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Abstract
Supplying local electrical and heat demands through the energy hub (EH) system and renewable sources such as photovol-
taic (PV) can increase the reliability system. The EH includes combined heat and power units, PV arrays, and storage units 
and it can trade energy with the wholesale energy markets. The EH operator (EHO) purchases the required energy from the 
day-ahead market regarding the forecasted amount of demand and the output power of PV system. Then, the EHO can trade 
energy with the real-time energy markets regarding the uncertainties of PVs and real-time energy prices to minimize its total 
operation cost. Although the EHO needs to determine the optimal scheduling of its resources considering the participation in 
the both DA and RT energy markets, this problem is yet needs to the appropriate models. Therefore, a risk-based two-stage 
stochastic optimization problem is proposed in this paper to model the decision making problem of the reliability EHO in the 
DA and RT energy markets considering the uncertainties. For this purpose, the uncertainties of PV system and RT energy 
prices are modeled using the two-stage stochastic approach where the risk of EHO’s decisions is managed using Tail-Value-
at-Risk (TVaR). The results show that with increasing the risk parameters, the EHO increases the purchased power from the 
DA market as the first-stage decision regarding which the trading energy with RT market decreases. Therefore, an energy at 
a reasonable price and with high reliability is provided to energy hub.

Keywords Energy hub · Flexible reliability · Short-term operation · PHEV · Real-time market

Nomenclature

Indices
E  Electricity
F  Step of the CHP part load curve
G  Natural gas
H  Heat
I  input carrier (e or h)
J  Output carrier (e or h)
T  Time (hour)
Ω  Total scenario
ω  Scenario

Parameters
CBLt  Basic load (kW)
De(ω, t)  Electricity load (kW)
Dh(ω, t)  Heat load (MW)
EPHEVs
min

  Minimum charge status of PHEVs (kWh)
EPHEVs
max

  Maximum charge status PHEVs (kWh)
Loadactual

t
  Actual consumption (kW)

PBoil
h

(�, t)  Heat power generated by boiler (MW)
PBoil
h max

  Maximum heat power generated by 
boiler (kW)

PCHP
e

(�, t)  Electricity power generated by CHP 
(kW)

PCHP
h

(�, t)  Heat power generated by CHP (kW)
PDG
nts   Power generated by DG (kW)

P
DG

k
(�, t)  Maximum power generated by DG (kW)

Pr
RTP
t

  Real-time pricing tariff
RegulatedTarifft  Standard electricity tariff
SDG
n

(t)  Cost of DG ($/kWh)
α  confidence level
β  risk coefficient
ξ  value at risk
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γBoil  Conversion efficiency of boiler to pro-
duce heat from gas

�CHP
e

  Conversion efficiency of CHP to produce 
electricity

�CHP
h

  Conversion efficiency of CHP to produce 
heat

γPV  Energy from PV that is stored in PHEVs 
(kWh)

γrt  The amount of energy stored from pur-
chasing power in the real time market

ηst  Storage efficiency
η(ω)  Variable that makes profit/cost positive ($)
�
gas

h
  Gas price ($/m3)

�P
e
(t)  Day-ahead energy market price ($/kWh)

�rt
e
(�, t)  Real-time energy market price ($/kWh)

π(ω)  Scenario probability

Variables
Pboil
h

(�, t)  The power produced by the boiler 
(kW/m3)

PCHP
h

(�, t)  The power generated in CHP unit 
(kW/m3)

Pdch(ω, t)  The amount of discharged energy from 
the storage units (kWh)

PDG
nts

(t)  The power generated of DG (kW)
PP
e
(�, t)  Trading energy with day-ahead market 

(kWh)
Prt
e
(�, t)  Trading energy with real-time market 

(kWh)
SOCPHEVs(ω, t)  Energy stored in PHEVs (kWh)
SOC(ω, t)  Energy stored in electrical energy storage 

