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Abstract
The prediction of global solar radiation (GSR) for various regions is of great importance as it provides guidance for the 
design, modeling, and operation of solar energy conversion systems, the selection of suitable regions, and even informs future 
investment policies for decision-makers. This paper presents the methods for predicting hourly mean solar radiation using 
support vector machines (SVM), which is a machine learning algorithm based on statistical learning theory. The primary 
objective of this paper was to investigate the use of a support vector machine (SVM) based on quantitative structure–activ-
ity relationships, specifically a single support vector machine (SSVM) and a bootstrap aggregated support vector machine 
(BASVM), to predict hourly global solar radiation in Bouzareah city. A dataset consisting of 3603 data points was employed 
to develop both the SSVM and BASVM models. Bootstrap aggregation of SVM is utilized to enhance the accuracy and 
robustness of SVM models constructed from limited training datasets. The training dataset is resampled using bootstrap 
resampling with replacement to create an ensemble of SVM models, each trained on a different sample from the training 
set. A support vector machine model is developed, and individual Support Vector Machines (SVMs) are then combined to 
form a Bootstrap Aggregated Support Vector Machine (BASVM). Experimental data for global solar radiation (GSR) were 
compared to the calculated GSR, and excellent correlation coefficients (R) were found (0.9913) during the testing phase. 
This novel BASVM model could be utilized by researchers and scientists to design high-efficiency solar devices.
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Introduction

The demand for renewable energy has been rapidly increas-
ing in recent years due to the negative effects of fossil fuel-
based energy sources on our environment and their contri-
bution to climate change. Consequently, there has been a 
growing interest in clean energy resources, such as solar 
energy [1]. As a result, predicting solar radiation reaching 
the Earth's surface has paramount importance for various 

applications, including engineering designs, heating and 
cooling systems, building energy systems, medical studies, 
agriculture, climatological research, evapotranspiration stud-
ies, solar collector efficiency, and seawater desalination [2, 
3]. Reliable solar radiation statistics are essential for achiev-
ing successful outcomes in any of these fields of research.

Algeria is strategically positioned in the Sunbelt, offering 
a significant advantage in terms of its solar energy potential. 
Throughout the national territory, annual sunlight duration 
exceeds 3,000 h, and in the high plateaus and the Sahara, 
it can reach up to approximately 3,900 h [4]. Regrettably, 
obtaining accurate solar irradiation measurements in vari-
ous regions of Algeria remains a challenge, primarily due to 
the high costs associated with measurement equipment such 
as solarimeters and pyranometers, as well as the expense, 
maintenance, and calibration requirements of the systems 
involved. While Algeria hosts numerous meteorological sta-
tions in different parts of the country, the availability of solar 
irradiation measurements is not always guaranteed. This is 
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often due to issues related to recording problems caused 
by frequent power outages, especially during the summer 
months, or limitations in the number of variables that can 
be recorded. As a result, it becomes significantly more 
important to employ sophisticated procedures for accurately 
estimating solar radiation using readily available meteoro-
logical data [5]. In light of the absence of solar radiation 
measurements in all regions of the Earth, various models 
have been devised to estimate solar radiation in areas lacking 
monitoring stations. The progress in developing global solar 
radiation models is continuous; however, it's essential to rec-
ognize that these models may produce differing outcomes 
across various regions. Consequently, it holds significance 
to construct location-specific models whenever possible. As 
part of this initiative, a study was conducted to formulate 
solar radiation models customized explicitly for India [6].

