNN) to 
predict how much solar energy there is as part of the Ameri-
can Meteorological Society's (AMS 2013–2014) prediction 
competition. This method works better than Least Squares 
Regression (LSR) on data from numerical weather forecasts. 
Silva A. et al. [14] used ANN to predict hourly PV power 
using the Perceptron type with Multiple Layers (PML) and 
Radial Base Functions (RBF). They found that the PML 
method is more accurate than the RBF method. Vakili et al. 
[15] evaluated the daily surface’s global solar radiation at 
Tehran's using the PLM technique with meteorological data 
(maximum and minimum daily temperature, relative humid-
ity, and wind speed) including suspended Particulate Mat-
ters (PM10 and PM2.5) in the atmosphere and found MAPE 

1.5% and an absolute fraction of variance of 99%. The main 
disadvantages of ANN are its large and complete dataset 
dependency, lack of interpretability, and limited for short-
term forecasting.

In an effort to produce an accurate forecast, ML and 
DL methods have been deployed in recent research work 
[16–19]. However, it requires large amounts of data for 
training, validation, and testing purposes. ML algorithms 
accuracy depends on the amount of training data and the 
chosen parameters of the model [20]. Researchers sug-
gested various ML approaches to predict solar power, wind 
power, irradiance, load, and power demand [21–25]. Meng 
F. et al. [26] suggested a hybrid model that combines the 
deep Wavelet Transform Package (WTP), Generative Adver-
sarial Networks (GAN), and Dragonfly Algorithm (DA) for 
solar energy prediction. This approach first break down the 
irradiance data into its constituent harmonics and then trains 
a deep GAN-based model. To identify the ideal settings, the 
generator network adjusted by using an adaptive modified 
DA technique. The results shown by the proposed method 
are better as compared to other ML techniques in terms of 
statistical measures like MAPE and RMSE. Gupta R. et al. 
[27] used Facebook Prophet and XG Boost to perform Time 
Series Forecasting (TSF) of solar energy production and 
determined that the XG Boost model is more effective in 
terms of precise estimation and more appropriate fitting; the 
MAPE of XG Boost and Facebook Prophet was 10.9% and 
21.8%, respectively. Mutavhatsindi et al. [28] used the con-
vex combination method and Quantile Regression Averag-
ing (QRA) to compare predictions from ML models. They 
discovered that QRA is better than statistical and traditional 
ML models. Zhao et al. [29] proposed fault detection and 
classification of PV modules by using Graph-based Semi-
supervised Learning (GBSSL) with the help of only 1% of 
the total data set and unlabeled data, while Alaraj et al. [30] 
proposed an ensemble tree approach to ML using meteoro-
logical and geographical data from the Kingdom of Saudi 
Arabia. Other than solar power forecasting, ML and DL 
techniques, as depicted in Fig. 2, are also used for Maximum 
Power Point Tracking (MPPT), battery life, load, failure, and 
tariff prediction [31–34].

Convolutional Neural Network (CNN) is a type of Deep 
Neural Network (DNN) that is mainly used for computer 
vision and image identification; however, it can also solve 
problems with sequential data, like time-series data. There 
are a few different types of neural networks that Alam et al. 
[35] suggested for short-term PV power forecasting. These 
are CNN, CNN- Long Short-Term Memory (LSTM), multi-
headed CNN, and traditional methods like ARMA and MLR. 
Heo J. et al. implemented a multi-channel CNN model on 
meteorological data and geographical datasets to forecast 
monthly PV solar power. This method utilizes geographical 
and meteorological features of PV sites from raster image 
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datasets. A MAPE of 8.639% was observed for the applied 
technique, which is better than other conventional meth-
ods such as multiple linear regression (16.187%) and ANN 
(15.991%) [36]. Cheng et al. [37] suggest power prediction 
based on intra-hour satellite measurement using a spatial 
temporal Graph Neural Network (GNN) and conclude that 
it is more accurate than statistical and CNN-based models. 
A CNN model uses infrared (IR) thermographic images and 
the solar panel's temperature to assess the malfunctioning of 
solar PV modules [38, 39].