(kWh)
PPHEVs(ω, t)  Power generated by PHEVs( kWh)
νCHP(ω, t)  binary number used in CHP unit
f(x, ω)  objective function for the uncertain vari-

able x under the scenario ω

Introduction

Supplying the electrical and heat demand of consumers produce 
the high amount of Carbon Dioxide  (CO2) in the world. One of 
the main solutions to decrease this problem is meeting the local 
electrical and heat energy demands through the concept of energy 
hubs (EHs). In EHs, there are various energy resources such as 
combined heat and power (CHP) units, energy storages, and pho-
tovoltaic (PV) systems regarding which the EH operator (EHO) 
decides to supply demand. Moreover, the EHO participates in the 
wholesale energy markets to purchase its required energy. The 
EHO purchases energy from the day-ahead (DA) market regard-
ing the forecasted parameters such as demand and output power 
of PV system. In the real-time (RT) operation regarding the 

uncertainty of PV system, the EHO may decide to trade energy 
with the RT market to minimize its total operation cost. There-
fore, the aim of this paper is to propose a new decision making 
problem for the EHOs in the both DA and RT energy markets 
considering the uncertainties of PV system and RT energy prices.

Literature Review and Contribution

Literature Review

The optimal scheduling problem of the energy hubs is investi-
gated in many studies. The operation problem of an energy hub 
system consisting of various carriers, i.e. electrical, heat, gas, 
and water, is modeled as a multi-objective function in (Dorahaki 
and Moghbeli 2020) [1]. In this problem, the demand response 
programs and electrical energy storages are employed by the 
system operator to increase the flexibility of the system. The 
day-ahead scheduling problem of the electricity and natural gas 
networks in the presence of energy hubs is modeled as a two-
stage problem in [2]. In the first-stage, the day-ahead schedul-
ing problem of each energy hub is solved regarding which the 
optimal scheduling of electricity and gas networks is determined 
by the independent system operator (ISO) in the next stage. The 
optimal scheduling problem of an energy hub system including 
electrical energy storage, photovoltaic arrays, combined cool-
ing heating and power (CCHP) system, and electric vehicles 
is done in (Hou and Wang 2020) [3]. The problem is modeled 
as a stochastic model with the aim of minimizing the operation 
cost of the system in a rolling horizon fashion where the uncer-
tainties is managed using a chance constrained programming 
approach. The authors of (Faraji and Ketabi, 2020) [4] propose a 
new stochastic optimization method to model the optimal sched-
uling of the energy hubs considering the N-1 contingency. A 
multi-objective optimization approach is developed in (Miao 
and Jermsittiparsert 2021) to model the operation problem of 
energy hub to minimize the operation cost and pollution emis-
sion considering demand response programs [5]. The authors of 
[6] proposed a mathematical model for the day-ahead operation 
problem of an energy hub system with the aim of minimizing 
the operation and the emission pollution costs. The scheduling 
problem of an energy hub system is modeled as a probabilistic 
scenario-based model in [7] considering the uncertainties of 
renewable energy sources and electricity market price. In this 
study (Lu and Feng 2020), an optimal load dispatch model is 
proposed for a community energy hub system to minimize the 
operation cost of the system. In this model, the uncertainties of 
electric vehicles are modeled through the Monte Carlo simu-
lation approach and also the uncertainties of electrical energy 
price are modeled using a robust optimization approach. The 
day-ahead scheduling problem of an energy hub system is mod-
eled as a scenario-based stochastic model in (Dini and Lehtonen 
2019) considering the uncertainties on load, energy market 
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price, renewable energy sources, and electric vehicles [8]. The 
operation problem of a renewable energy-based energy hub sys-
tem is formulated as a multi-objective problem in (Eladl and 
Saadawi 2020) with the aim maximizing the social welfare and 
minimizing Carbon Dioxide  (CO2) emission [9]. The authors of 
(Chamandoust and Bahramara 2019) proposed a multi-objective 
optimization problem of an energy hub system to minimize the 
operation cost, the pollution emission, and the deviation of the 
electrical load profile from its desired value. Moreover, the shift-
able load strategy is employed by the system operator to shift the 
load regarding the market energy price [10].

Contribution

Reviewing the previous studies on the reliability of energy 
hub systems reveals that the optimal scheduling problem of 
the reliability in energy hub systems considering the both 
day-ahead and real-time energy markets is not investigated. 
Since the optimal scheduling of reliability in energy hub’s 
resources considering the participation of the energy hubs in 
these market is a great challenge for these systems, absence 
of the appropriate decision making models is a major 
research gap. Therefore, in this paper, a new two-stage sto-
chastic optimization model is proposed for the reliability 
in energy hub systems for the optimal scheduling of their 
resources considering the day-ahead and real-time energy 
markets. For this purpose, the uncertainties of photovoltaic 
system and real-time energy price are modeled through a 
two-stage stochastic optimization model. In this model, 
the decision of the energy hub in the day-ahead market is 
considered as the first-stage decision and its decisions in 
real-time market and the optimal scheduling of reliability 
resources are considered as the second-stage decisions. 
Moreover, the risk of the energy hub’s decisions is managed 
through the Tail Value at Risk (TVaR) approach. Therefore, 
the main contributions of this paper are as follows:

• Modeling the decision making problem of an energy hub 
in the day-ahead and real-time energy markets as a risk-
based two-stage stochastic optimization approach to flex-
ible Reliability.