Over time, several artificial intelligence (AI) methods for 
predicting global solar radiation on a horizontal surface have 
been developed. These methods include the support vec-
tor machine approach for estimating global solar radiation 
while accounting for the influence of fog and haze [7], as 
well as the least squares-support vector machine (LS-SVM) 
[8]. Hansen and Salamon [9] introduced the concept of an 
aggregated or stacked neural network, which enhances a 
model's generalization by training multiple neural networks 
and fusing their outputs. This highly effective approach has 
found wide application [10]. Research has demonstrated that 
stacked neural networks outperform individual ones in terms 
of generalization capability [11]. Literature studies have 
shown that artificial neural networks (ANN) are superior 
to traditional empirical models in predicting solar radiation 
(SR) [12]. Support vector machines (SVM), developed by 
Vapnik [13], have recently found wide application in com-
puter science, bioinformatics, and environmental science 
[14, 15]. Previous studies have proven that SVMs perform 
better than neural networks and other statistical models 
[14]. However, there is limited literature on the application 
of SVMs in predicting SR. Thus, the goal of this research 
work is to develop a support vector machine-based bootstrap 
aggregated support vector machine (BASVM) model to pre-
dict hourly global solar radiation received on the horizontal 
plane over one year in the Bouzareah region of Algeria. This 
prediction will be based on nine meteorological and clima-
tological parameters: Month, Day, Time (h), Average Tem-
perature (K), Relative Humidity (%), Atmospheric Pressure 
(mbar), Wind Speed (m/s), Wind Direction (°), and global 
solar radiation (Wh/m2).

To the best of our knowledge, no studies using a boot-
strap-based support vector machine for predicting solar 
radiation or in any other domain have been described in 
the literature. This will be the first study to predict global 
solar radiation using the BASVM Model. We will compare 
the individual support vector machine (ISVM) and a single 

support vector machine (SSVM) to the BASVM. The paper 
is structured as follows: Section 2 presents the materials 
and methods, Section 3 introduces the evaluation criteria, 
Section 4 covers the results and discussion, and Section 5 
summarizes the conclusions of our research.

Literature Review

The modeling of solar irradiation has been the focus of 
several research and studies, with the most significant con-
ducted in the last two decades. Quej et al. [16] employed 
three machine learning algorithms, specifically SVM, ANN, 
and ANFIS, to predict daily global solar radiation data for 
six stations in Mexico. The algorithms were trained using 
extraterrestrial solar radiation, rainfall, minimum tem-
perature, and temperature data. The comparative analysis 
revealed that SVM outperformed the other models, achiev-
ing the best results with a root mean square error (RMSE) 
of 2.578, mean absolute error (MAE) of 1.97, and coeffi-
cient of determination  (R2) of 0.689. Dos Santos et al. [17] 
evaluated hourly and daily direct solar radiation using two 
methods, ANN and SVM, with 13 years of data. The results 
demonstrated the positive performance of both methods. 
Lima et al. [18] applied three predictive models, namely 
multilayer perceptron back propagation neural network 
(MLPBP-NN), the Radial Basis Function network (RBF), 
and the support vector machine (SVM), to predict daily solar 
radiation. The input variables used for these models were 
solar irradiance and temperature. The results showed that 
the proposed model exhibited high efficiency in forecasting 
daily solar radiation, especially in areas located close to the 
Equator line.

Takilate et al. [19] developed a novel approach to esti-
mate inclined irradiation in 5-min intervals across three 
distinct climatic regions: Algiers and Ghardaïa in Algeria, 
and Malaga in Spain. The model is a combination of two 
conventional models, namely the Perrin Brichambaut and 
Liu and Jordan models. The results demonstrated that the 
normalized root mean square error (nRMSE) ranged from 
4.7% to 6.41%, indicating the model's accuracy in predict-
ing inclined irradiation in the specified areas. Gao et al. 
[20] propose a hybrid hourly irradiance forecasting method 
that combines CEEMDAN (Complete Ensemble Empiri-
cal Mode Decomposition with Adaptive Noise) with Con-
volutional Neural Network (CNN) and Long Short-Term 
Memory Network (LSTM). They conclude that the proposed 
hybrid approach yields better results than a large number 
of alternative methods. Peng et al. [21] introduced a novel 
hybridization methodology, primarily relying on the utiliza-
tion of the recent CEEMDAN algorithm as a pre-processing 
technique, in combination with the sine cosine search algo-
rithm (SCA) for feature selection, and Bidirectional Long 
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Short-Term Memory (BiLSTM) as the core prediction 
model. The proposed CEEMDAN-SCA-Bi-LSTM model 
demonstrated superior forecasting accuracy compared to 
seven reference models. Keshtegar et al. [22] Conducted 
a study that evaluated the effectiveness of four empirical 
regression methods – namely Kriging, MARS, RSM, and 
M5 Tree – in accurately assessing solar energy using diverse 
input data from Adana and Antakaya in Turkey. The findings 
revealed that the Kriging model exhibited superior perfor-
mance when compared to the cyclic MARS, RSM, and M5 
Tree models. This investigation took place in the context 
of West Africa. Nwokolo et al. [22] Provided a quantitative 
evaluation of the global solar energy literature. Utilizing a 
range of models such as sunlight-based, temperature-based, 
precipitation-based, cloud-core, comparative humidity-
based, and hybrid parameter-based models, they amassed a 
collection of 356 empirical models and 68 functional forms. 
These studies collectively showcase the evolution of solar 
irradiation modeling, with a growing emphasis on the inte-
gration of advanced algorithms and hybrid methodologies 
to achieve more accurate and reliable predictions, In the 
context of this present research work, we have developed a 
non-linear model based on bootstrapped aggregated support 
vector machine (BASVM) for predicting hourly global solar 
radiation received on the horizontal plane over one year in 
the region of Bouzareah (Algeria).