LSTM (Long Short-Term Memory) networks are another 
type of DNN that is extensively used by researchers to esti-
mate solar power due to their extraordinary capability to 
manage sequential data [40]. Obiora C. et al. [41] proposed a 
ConvLSTM model for irradiance forecasting to mitigate the 
effects of solar PV power fluctuations in Johannesburg. The 
statistical measure in terms of nRMSE was reported 1.51% 
(for a ten-year dataset). A similar study reported in China, 
where a hybrid model, LSTM-CNN, is used for the estima-
tion of solar power and extracts the temporal-spatio features 
of PV data [42]. Gao M. et al. [43] suggested an LSTM base 
model for day-ahead power forecast using Numeric Weather 
Prediction (NWP) data, while a frequency domain decom-
position and LSTM model were proposed by Wang L. et al. 
[44]. Sarmas E. et al. [45] developed a stacked Long Short-
Term Memory (LSTM) model with three Transfer Learning 
(TL) strategies to forecast accurate solar PV plant produc-
tion using a limited data set. Bui L. et al. [46] demonstrated 
a similar technique to predict the output of a large solar 
PV power plant in Vietnam in conditions of curtailment. 
Djaafari A. et al. [47] proposed a unique hybrid model where 
the Balance-Dynamic Sine–Cosine Algorithm is combined 
with an LSTM predictor for accurate estimation of Direct 

Normal Irradiation (DNI) with a relative RMSE value of less 
than 2.07% and all correlation coefficients greater than 0.99.

The objective of this paper is to estimate solar 
power using a ML algorithm using meteorological data 
as input. After going through the literature, we have 
observed that solar irradiance is one of the most impor-
tant meteorological parameters; however, it is not easily 
available at every solar site. To overcome this problem, 
we considered two approaches. First, consider solar irra-
diance as one of the input parameters, and the second 
approach is without considering solar irradiance as the 
input. In addition to the hourly forecast, we have also 
estimated the solar power generation for different sea-
sons (summer, winter, monsoon, autumn, and spring). 
The results are compared with the standard techniques, 
which were found to be in good agreement in terms of 
various statistical measures like RMSE, MAPE, MAE, 
and coefficient of determination R2. The paper is organ-
ized as follows:

Section  "Data Description and Methodology" describes 
the data and the solar PV site used for the proposed 
research work. This section also explains the methodol-
ogy used in the research work. The tools used for the 
estimation and the various pre-processing techniques 
used are elaborated on in this section.
Section "Results and Discussion": This section presents 
the results obtained from the various machine-learning 
algorithms used in the proposed research work. The 
results compared with the existing similar work done 
by the research community in the same field.
Section  "Conclusion": This section concludes the 
research perspective along with the future direction.

Fig. 2   Some popular Machine 
Learning Algorithms
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Data Description and Methodology

Data Description

Data obtained from a solar power plant located in Dhar, 
Madhya Pradesh, India, for the amorphous silicon tech-
nology shown in Fig. 3(a). The total power generation 
capacity of this plant is 79.95 kW, as shown in Fig. 3(b). 
Three-year data collected from this site, covering 1096 
days from January 1, 2020, to December 31, 2022. We 
collected 14,248 observations from the above site from 
6:00 to 18:00. The above data is available on the cloud 
portal of AVAADA Energy Company (service provider: 
Intello Tech AMC Pvt. Ltd., website: https://​portal.​intel​
lotec​hsolu​tions.​co.​in), as shown in Fig. 4. The meteoro-
logical parameters recorded at the plant location are year, 
month, time (hours), temperature (temp), and irradiance. 
However, the parameters wind speed, surface pressure, and 
humidity, which are not available at the planned location, 
are collected from the NASA website (https://​power.​larc.​
nasa.​gov) and modified according to the requirements of 
the model. The data obtained from the site is in rough 
form, so before using it for estimation, data pre-processing 
is required. The major task of pre-processing includes the 
removal of ambiguous values, removing duplicate values, 
considering sunshine hour data, dividing the dataset into 
five seasons, and obtaining the missing values. The other 
important part is to convert the hourly data set into a daily 
data set using averaging techniques. The daily data set 
converted into a monthly data set by a similar approach. 
Estimation of solar power in various season done by con-
sidering appropriate months in that particular season.

•	 Software & Equipment: The software used for the 
analysis is Python 3.8.8, and the version of the notebook 

server is 6.3.0. Processing is done via a Nvidia GeForce 
RTX 3090 24 GB GPU processor with 128 GB of RAM 
(Corsair Vengeance RGB PRO DDR4 3200 MHz) and a 
3.2 GHz Intel i9 processor (12 cores, 24 threads). Python 
is the latest open-source tool used by researchers. A dif-
ferent machine learning model algorithm library is avail-
able, which is utilised for the estimation of solar power.