• Managing the risk of energy hub’s decisions in the day-
ahead and real-time energy markets through the TVaR 
approach.

Paper Organization

The rest of this paper is organized as follows. The mathematical 
model of the problem is presented in Section 2. Numerical results 
are given in Section 3 and the conclusions are done in Section 4.

System Model

Modeling of the Electricity Market

The energy market players including generation companies 
(Gencos), large consumers, and retailers participate in the 
different markets to trade energy with each other (Rahmatian 
and Ghaderi Shamim 2021). The offers of producers and the 
bids of consumers are sent to the market operator regarding 
which the energy markets are cleared. The output of the 
markets is the energy market prices and the amount of power 
trading among the players. Some of the energy market play-
ers such as the energy hubs with low capacity participate in 
the different markets as the price-taker players. It means that 
they cannot change the market results and they accept the 
energy price of the markets. The energy hubs can participate 
in the day-ahead and real-time energy markets to purchase 
their required energy [11].

Risk Measure

Since there are several scenarios in the stochastic optimiza-
tion approach, the objective functions may have different 
values. To better analysis the output results, the expected 
value is considered for the objective function. Moreover, 
to manage the difference between the expected value and 
the amount of objective function in each scenario, the risk 
measure approaches are employed. For this purpose, in 
this paper, a combination of two measures called VaR 
and TVaR is used (see Fig. 1). The VaR is formulated as 
follows:

The equation of profit maximization with TVar is obtained 
as follows:

Here, 𝜉 represents VaR, η(ω) is a variable that makes the 
profit/cost positive, and f(x, ω) is the objective function for 
the uncertain variable x under scenario ω.

(1)CP
e
(�, t) = PP(�, t)�P(�, t)

(2)
CRTP
e

(�, t) =
∑T

t=1
CBLt ∗ RegulatedTariff t

+
∑T

t=1

(

Loadactual
t

− CBLt
)

∗ Pr
RTP
t

(3)
VaR (𝛼, x) = max { 𝜉 ∶ P(𝜔|f (x,𝜔) > 𝜉) ≤ 1 − 𝛼),∀𝛼 ∈ (0, 1)

(4)TVaR = max � −
1

1 − �

∑Ω

�=1
�(�)�(�)

(5)−f (x,�) + � ≤ �(�), �(�) ≥ 0
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Modeling of Objective Function and Constraints 
for the Short‑Term Operation Mode

The architecture of the proposed energy hub in this paper is 
shown in Fig. 2. The electrical demand of energy hub can be 
supplied through purchasing energy form the day-ahead and 
the real-time market, and the optimal scheduling of energy 
hub’s resources, i.e., generators, CHP units, PHEVs, and 
solar panels. To reduce the effects of intermittent behav-
ior of solar energy system, the PHEVs are employed to 
store the extra energy of this system in the hours with high 
power generation. The thermal demand of the system is 
supplied through the CHP units and boiler where both of 

these resources purchase their required natural gas from the 
gas market. Since the energy market price of the real-time 
market faces with high uncertainties, it is modeled in the 
decision-making problem of energy hub through the sto-
chastic optimization approach. In this model, the amount of 
purchased energy from the day-ahead market is considered 
as the first-stage decision or wait and see. The amount of 
purchased energy from the real-time market and the optimal 
scheduling of energy hub’s energy resources are considered 
as the second-stage decisions or wait and see ones.

The mathematical model of the proposed energy hub is 
modeled in this section [11]. The objective function of the 
energy hub is as (6).