Material and Methods

In this research study, we utilized parameters widely used in 
the literature [23–26] we used hourly data for one year, We 
collected hourly data for one year (2015) from the radiomet-
ric station 'Shems,' which is part of the Centre for Renewable 
Energy Development (CDER) located in Bouzareah, Algiers, 
at a latitude of 36.8° and a longitude of 3.17°. These data 
were applied to predict hourly global solar radiation using 
both the single support vector machine (SSVM) and the 
bootstrapped aggregated support vector machine (BASVM) 
with nine different parameter configurations. Figure 1 illus-
trates the measurement instruments at the Bouzareah station 
in Algeria.

This database (DB) comprises 3603 data points and has 
been utilized to optimize the parameters of the bootstrapped 
aggregated support vector machine (BASVM). In the data-
base, values less than 120 W/m2 (from 5 a.m. to 5 p.m.) 
have been excluded, as defined by the World Meteorological 
Organization (WMO), which establishes sunshine duration 
when global solar radiation values exceed 120 W/m2 [28]. 
The statistical analysis of the input and output data was per-
formed in terms of the minimum (min), the average (mean), 
the maximum (max), the sum (sum), the sample variance 

(Var), and the standard deviation (STD), all of which are 
detailed in Table 1.

Support Vector Machines (SVM)

Support Vector Machine (SVM) is a supervised learning 
method that has become exceedingly popular for predicting 
meteorological data such as temperature [29], wind speed 
[30], and global solar radiation [7] in the past few years. Due 
to its simplicity and flexibility, it can handle a range of clas-
sification and regression difficulties in different fields, for 
example, mechanical engineering [31], energy [32], finance 
[33], and other fields. SVMs distinctively afford balanced 
predictive performance, even in studies where sample sizes 
may be limited.

The regression function can use the nonlinear relationship 
between the input and output in a support vector machine 
model. The output of the SVM model is obtained by the fol-
lowing equation [34]:

f
(
xi
)
 : the predicted data of the SVM model.

∅
(
xi
)
 : the implicitly constructed nonlinear function that 

transforms input finite-dimensional space into higher-dimen-
sional space.

ωT : This is the weight vector, which corresponds to the 
coefficients associated with the feature vector in the high-
dimensional feature space. It helps determine the importance 
of each feature in the regression process.

b : the bias of the SVM model.
i = 1,2,…,n: This indicates that the regression function is 

calculated for each input sample in the dataset, where n is 
the total number of samples.

The dataset has a D-dimensional input vector xi ∈ RD and 
a scalar output  yi ∈ R.

The following equations provide the SVM optimization 
model (for the training set):

(1)f
(
xi
)
= ωT∅

(
xi
)
+ b, i = 1, 2,… , n

Fig. 1  Photo of the measuring station at CDER [27]
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2
‖w‖2 : represents the regularization term or the norm of 

the weight vector.
C : the factor that balances model complexity with empiri-

cal risk ‖w‖2
ξ∗
i
 : the slack variable to denote the distance of the ith 

sample outside of the ε-tube.
As a standard nonlinear constrained optimization problem, 

the above problem can be resolved by constructing the dual opti-
mization problem based on the Lagrange multipliers techniques:

K(xi, xj) : the kernel function satisfying the Mercer’s 
condition;

aianda
∗
i
 : the nonnegative Lagrange multipliers.