Methodology

The methodology to estimate solar power uses different 
machine-learning and deep-learning techniques. Figure 5 
explained the complete process flow for solar power estima-
tion. The estimation work is divided into the following steps:

Step-1: Data collection and pre-processing

To avoid simulating periods of darkness at night and 
diminished brightness, the original dataset was segmented 
to only cover the timeframe of 6:00–18:00. This restriction 
also reduced computational time in data processing. The 
data obtained from the site is in rough form, so before using 
it for estimation, data pre-processing is required. The major 
tasks of pre-processing include the removal of duplicate val-
ues, interpolation for missing values, normalisation of data, 
conversion of hourly data to day-wise and month-wise data 
using the averaging technique, and removal of ambiguous 
values.

•	 Removal of duplicate and Interpolation for the missing 
values: The meteorological data collected from the plant 
exhibited some missing and duplicated values. Initially, 
the duplicate values eliminated, and the missing values 
were estimated using linear interpolation as part of the 
pre-processing procedure.

Fig. 3   a Graphical representation of the Dhar district, Madhya Pradesh- India (b) Solar Site View

https://portal.intellotechsolutions.co.in
https://portal.intellotechsolutions.co.in
https://power.larc.nasa.gov
https://power.larc.nasa.gov
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•	 Normalization of data: The input data exhibits signifi-
cant heterogeneity among the various parameter values, 
making it challenging to model. The significant range 
of data, as indicated by the Min (minimum) and Max 
(maximum) values, is evident from Table 3. In order 

to standardise the data within a consistent range of val-
ues between 0 and 1, it was subjected to normalisation 
using the max–min normalisation technique, as defined 
by the following Eq. (2):

Fig. 4   Online cloud portal view of AVAADA energy company

Fig. 5   Flowchart showing the methodology in forecasting solar power using AI techniques
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	   Where X’ represents the normalized value of the given 
data, X represents the input meteorological value, and 
XMin and XMax represent the minimum and maximum val-
ues of the data. Conversion of data from hour to daily and 
monthly format: The Data Acquisition Card (DAC) con-
sistently captures meteorological variables and power gen-
eration data on an hourly frequency. The proposed study 
requires data in both daily and monthly formats. In order 
to accomplish this, the available data processed by utiliz-
ing an averaging methodology and subsequently converted 
into daily, monthly, and eventually seasonal formats.

•	 Step-2: Data sorting and splitting
	   Our dataset contains 24 h of data for solar power gen-

eration and meteorological parameters. Data sorting is 
required to remove the unnecessary values of data that 
are present in our dataset. In the process of data sorting, 
we have removed the values from 18:00–6:00 for which 
solar radiation is either very low or not available. This 
will also reduce computational time in data processing. 
After sorting the data, the next step is to split the data 
into different parts, i.e., training, testing, and validation. 
The dataset contains 14,248 observations, out of which 
about 80% are used for training purposes. The training 
data has 11,398 observations, while 10% of the data is 
used for testing, and the remaining 10% of the data is 
used for validation purpose, i.e., 1425 observations in 
each dataset.

•	 Step:-3:- Machine Learning (ML) & Deep-Learning 
Algorithm Implementation

	   Modern methods for very short-term (VST-1 min-1 h) 
and short-term (ST-1 h to 1 day) forecasting include 
ML algorithms and meta-heuristic optimisation meth-
ods inspired by the DNN model. In recent years, ML 
methods have outperformed conventional empirical 
methods for solar power forecasting in terms of results 
[37]. In the literature, there are numerous examples 
of ML methods used for estimating solar power by 
researchers [48–51]. So we have implemented Deep-
Learning-Feedforward Neural Network (DL-FFNN) 
and Machine Learning techniques in the present study: 
Linear Regression (LR), Ridge, Random Forest (RF), 
Decision Tree (DT), Gradient Boosting Classifier 
(GBC), Least Absolute Shrinkage and Selection Opera-
tor (Lasso), Adaptive Boost Classifier (ADC), Support 
Vector Regression (SVR), K-Nearest Neighbour (KNN) 
and Elastic Net (EN). In DL- FFNN method has 10 lay-
ers with 512 neurons in each, and the Rectified Linear 
Unit (ReLU) activation function is used for solar power 
prediction. In this technique, Adam Optimizer has been 
used. The algorithm for ML and DL models utilised in 

(2)X
�

=
X − XMin

XMax − XMin

the present study is available in the Python library. They 
are implemented using Python software on the notebook 
server 6.3.0. Processing is done via a Nvidia GeForce 
RTX 3090 24 GB GPU processor with 128 GB of RAM 
(Corsair Vengeance RGB PRO DDR4 3200 MHz) and 
a 3.2 GHz Intel i9 processor (12 cores, 24 threads).