(6)Min TC =
∑Ω

�=1
�(�)

∑T

t=1

[

PP
e
(t)�P

e
(t) + Prt

e
(�, t)�rt

e
(�, t) + SDG

n
(t) PDG

nts
(t) + �

gas

h

(

Pboil
h

(�, t) + PCHP
h

(�, t)
)

−
(

Pdch(�, t)�rt(�, t)�st +
(

PPHEVs(�, t)�PV (�, t)�st
]

Fig 1.  Diagrams of VaR and 
TVaR (Alexander and Baptista 
2014) [12]

Fig. 2  Overview of the assumed 
energy hub
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Where Pdch(ω, t) is the amount of discharged energy from 
the storage units, (Pdch(ω, t)λrt(ω, t)ηst is the profit from the 
electricity storage, (PPHEVs(ω, t)λPV(ω, t)ηst is the profit from 
the transfer of energy from PHEVs to the energy hub, and 
�
gas

h
 is the price of natural gas. To add the decision risk to this 

formulation, the TVaR is modeled as follows [13]:

Where β is a parameter that manages the balance of risk and 
objective function. The higher β means the risk is more impor-
tant for the decision-maker [11]. Risk constraints are as follows:

(7)Min TVAR = TC +

[

�

(

� −
1

1 − �

)

∑Ω

�=1
�(�)�(�)

]

(8)

∑T

t=1

[

PP
e
(t)�P

e
(t) + Prt

e
(�, t)�rt

e
(�, t) + SDG

n
(t) PDG

nts
(t) + �

gas

h

(

Pboil
h

(�, t) + PCHP
h

(�, t)
)

−
(

Pdch(�, t)�rt(�, t)�st +
(

PPHEVs(�, t)�PV (�, t)�st
]

− � − �(�) ≤ 0

The proposed objective function is solved considering 
the technical constraints of energy hub’s resources as fol-
lows [14].

• CHP’s constraints: Since the energy hub is assumed to 
contain CHP units, the constraints related to the feasible 
output compositions (heat versus electricity) should be 
considered. Fig 3. shows the CHP’s feasible heat-elec-
tricity output compositions, which should fall within an 
enclosed area. According to this figure, the constraints 
related to CHP are as follows [11]:

(9)�(�) ≥ 0

(10)PCHP
e

(�, t) +

(

PA − PB

HB

)

PCHP
h

(�, t) ≤ PA.�
CHP(�, t)

(11)

P
CHP

e
(�, t) −

(

P
B
− P

C

H
B
− H

C

)

P
CHP

h
(�, t) ≥

[

P
B
− H

B

(

P
B
− P

C

H
B
− H

C

)

�CHP(�, t)

Where νCHP(ω, t) is a binary variable showing whether the 
CHP unit is on or off at the time t in the scenario ω.

• Boiler constraints: The output of the boiler unit also has 
an upper and lower limitations, which are represented as 
follows:

• Electrical energy balance: The electrical demand is met 
with purchasing energy from the day-ahead and real-time 
energy markets, PHEVs, CHP, diesel generators, and the 
energy discharged from storage units as described in (14).

Here, γrtand γPVare the coefficients of The amount of energy 
stored from purchasing power in the real time market, and 
energy from PV that is stored in PHEVs, respectively.

• Heat energy balance: The heat demand is met by boiler and 
CHP units as modeled in (15).

• Energy storage and PHEVs constraints: The constraints 
related to the storage units and PHEVs are as follows:

(12)PCHP
e

(�, t) −

(

PD − PC

HC

)

PCHP
h

(�, t) ≥ PD.�
CHP(�, t)

(13)0 ≤ PBoil
h

(�, t) ≤ PBoil
h max

(14)

D
e(�, t) = P

P(t) + P
rt(�, t) + P

DG(�, t)

+ P
CHP

e
(�, t) + �PVPPHEVs(�, t) + P

dch�rt (�, t)

(15)Dh(�, t) = P
gas

Boil
(�, t)�Boil

h
+ P

gas

CHP
(�, t)�CHP

h

Fig. 3  The enclosed area representing the feasible heat-electricity 
output compositions of the CHP unit

Table 1  Assumed energy hub specifications

Amount Parameter Amount Parameter

0.75 γBoil 1 β
0.4 �CHP

e
0.95 α

0.45 �CHP
h

20
 
�gas

(

$

kW

)
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(16)E
PHEVs(�, t) = E

PHEVs(�, t − 1) +
(

1 − �PV
)

P
PV (�, t) − P

dch(�, t)�PHEVs

(17)EPHEVs
min

≤ EPHEVs(�, t) ≤ EPHEVs
max

(18)Est(�, t) =
(

1 − �st
)