Bootstrap Aggregated Support Vector 
Machine (BASVM)

One crucial strategy for enhancing the robustness and 
performance of prediction models involves improving a 
collection of prediction models, such as Support Vector 

(2)

⎧⎪⎪⎨⎪⎪⎩

min R(w, ξ, ξ∗, ε) =
1

2
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1
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i=1

�
ξi + ξ∗

i

��

subjective to ∶ yi − wTφ
�
xi
�
− b ≤ ε + ξi

wTφ
�
xi
�
+ b − yi ≤ ε + ξi
ξ∗, � ≥ 0
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(4)
ŷ = f

(
xi
)
=
∑N

i=1

(
ai − a∗

i

)
K
(
x − xi

)
+ b, i = 1, 2,… , n

Machines (SVMs), and subsequently combining them. The 
development of the Bootstrap Aggregated Support Vector 
Machine model (BASVM) entails the process of sampling 
the training datasets using a MATLAB function. Figure 2 
provides a visual representation of the Bootstrap Aggregated 
SVM (BASVM), wherein multiple individual SVM models 
(ISVM) are created to model the same underlying relation-
ship. This approach enables a more robust and accurate pre-
diction through the combination of these individual models.

The process, focused on designing and optimizing the 
architecture of both ISVM and BASVM, is depicted in 
Fig. 3. It begins with resampling the training dataset using 
a bootstrap technique to generate a set of n different train-
ing datasets, where n takes values of 10, 15, 20, 25, and 30. 
Subsequently, for each of these training datasets, an ISVM 
model is constructed and evaluated using the testing dataset. 
The ISVM models that are developed are then combined by 
taking the average using the following equation:

where: yi is the output of the individual SVM "ISVM", y 
represent the output of the BASVM, and n is the number 
of ISVM models. The output of BASVM is the mean of the 
outputs of ISVM.

Modeling the Support Vector Machine

This research study introduces a novel approach aimed at 
enhancing and refining the architecture of the support vec-
tor machine. The method, as illustrated in Fig. 3, encom-
passes the creation of three distinct support vector machine 
models: the single support vector machine (SSVM), an indi-
vidual support vector machine (ISVM), and a bootstrapped 
aggregated support vector machine (BASVM, which stacks 

(5)y =

∑n

i=1
yi

n

Table 1  Numerical analysis of inputs and output

he total number of variables, including Month, Day, Time (h), Average Temperature (K), Relative Humidity (%), Atmospheric Pressure (mbar), 
Wind Speed (m/s), and Wind Direction (°), was reduced using a correlation matrix. This matrix is available as Supplementary Data (Table A1)

Min Mean Max Std Var Sum

Inputs Month 1.0000 6.4838 12.0000 3.1671 10.0305 23,361.0000
Day 1.0000 15.7144 31.0000 8.8143 77.6910 56,619.0000
Time (h) 5.0000 11.3369 17.0000 3.0199 9.1196 40,847.0000
Temperature (k) 280.2600 294.6823 308.5400 6.2204 38.6928 1.0617e + 06
Relative Humidity (%) 22.8800 58.6105 95.0000 11.4007 129.9762 2.1117e + 05
Pressure (mbar) 972.59 996.4820 102.0190 6.2419 38.9617 3.5903e + 06
Wind speed(m/s) 0.0800 4.2924 16.5900 2.2269 4.9589 1.5465e + 04
Wind direction(°) 0.0200 172.0608 359.7800 118.3522 1.4007e + 04 6.1993e + 05

Output Global solar radiation (Wh/m2) 120.0109 515.5762 1030.7230 247.8800 6.1444e + 04 1.8576e + 06
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10, 15, 20, 25, and 30 ISVMs). The bootstrap technique is 
employed to calculate the average of the outputs from these 
individual support vector machines. To predict hourly global 
solar radiation, the study leveraged SVM modeling and exe-
cuted the analysis using both MATLAB and STATISTICA 
software.