•	 Step:-4 Feature Engineering: Estimating power for sea-
sonal variation

	   Feature engineering involves extracting relevant fea-
tures from meteorological data to estimate solar power 
production in various seasons. As one of the objectives 
of the proposed work is to find out the power variation 
in the different seasons, feature engineering provides 
valuable input parameters that are required for seasonal 
power generation. We use the one-hot encoding approach 
to encode the categorical variables season. Another fea-
ture of engineering includes extracting data only between 
06:00 and 18:00 and removing dark hours. The next fea-
ture implemented is the extraction of cyclic patterns in 
hours and months, which used for estimating daily and 
monthly power generation. In python language pandas, 
numpy, sklearn, seaborn and matplotlib.pyplot library 
used in coding.

	   In order to achieve precise predictions in deep learn-
ing, researchers have experimented with numerous 
layers containing different numbers of neurons, using 
various optimisation techniques. It has been determined 
that a DL-FFNN approach with 10 layers, each con-
taining 512 neurons, utilizing the rectified linear unit 
(ReLU) activation function and the Adam optimizer, 
yields favourable results.

•	 Step:-5 Accuracy Evaluation
•	 To evaluate the accuracy of the machine learning mod-

els used in this study, we have applied the statistical 
metrics listed in Table 1. Table 1 includes three error 
metrics: MAE, MAPE, MSE, and RMSE. In order to 
achieve an accurate power forecast, it is crucial that 
the values of the error measure are minimised.

Where, N is the number of observation and i is the ith 
observation. SSRegression and SSTotal is the sum squared 
regression error and sum squared total error respectively, 
which can be evaluated as

ssRegression =
∑�

yi − yRegression
�2 Squared difference between each 

data points values and the regres-
sion values

ssTotal =
∑�

yi − y
�2 Squared difference between each 

data points values and the mean 
values

Table  2 elaborate the importance of coefficient of 
determination i.e. R2 value. The value equal to 1 indicates 
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that the model estimation is accurate i.e. no error. If the 
value is zero or less than zero, model performance is 
worst. Practically the value of R2 lies in between 0 and 1.

•	 Overfitting and Under fitting: Overfitting occurs when 
our ML model attempts to include all (or more) of the 
data points in the dataset. As an outcome, the model 
starts to cache faulty values and noise from the dataset, 
reducing its efficiency and accuracy. Cross-validation, 
training with extra data, deleting features etc. used to 
reduce overfitting. Under fitting occurs when our ML 
model is not able to identify the underlying trend in the 
data. It happens when a model is unable to learn properly 
from the training dataset, resulting in reduced accuracy 
and inaccurate predictions.

Results and Discussion

This part provides a statistical description of numeric vari-
ables as well as a correlation analysis between different fac-
tors in the dataset. It also explains the performance metrics 
for various machine-learning approaches. Subsequently, a 
thorough evaluation conducted by comparing the current 
study with previous research, utilising diverse performance 
indicators such as the R2 score, RMSE, and others.

Statistical Information

Table 3 describes the range of different input and output 
parameters used for the present work. Meteorological param-
eters considered as input are hours, humidity, temperature, 
irradiance, wind speed, and pressure, while solar power used 
as output. Table 3 highlights the minimum and maximum 
values of each parameter, along with the mean value of each 

parameter. Prior to being used as input for machine learn-
ing models, the data-scaling method performed to prepare 
for the varying ranges of each parameter. The mean irradi-
ance is approximately 382.97 Wh/m2, and the temperature is 
27.68 °C, which shows that the site is appropriate for solar 
power generation.

Correlation Coeffiecient

The correlation method used to determine the relation-
ship between different input variables and the output. The 
outcome obtained from the Pearson correlation coefficient 
shown in Fig. 6. Correlation coefficients indicate the degree 
of correlation between two variables. Equation 3 repre-
sents the mathematical expression for Pearson's correlation 
coefficient.