Pst(�, t) − Pdch(�, t)�st

(19)Est
min

≤ Est(�, t) ≤ Est
max

Table 2  Assumed demand and 
daily market specifications

Hour Day-ahead prices ($/
kWh)

Electricity demand 
(kW)

Heat demand (kW) Average price of 
real-time market ($/
kWh)

1 26.34 292.2 42.13 22.43
2 22.86 275.8 38.79 14.93
3 19.64 264.8 25.65 11.37
4 16.66 285.64 48.23 11.73
5 17.38 275.58 87.27 12.98
6 21.9 266.7 76.26 12.65
7 25.89 288.32 80.7 15.38
8 29.61 316.78 90.52 18.78
9 29.93 341.61 81.01 26.17
10 34.28 361.88 128.41 28.81
11 37.25 375.32 77.94 34.07
12 39.17 383.55 52.4 38.78
13 39.9 388.82 42.39 37.75
14 41.27 392.88 41.47 38.3
15 42.11 396.06 34.65 40.03
16 42.86 398.78 47.6 33.4
17 44.26 399.54 81.92 36.64
18 42.32 395.26 89.15 34.75
19 39.29 378.1 80.28 36.64
20 36.11 365.25 90.68 34.57
21 39.3 360.69 98.95 33.08
22 36.2 353.48 142.58 31.42
23 30.47 339.56 101.54 29.35
24 28.73 319.79 45.42 27.68

Fig. 4  Generated real-time market price scenarios Fig. 5  Generated solar energy production scenarios
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• DG’s constraints: Since the energy hub contains diesel 
generators, the constraints related to these generators are 
modeled as follows. Also, since the power generation 
cost of the diesel generator is modeled as a step function, 
this generator can only operate at one step, which should 
be between its upper and lower limits.

• Uncertainty equation: The uncertainties related to the price 
of real-time energy market and the output of solar produc-
tion which is stored in PHEVs is modeled in this paper.

LOLE and LOLP are defined as Equations (21) and (22), 
respectively. These values must remain lower than a certain 
limit over the planning period.

The proposed approach in this paper to solve the pre-
sented model in the previous. First, different scenarios are 

(20)P
DG

n−1
≤ PDG

n
≤ P

DG

n

(21)LOLEl(y) ≤ LOLE
t argeted

l

(22)LOLPl(y) ≤ LOLP
t argeted

l

generated for all times, then, using equation (6), the energy 
required for the energy hub is estimated. Finally, using equa-
tion (7), the amount of risk for the energy hub is calculated.

The resulted non-linear model is solved with the CPLEX 
solver in the GAMS software in a computer with a CPU core 
i5-2.5GHz and 4GB RAM.

Numerical Results

To show the effectiveness of the proposed model, it is applied on 
an energy hub system. The specifications of the CHP and boiler 
units are given in Table 1. The efficiency of equipment and the 
operation region of the CHP unit are derived from (Alexander 
and Baptista 2014) and (Alipour and Zare 2014), respectively. 
In this study, the feasible operation region of the CHP unit is 
considered as the area enclosed in the following four points: 
A(0,24.7), B(18,21.5), C(10.48,8.1), and D(0,9.88). The initial 
charge of the storage unit and PHEVs are assumed to be 50MW 
and their minimum and maximum charge levels are assumed 

Table 3  The purchased energy from the day-ahead market

Hour Purchased 
energy (kWh)

Hour Purchased 
energy (kWh)

Hour Purchased 
energy 
(kWh)

1 0 9 0 17 0
2 0 10 0 18 0
3 0 11 375.32 19 94.27
4 0 12 383.55 20 327.94
5 0 13 388.82 21 0
6 0 14 0 22 0
7 0 15 396.06 23 339.56
8 0 16 0 24 174.91

Table 4  Specifications of the components chosen for the system with and without reliability consideration

Optimization approach Components Capacity (kW) Efficiency (%) Investment cost 
(million dollars)

Maintenance 
cost factor ($/
kWh)

Failure rate (%)

Total Heat Electricity

With reliability considera-
tion

Transformer 3 1000 89 - 89 1.66 0.0024 0.014
CHP 4 1125 40 40 80 0.487 0.0115 0.01
Heat generator 4 750 - 83 83 0.15 0.003 0.02
Solar unit 3 100 85 - 85 0.125 0.0014 0.017