Evaluation Criteria

In our current study, we employed a variety of error meas-
ures to assess the effectiveness of our prediction models. 
These measures included the Correlation Coefficient (R), 

the Mean Absolute Error (MAE) along with its normalized 
counterpart (nMAE), the Model Predictive Error (MPE), 
the Root Mean Squared Error (RMSE) and its normalized 
counterpart (nRMSE), as well as the Standard Error of Pre-
diction (SEP) [35, 36]:

(6)y =
∑N

i=1
yi,cal∕N

(7)MAE =
1

N

∑N

i=1

���yi,exp − yi,cal
��� ; nMAE = MAE∕y

(8)MPE(%) =
100

N

n∑
i=1

|||||
(yi,exp − yi,cal

yi,exp

|||||

Figure 2  Bootstrap aggregated support vector machine

Fig. 3  Flow diagram for support 
vector machine development 
(SSVM, ISVM, and BASVM 
(Stacking of 10, 15, 20, 25, and 30 ISVM))
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According to Despotovic et  al. [37] the model accu-
racy is considered excellent if nRMSE < 10%, good if 

(9)RMSE =

�∑N

i=1 (yi,cal−yi,exp)
2

N
; nRMSE = RMSE∕y

10% < nRMSE < 20%, fair if 20% < nRMSE < 30% and low 
if nRMSE > 30%.

(10)SEP(%) =
Rmse

YI,exp

× 100

Fig. 4  The division of the whole database: a "Division 1", b "Division 2", c "Division 3"

Fig. 5  Effect of the division of 
database: a test phase, b total 
phase
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where n is the total number of data; Yi,exp and Yi,cal are the 
experimental and calculated data point of global solar radia-
tion, respectively.

Results and Discussion

Effect of the Division of Database

In our current study, we segregated the entire database into 
two distinct samples: the training dataset, which constitutes 
the bulk of the database, and a testing dataset, which we 
employed to gauge the performance of the Support Vector 
Machine (SVM) in practical scenarios and assess its predic-
tive prowess. A visual representation of this database parti-
tion is illustrated in Fig. 4.

Figure 5a and b showcase the results pertaining to the 
relative Mean Absolute Error (nMAE), relative Root Mean 
Squared Error (nRMSE), and the Standard Error of Predic-
tion (SEP) in the context of predicting hourly global solar 
radiation when considering different database partitioning 
schemes. Notably, the initial partition of the dataset, denoted 
as the first sample, yielded the most favorable outcomes dur-
ing the testing phase. Consequently, the individual support 

vector machine (ISVM) was built based on this initial data-
base partition.

Comparison between Different Stacking 
“BASVM” Models

In order to compare different stacking models of BASVM, 
five distinct stacking models were implemented: stacking 10 
ISVM, stacking 15 ISVM, stacking 20 ISVM, stacking 25 
ISVM, and stacking 30 ISVM. The process involved resa-
mpling the training data using bootstrap resampling with 
replacement [38] to create different sets of training data, 
resulting in 10 datasets for stacking 10 ISVM, 15 datasets 
for stacking 15 ISVM, 20 datasets for stacking 20 ISVM, 25 
datasets for stacking 25 ISVM, and 30 datasets for stacking 
30 ISVM.

For each of these stacking models, an Individual Sup-
port Vector Machine (ISVM) was created for each training 
dataset. Each ISVM was configured with eight parameters 
in the input layer and one unit responsible for generating 
the predicted values of global solar radiation in the output 
layer. The radial basis function kernel was consistently used 
for each model (SSVM, ISVM), while the values of C and 
gamma were varied within the ranges of 10 to 13 and 13 to 

Figure 6  nMAE, nRMSE, and 
SEP for the different stacking 
support vector machine models 
for testing sample

Fig. 7  Optimize the structure of 
ISVM and SSVM models
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14, respectively, with Nu set to 1. The optimal correlation 
coefficient (R) for each ISVM was selected through a trial 
and error method.