Where x is the independent variable, y is the dependent 
variable, n indicates the sample size, and Σ denotes the sum 
of all values. The relationship of solar power with ambi-
ent temperature and irradiance is strong, with correlation 
coefficients of 0.36 and 0.59, respectively. Nevertheless, the 

(3)

Pearson correlation Coeff icient = r =
n(
∑

xy) − (
∑

x)(
∑

y)
��

n
∑

x2 − (
∑

x)
2

��
n
∑

y2 − (
∑

y)
2

�

Table 1   Validation Metrics with formulae and description

Metric Formulae Description

R2 Score R2 = 1 −
SSRegression

SSTotal
   The amount of fluctuation in the output parameter that can be predicted using 

the input parameter (s)0.6{
Mean Absolute Error

MAE =
1

N

N∑

i=1

�
��
�
yi − xi

��
��  

Calculates the discrepancies between the model's predicted values (xi) and the 
actual values (yi)

Mean Absolute Percent Error
MAPE =

1

N

N∑

i=1

���
�

�
yi−xi

yi

����
�
∗ 100

  

The percent discrepancies between the model's predicted values (xi) and the 
actual values (yi)

Mean Square Error
MSE =

1

N

N∑

i=1

�
y
i
− ŷ

i

�2

  

Mean of the square of the discrepancy between the estimated and actual values

Root Mean Square Error
RMSE =

�

1

N

N∑

i=1

�
y
i
− ŷ

i

�2

  

Square root of the mean of the discrepancy between the estimated and actual 
values

Variance
σ =

�
1

N

N∑

i=1

�
x
i
− μ

�2

  

Low variance indicates that even the slightest change in the data set will affect 
the outcomes of the target function

Table 2   Performance relation to R2 value

Value of R2 Performance

Equal to 1 no error in regression
1 > R2 > 0 Moderate error in regression
R2 = 0 regression line is not better than the mean
R2 < 0 regression line is even worse than the mean value
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variables of wind speed, humidity, year, and hours exhibit a 
rather weak correlation with output power.

The next step is to extract features from available input 
parameters, which are required for seasonal power esti-
mation. Therefore, four new variables, sine_hr(hour), 

sine_mon(month), season monsoon and season summer, 
were created as new features that enhanced the performance 
of machine learning models used for seasonal power estima-
tion. The correlation of this new parameter sine_hr has a 
high correlation with power, i.e., 0.83, as shown in Fig. 7.

Table 3   Range for 
meteorological variable

Hours Humidity Temp Irradiance Wind speed Surface pressure Power
Unit Hr Percentage Celsius Wh/m2 m/s kPa kW

Mean 12 46.25 27.68 382.97 3.82 95.08 15.48
Minimum Value 6 5.12 3.52 0 0.02 93.52 0
Maximum Value 18 89.6 43.44 1015.7 14.76 96.31 69.87

Fig. 6   Correlation analysis including encoded features for District Dhar, MP India
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Fig. 7   Correlation analysis for the Dhar District (MP-India) site, including encoded features

Table 4   Performance Parameters of various Machine Learning with and without Irradiance

Rank No Model Metrics

R2 Score (without Irradiance) R2 Score (with Irradiance) MAE MAPE MSE RMSE Variance

1 LR 0.99994 0.99995 0.0091 0.91 0.0146 0.121 0.99996
2 Ridge 0.99991 0.99994 0.0097 0.97 0.0148 0.122 0.99994
3 RF 0.99990 0.99993 0.0146 1.46 0.0256 0.166 0.99993
4 DT 0.99984 0.99990 0.0194 1.94 0.0327 0.180 0.99991
5 GBC 0.99986 0.99987 0.0943 9.43 0.0378 0.194 0.99988
6 DL-FFNN 0.99710 0.99874 0.0462 4.62 0.0029 0.0542 0.99882
7 Lasso 0.99626 0.99626 0.8226 82.26 1.0583 1.028 0.99647
8 ADC 0.99332 0.99467 0.9827 98.27 1.5090 1.228 0.99394
9 SVR 0.98735 0.99884 0.7653 76.53 5.6825 2.383 0.98567
10 KNN 0.93932 0.95964 2.2523 225.23 10.7234 3.274 0.96084
11 EN 0.86992 0.87024 4.6947 469.47 35.3035 5.941 0.88106
AVERAGE (Best 5) 0.99989 0.99992 0.02942 2.942 0.0251 0.155 0.99993
AVERAGE (All) 0.98024 0.98345 0.88280 88.280 4.9459 1.335 0.98331
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Metrics Results for Various ML Models