Without reliability consid-
eration

Transformer 3 800 92 - 92 0.825 0.003 0.035
CHP 4 825 50 30 80 0.375 0.0125 0.025
Heat generator 4 - - - - - - -
Solar unit 3 100 85 - 85 0.125 0.0014 0.014

Fig. 6  Purchased energy in the real- time market with different sce-
narios
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to be 10 and 100 MW respectively. The time-dependent data 
related to electrical and heat demands, day-ahead and real-time 
energy market prices are given in Table 2. The standard devia-
tions assumed for the real-time price and the solar radiation are 
0.15 and 0.25, respectively. To model the uncertainties of solar 
radiation and real-time energy prices, 50 scenarios are gener-
ated for these parameters regarding which 2,500 scenarios are 
obtained. Then, regarding a scenario reduction technique, these 
scenarios are reduced to 200. These scenarios are shown in 
Figs. 4 and 5 in which the average value of the uncertain param-
eters and the scenarios 196 and 199 are shown. To investigate 
the effect of risk parameter on the decisions of the energy bub, 
two cases are defined, i.e., fixed and variable risk.

Fixed Risk

In this simulation, α and β are considered as the fixed param-
eters. Tables 3 and 4 shows the results of this simulation in 
terms of the amount of purchased energy from the day-ahead 
market. Figure 6 shows the amount of energy that the EHO 
trades with the real-time energy market. As shown in Fig. 6, 
the purchase energy decreases in hours 11-13 regarding the 
discharging power of PHEVs and storage units so that in 
some scenarios, the EHO can sell energy to the real-time 
market. Fig. 7 shows the rate of discharging power of stor-
age units and the rate of energy transferring from PHEVs 
to the network (V2H) at different hours. It can be seen that 
most of the discharging has been done during peak hours. 
Figures 8 and 9 show the amount of solar energy stored in 
PHEVs and the amount of natural gas entering in the CHP 
unit, respectively. As shown in Fig. 8, because of the exten-
sive use of stored energy in PHEVs, the storage levels in 
scenarios 196 and 199 are zero, but on average, some energy 

Fig. 7  Energy discharged from the storage units in different scenarios

Fig. 8  Energy stored in PHEVs

Fig. 9  Natural gas fed to the 
CHP unit
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has been stored in PHEVs. Figure 10 shows the amount of 
thermal energy produced by the boiler. Since the heat load 
is constant, there is not much fluctuation in the boiler out-
put. The final expected values (mathematical expectation) of 
cost and risk in this scenario are $ 260,137 and $ 269,722, 
respectively.

Variable Risk

This article proposed a hybrid strategy for modeling and 
formulation of the design of multicarrier microgrids (energy 
hubs) with reliability constraints. The proposed method 
involves developing a programming problem with the objec-
tive of minimizing operating and investment costs as well 
as the cost of energy not supplied for multiple loads. Mul-
tiple reliability indicators including the Cost of Energy Not Fig. 10  Thermal energy generated by the boiler

Fig. 11  Changes in the math-
ematical expectation of cost and 
risk versus risk factor

Fig. 12  Impact of risk daily and 
real-time market purchases
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Supplied (CENS), Energy Index of Reliability (EIR), Loss 
of Load Expectation (LOLE), and Loss of Load Probability 
(LOLP) were used in the optimization process to make sure 
of a reasonable level of reliability in meeting demand.

In the simulation with variable risk, the risk factor β is given 
values ranging from 0 to 100. Figure 11 shows the changes in 
the expectation of cost and the risk versus changes in the risk 
factor. Increasing the risk factor increases the expectation of 
cost and decreases the expectation of risk. Also, changing the 
importance of risk in decision-making (β) changes the deci-
sions made by the EHO. Figure 12 shows the hub’s decision to 

purchase from the day-ahead market for β=0 and β=1. In the 
case where the risk is considered, the hub increases the pur-
chased energy from the market. Since uncertainty is not con-
sidered in the day-ahead market, taking the risk into account 
can be expected to increase purchases from the day-ahead 
market. Figure 13 shows the average of the purchased energy 
from the day-ahead and real-time market at different hours in 
all scenarios. As shown in this Figure, with increasing the risk 
factor, the purchased energy from the real-time market reduces. 
On the other hand, the purchased energy from the day-ahead 
market increases when the risk factor increases.