In each stacking model, the output of the Bootstrap 
Aggregated Support Vector Machine (BASVM) was com-
puted as the mean of the ISVM outputs, following Eq. 5. The 
performance of these developed stacking models was evalu-
ated using key metrics such as the correlation coefficient 
(R), relative Mean Absolute Error (nMAE), relative Root 
Mean Squared Error (nRMSE), and the Standard Error of 
Prediction (SEP) across different phases, including training, 
testing, and the total dataset [50].

A comparison of nMAE, nRMSE, and SEP for the 
various BASVM stacking models is depicted in Fig. 6. It 
becomes evident that the BASVM stacking 30 ISVM model 
demonstrates superior robustness compared to other stack-
ing models, with nMAE at 4.5487%, nRMSE at 6.2509%, 
and SEP at 6.2493%. Consequently, this paper places further 
emphasis on the BASVM (stacking 30 ISVM) model due to 
its remarkable performance.

Performance SVM Models

The structures of the individual support vector machine 
model labeled as "ISVM" and the single support vec-
tor machine model denoted as "SSVM" can be found in 
Fig. 7. An evident observation is that these support vector 
machines, "ISVM" and "SSVM," exhibit dissimilar struc-
tures and do not exhibit a harmonious relationship in their 
design. In particular, when comparing the thirty individual 
support vector machines in "ISVM" to the single support 
vector machine in "SSVM," it is notable that "ISVM" had a 
lower count of support vectors. Additionally, each individual 
support vector machine in "ISVM" achieved a higher cor-
relation coefficient "R" in contrast to "SSVM".

Based on the preceding discussion, two support vector 
machine (SVM) models were developed, namely SSVM 
and BASVM (stacking 30 ISVM models), with the primary 
objective of predicting global solar radiation. The plots and 
the parameters of linear regression are distinctly discernible. 
In Fig. 8a and b, a comparison is presented between the 
experimental and calculated global solar radiation, where 
agreement vectors closely approach the ideal values [i.e., 
a = 1 (slope), b = 0 (intercept), R = 1 (regression coefficient)] 
during the adjustment of the support vector machine profiles.

For the SSVM model in the test phase, the parameter 
values were [a, b, R] = [0.9264, 35.9732, 0.9727], while 
for the BASVM model (stacking 30 ISVM models) during 
the testing phase, the parameters were [a, b, R] = [1.0173, 
-9.1196, 0.9913]. Notably, the slope in both SVM models is 
very close to 1 during the testing phase, indicating a strong 
correlation with the ideal value. Furthermore, the intercept 

(b) is in proximity to 0 for the testing phase in both SVM 
models, which is indicative of minimal bias in the predic-
tions. The regression coefficients (R) fall within the gen-
erally accepted excellent range (0.90 ≤ R ≤ 1.00) for SVM 
models (both SSVM and BASVM with 30 networks). This 

Fig. 8  Evaluating global solar radiation through experimen-
tal and calculated data: a SSVM ‘‘Testing phase’’, b BASVM 
(Stacking of 30 ISVM) ‘‘Testing phase’’
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Table 2  Errors of ISVM, and 
SSVM models

Phases R nMAE (%) MPE (%) nRMSE (%) SEP (%)

ISVM1 Training 0.9931 4.7654 6.5035 5.6983 5.6854
Testing 0.9806 6.9267 10.9263 9.8331 9.8487
Total 0.9904 5.2012 7.3886 6.7469 6.7368

ISVM2 Training 0.9932 4.6404 6.1995 5.5737 5.5724
Testing 0.9807 6.6643 10.2862 9.3045 9.3501
Total 0.9906 5.0568 7.0173 6.5432 6.5486

ISVM3 Training 0.9933 4.6649 6.2717 5.5424 5.5482
Testing 0.9796 6.8791 10.2169 9.4757 9.5658
Total 0.9905 5.1164 7.0612 6.5571 6.5752

ISVM4 Training 0.9933 4.6141 6.1275 5.5363 5.5268
Testing 0.9796 6.7184 10.1131 9.4341 9.5141
Total 0.9905 5.0438 6.9251 6.5431 6.5454