Prediction with Solar Irradiance as Input

Table 4 elaborates on the results of the various algorithms 
deployed for solar power estimation. Among all ML tech-
niques, the LR approach has the highest accuracy. The per-
formance of the ML model evaluated with the R2 score, 
MAE, MAPE, RMSE, and variance. The R2 scores of 
LR, Ridge, RF, and DT equal to 0.9999, which means that 
the accuracy of the estimation is approaching the actual 

value. However, the EN model had the lowest R2 score of 
0.870249. We have used MAE, MSE, and RMSE metrics, 
which give the error in estimation. The LR model exhib-
ited the lowest error values for MAE, MSE, and RMSE, 
i.e., 0.0091, 0.0146, and 0.0513, respectively. Whereas EN 
models had the highest error values of 4.6947, 35.3035, and 
5.8085, respectively.

We have compared the results of the proposed technique 
with similar work done by researchers in the same field. 
Table 5 compares the results of the current research approach 
with similar studies performed at different locations using 

Table 5   Comparison of the 
proposed work with existing 
work

*NA-Not Available

Authors/ Parameters R2 Score RMSE MAE Location Technique [Reference]

Proposed Work (Best 5) 0.9998 0.155 0.0294 Dhar- India ML
AVERAGE (All) 0.98345 1.335 0.88280 Dhar- India ML & DL
Proposed DL-FFNN 0.9987 0.0542 0.0462 Dhar- India DL-FFNN
Mutavhatsindi et al. (average) 0.9971 0.0320 0.0313 South Africa ML [28]
Silva et al. (average) 0.9933 0.3795 NA Fortaleza—CE ANN [14]
Kim et al. (average) 0.9862 0.1408 0.0213 Texas-USA DL [52]
Pasion et al. (average) 0.9518 0.1223 0.0363 12 sites-USA ML [53]
Zhang et al. (average) 0.9400 3.1748 2.2017 Eugene-USA PLM [54]
Asensio et al. (average) 0.8880 NA NA Aragon-Spain ML [34]
Vakili et al. (average) 0.8334 NA NA Tehran ANN [15]
Karimi et al. (average) 0.8150 0.1107 0.0365 Cleveland, Ohio CNN [55]
Alaraj et. al. (average) NA 0.8275 0.5242 Saudi Arabia ML [30]
Queen et al. (average) NA 0.4264 0.0303 Coimbatore- India ML [21]

Fig. 8   Month-wise actual and 
predicted power by various ML 
models
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Fig. 9   Comparison Chart of testing data with predicted data
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machine-learning models and deep learning approaches. The 
results are in good agreement with the results achieved by 
different people.

Figure 8 illustrates the actual and forecasted PV power 
produced by different ML algorithms used in the present 
work. The estimations obtained using the DL-FFNN, LR, 
Ridge, DT, GBC, and SVR methods exhibit a higher degree 
of accuracy when compared to the predictions made by the 
KNN and EN models, as shown in Fig. 8.

Figure 9 shows the predicted versus actual power for test-
ing data for all the ML algorithms. The LR, Ridge, RF, DT, 
GBC, and Lasso algorithms (a–f) make a straight-line graph. 
The ADC, SVR, KNN, and EN algorithms (g–j), on the 
other hand, make a graph that spread out between predicted 
and test values across the whole range. The LR algorithm 

graph is extremely linear due to its highest accuracy (highest 
R2 score), whereas the EN algorithm graph is the least linear 
due to its lowest accuracy (lowest R2 score).

Figure 10 shows the performance metrics parameters for 
all proposed ML algorithms. Graphs show that the R2 score 
and error parameters like RMSE and MAE are inversely 
proportional to each other. LR and Ridge algorithms show 
(almost the same) lowest error and highest R2 score, which 
means the most accurate model. The arrow indicates that 
the error metrics increase as we move from the LR to the 
EN ML approach.