Fig. 13  Changes in purchases 
from the daily and real-time 
markets versus risk factor

Table 5  Reliability indicators obtained for the system with and without reliability consideration

Results Year ENNS ( kWh) EIR ( pu ) LOLE (Hour) LOLP (%)

Electricity Heat Electricity Heat Electricity Heat Electricity Heat

With reliability 
consideration

1 9270079 1577 0.9997348 0.999168 2.4192 6.9 0.028 0.08

2 1025 1728 0.9997334 0.991709 2.4192 6.9 0.028 0.08
3 1333 1895 0.9997322 0.991736 2.4192 6.9 0.028 0.08
4 1251 2079 0.9997311 0.99176 2.4192 6.9 0.028 0.08
5 1382 2280 0.9997301 0.991782 2.4192 6.9 0.028 0.08
1-5 5719 9559 0.999732 0.99173 12.096 34.6 - -

Without reliability 
consideration

1 5792 197100 0.9983426 0.8960112 15.12 863.9 0.0017 0.1

2 6402 216100 0.9983342 0.8963738 15.12 863.9 0.0017 0.1
3 7122 236900 0.9983758 0.8967035 21.489 863.9 0.0017 0.1
4 9885 259800 0.9978748 0.8970032 61.34 863.9 0.0017 0.1
5 15250 285100 0.9970192 0.8972756 91.88 863.9 0.0017 0.1
1-5 44450 1195000 0.9979165 0.8967332 201.95 863.9 - -
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To evaluate the method, multicarrier microgrid modeling 
was performed with and without reliability indicators. The 
results of the solution process, including the optimal values and 
specifications of microgrid components are given in Tables 3 
and 4. In this evaluation, LOLE and LOLP were determined to 
be 10 hours (per year) and 0.1% (per year) respectively.

As shown in Table 5, in the model where reliability is 
taken into account, a larger CHP generator has been chosen 
to ensure greater electrical and thermal outputs. In this model, 
the type-3 transformer has been selected because of its lower 
unavailability (outage), the type-4 CHP generator has been 
chosen for its low unavailability and its ability to supply mul-
tiple carriers simultaneously, the type-4 heat generator has 
been selected for its low maintenance and good efficiency in 
supplying part of the required thermal energy, and finally, the 
type-3 photovoltaic unit has been chosen because of its ability 
to generate electricity at negligible cost and its good capacity 
and efficiency considering the investment cost. In comparison, 
the model where reliability is ignored has chosen a cheaper 
CHP generator and no heat generation unit.

As can be seen, considering the reliability constraints has 
led to significantly improved CENS. Table 6 compares the 
gross costs of the system over the planning period. It can be 
seen that reliability constraints have affected the type and 
size of components chosen for the multicarrier microgrid 
and the investment cost. It should be mentioned that con-
sidering reliability has drastically increased the overall cost 
of the system by restricting the options to the component 
that can satisfy reliability constraints. However, it also has 
significantly improved the system’s reliability indicators. 
These results demonstrate the ability of the proposed method 
to make sure that the demand is met with appropriate reli-
ability. In the end, the cash flow diagram of the microgrid is 
drawn in Fig. 14 for a better economic analysis. According to 

this diagram, the energy hub with reliability constraints will 
pay back the capital spent in its development in about four 
and a half years. Comparing the proposed method with the 
methods provided in (Bahramara, 2021; [15]) shows that it 
results in a 22-24% increase in investment cost by requiring 
the energy hubs to meet the reliability requirements. Finally, 
it should be mentioned that while the analysis of multicarrier 
microgrid design with reliability consideration may prolong 
the optimization process, it certainly gives the planner a bet-
ter understanding of the risks associated with changes in 
system costs and helps achieve more reliable and realistic 
results from the developer’s point of view.

Conclusion

In this study on the short-term operation of a network consist-
ing energy hub with the goal of improving reliability under dif-
ferent risk levels with TVaR used as a risk measure, the results 
showed that increasing the assumed risk level will result in 
safer operation of the network and energy hubs acting more 
proactively in supplying their own loads. The result of this 
method can be examined from two perspectives: reduced oper-
ating costs and reduced frequency of blackouts due to improv-
ing reliability of energy hubs.

Data Availability All data generated or analyzed during this study are 
included in this published article (and its supplementary information files).
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Fig. 14  Cash flow diagram of 
the considered multicarrier 
microgrid
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