ISVM5 Training 0.9926 4.8869 6.6201 5.8414 5.8324
Testing 0.9822 7.0191 10.9305 9.3293 9.4221
Total 0.9904 5.3196 7.4827 6.7093 6.7144

ISVM6 Training 0.9923 4.9180 6.5730 5.8980 5.8963
Testing 0.9766 7.1615 11.1847 10.0572 10.1109
Total 0.9892 5.3705 7.4959 6.9485 6.9543

ISVM7 Training 0.9934 4.6053 6.2856 5.4700 5.4788
Testing 0.9820 6.8777 10.5707 9.3041 9.3900
Total 0.9910 5.0578 7.1431 6.4144 6.4343

ISVM8 Training 0.9927 4.9153 6.8204 5.8015 5.7861
Testing 0.9794 6.8947 10.1820 9.6698 9.7341
Total 0.9901 5.3117 7.4931 6.7567 6.7513

ISVM9 Training 24.2544 4.6980 6.4852 5.6087 5.6171
Testing 0.9812 6.8174 10.1184 9.2824 9.3555
Total 0.9908 5.1260 7.2122 6.5272 6.5453

ISVM10 Training 0.9931 4.7874 6.5926 5.6690 5.6693
Testing 0.9755 7.2996 11.3561 10.5330 10.5806
Total 0.9896 5.2942 7.5459 6.9400 6.9466

ISVM11 Training 0.9932 4.7305 6.5414 5.6588 5.6640
Testing 0.9777 7.2785 11.1248 10.3682 10.4114
Total 0.9900 5.2385 7.4586 6.8569 6.8676

ISVM12 Training 0.9937 4.5021 6.1812 5.3555 5.3616
Testing 0.9811 6.7021 10.1289 9.3771 9.4318
Total 0.9911 4.9443 6.9712 6.3750 6.3883

ISVM13 Training 0.9927 4.8811 6.5966 5.8059 5.7887
Testing 0.9803 7.0024 10.5813 9.5373 9.5516
Total 0.9901 5.3087 7.3939 6.7329 6.7190

ISVM14 Training 0.9924 5.0023 5.9276 5.9208 5.9276
Testing 0.9808 7.0129 10.8850 9.5139 9.6065
Total 0.9901 5.4028 7.6999 6.7861 6.8055

ISVM15 Training 0.9930 4.7916 6.6742 5.7322 5.7360
Testing 0.9811 6.9812 10.9010 9.4025 9.4952
Total 0.9905 5.2380 7.5201 6.6632 6.6801

ISVM16 Training 0.9930 4.8015 6.4883 5.7250 5.7127
Testing 0.9774 7.5494 10.9757 10.5271 10.4988
Total 0.9898 5.3473 7.3863 6.9401 6.9245

ISVM17 Training 0.9925 4.8898 6.5936 5.8179 5.8198
Testing 0.9803 7.0289 11.0913 9.5016 9.5839
Total 0.9900 5.3216 7.4936 6.7335 6.7469
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Table 2  (continued) Phases R nMAE (%) MPE (%) nRMSE (%) SEP (%)

ISVM18 Training 0.9929 4.7839 6.5666 5.7197 5.7184

Testing 0.9811 6.9604 10.8713 9.5591 9.6101

Total 0.9905 5.2167 7.4280 6.6561 6.6619
ISVM19 Training 0.9932 4.7334 6.5626 5.6524 5.6532

Testing 0.9796 6.6982 9.9275 9.5491 9.5882
Total 0.9906 5.1281 7.2359 6.6253 6.6315

ISVM20 Training 0.9927 4.7798 6.5142 5.6766 5.6766
Testing 0.9823 6.6641 9.6245 9.1624 9.1403
Total 0.9905 5.1537 7.1366 6.5116 6.5085

ISVM21 Training 0.9934 4.6677 6.3626 5.5816 5.5796
Testing 0.9796 6.9427 10.3063 9.6632 9.6662
Total 0.9907 5.1264 7.1518 6.6177 6.6163