Prediction without Solar Irradiance

One of the key objectives of this research is to determine 
solar power without using solar irradiance as an input 
parameter. The high cost of measuring equipment makes 

Fig. 10   Relationship of performance metrics parameters with differ-
ent ML Algorithms

Fig. 11   Relationship between R2 score (with Irradiance) and R.2 score (without irradiance)

Fig. 12   Month-wise solar power forecasting
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it difficult to obtain solar irradiance data at each plant loca-
tion. Therefore, we have estimated the solar power for all 
machine-learning algorithms without including solar irradi-
ance as an input parameter. Table 4 clearly shows a decline 
in the performance of the machine-learning model based on 
statistical measurements. However, the results indicate mini-
mal deviation in terms of the R2 score. The R2 score, which 
represents the coefficient of determination, is 0.99995 when 
solar irradiance is used as input, and without irradiance, the 
R2 score is 0.99994 for the LR model. The root mean square 
error (RMSE) value is 0.121 while considering sun irradi-
ance and 0.125 in the absence of solar irradiance. Figure 11 
illustrates the correlation between the R2 score (with irra-
diance) and the R2 score (without irradiance) for different 
machine learning models. It is evident from the graph that 
the performance of the model decreases significantly when 
compared to other machine learning models, achieving a 
score of 0.95964 when considering solar irradiance and 
0.93932 in the absence of solar radiation. Therefore, it can 
be concluded that we can estimate solar power without solar 
irradiance if the data for solar is not available at the plant 
location using the proposed techniques.

Prediction for Seasonal Variation

Another goal of the present research is to forecast the power 
output for various seasons. The plant location in Thar dis-
trict, Madhya Pradesh, experiences five distinct seasons: 
winter (December and January), spring (February and 
March), summer (April, May, and June), monsoon (July and 
August), and autumn (September, October, and November). 
Since each season occurs in different months throughout 

the year, it is necessary to have data organised month-wise 
in order to estimate seasonal power. Statistical averaging 
techniques used for monthly data compilation. Figure 12 dis-
plays the monthly forecast for different months throughout 
the year, and Fig. 13 represents the seasonal power varia-
tion. After completing the monthly forecast, the subsequent 
stage is to evaluate the seasonal power by employing feature 
engineering and an averaging technique. Our investigation 
demonstrates that the spring season, with an average power 
generation of 17.38 kW per day, is the most favourable 
period. Conversely, the monsoon season, with an average 
power generation of 11.26 kW per day, is the least appropri-
ate. This monthly and seasonal power generation estimate 
is helpful to organise the solar power demand to schedule 
resources when power generation is poor in advance.

Conclusion

This paper focuses on the prediction of solar power gen-
eration in Dhar District, Madhya Pradesh, India. Various 
meteorological data characteristics are utilised to estimate 
output power, both with and without considering irradi-
ance. Multiple machine learning techniques were employed 
to model data covering a period of 36 months. The cross-
correlation analysis revealed that temperature and irradi-
ance are the two main meteorological variables that sig-
nificantly influence the prediction of solar power. Based on 
the implementation of multiple machine-learning models, 
it can be concluded that the LR model has an R2 score of 
approximately 0.99995, with RMSE and MAE values of 
0.121 and 0.0091, respectively. Similarly, the Ridge model 

Fig. 13   Seasonal power forecast
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has R2 score, RMSE, and MAE values of 0.99994, 0.122, 
and 0.0097, respectively, with solar radiation as the input 
variable. The EN model has the lowest performance among 
all models, with an R2 score of 0.87024, an RMSE of 5.941, 
and an MAE of 4.6947. In DL, the FFNN method has 10 
layers with 512 neurons in each, and the Rectified Linear 
Unit (ReLU) activation function with Adam Optimizer 
has an R2 score of 0.9987 with RMSE and MAE values of 
0.0542 and 0.0462, respectively. Solar PV power generation 
is now a measurable part of overall power generation from 
multiple sources. This forecast helps in effectively manag-
ing surplus or insufficient power supply throughout differ-
ent months or seasons. By employing precise forecasting 
methods and effectively regulating the equilibrium between 
supply and demand, we can prevent issues such as power 
outages or excessive power generation. Additional meteoro-
logical factors, such as cloud ceiling, precipitation, altitude, 
sunshine length, visibility, air quality index (AQI), and oth-
ers, can be considered to determine the relationship between 
expected power and to improve the model's accuracy, we 
can also combine these algorithms using the ensemble and 
stacking methods.
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