ISVM22 Training 0.9936 4.5688 6.3240 5.4859 5.4794
Testing 0.9789 6.7458 10.1733 9.6794 9.6884
Total 0.9907 5.0179 7.0943 6.6049 6.6000

ISVM23 Training 0.9922 5.0677 6.9436 6.0934 6.0896
Testing 0.9811 6.9684 10.6575 9.6216 9.6873
Total 0.9899 5.4480 7.6868 6.9443 6.9502

ISVM24 Training 0.9930 4.7834 6.4804 5.7430 5.7392
Testing 0.9767 7.3088 11.2501 10.6020 10.6313
Total 0.9896 5.2920 7.4348 7.0058 7.0060

ISVM25 Training 0.9939 4.4100 5.8450 5.2693 5.2685
Testing 0.9785 7.0501 10.8734 10.1471 10.2103
Total 0.9906 4.9447 6.8512 6.5711 6.5786

ISVM26 Training 0.9933 4.5847 6.2938 5.4534 5.4509
Testing 0.9795 7.1209 11.1833 9.9258 9.9827
Total 0.9903 5.0954 7.2722 6.6091 6.6143

ISVM27 Training 0.9926 4.8508 6.6048 5.7877 5.7924
Testing 0.9787 7.3291 11.5283 10.1224 10.1709
Total 0.9897 5.3419 7.5900 6.8580 6.8690

ISVM28 Training 0.9931 4.7525 6.4114 5.6037 5.6071
Testing 0.9746 7.4873 11.4298 10.6745 10.7876
Total 0.9894 5.3086 7.4156 6.9612 6.9795

ISVM29 Training 0.9930 4.8087 6.5069 5.6871 5.6785
Testing 0.9759 7.3125 11.0113 10.7678 10.8097
Total 0.9895 5.3040 7.4083 6.9779 6.9748

ISVM30 Training 0.9929 4.6767 6.2786 5.6110 5.6169
Testing 0.9776 7.4268 11.6311 10.3973 10.5047
Total 0.9897 5.2205 7.3497 6.8158 6.8354

SSVM Training 0.9911 5.3752 7.3309 6.4595 6.4593
Testing 0.9727 8.1104 12.1255 11.0112 10.9646
Total 0.9875 5.9235 8.2904 7.5957 7.5891

BASVM Testing 0.9913 4.5487 5.8823 6.2509 6.2493
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attests to the robustness of the established SVM models and 
their capability to reliably predict global solar radiation.

Comparison Between ISVM, BASVM, 
and SSVM

Table 2 provides a comprehensive overview of the perfor-
mance metrics for thirty individual support vector machine 
(ISVM) models, the bootstrap aggregated support vector 
machine (BASVM), and the single support vector machine 
(SSVM) across different datasets, including training data, 
testing data, and the combined total datasets for ISVM and 
SSVM. Specifically, the metrics considered for comparison 
include the relative Mean Absolute Error (nMAE), Model 
Predictive Error (MPE), relative Root Mean Squared Error 
(nRMSE), and the Standard Error of Prediction (SEP).

This comparative analysis serves to underscore that the 
BASVM models represent a credible alternative to the 
SSVM models. It is worth noting that the performance of 
these support vector machines (SSVM, ISVM, and BASVM) 
can vary across the training, testing, and total datasets. In 

some cases, a support vector machine that exhibits minimal 
errors in the training dataset might exhibit more substantial 
errors when applied to the test dataset.

For instance, ISVM 20 demonstrates a lower relative Root 
Mean Squared Error (nRMSE) of 5.6766% on the training 
set, 9.1624% on the testing set, and 6.5116% on the com-
bined total datasets. Notably, the BASVM outperforms in 
terms of nRMSE, achieving a lower value of 6.2509% on 
the testing set. This highlights a significant enhancement in 
accuracy achieved by the collaborative approach of combin-
ing multiple models within the BASVM.

Figure 9 illustrates a comparison a comparison between 
the BASVM (Stacking 30 ISVM) and SSVM models. This 
comparison of testing outcomes between the BASVM 
(Stacking 30 ISVM) and SSVM models clearly under-
scores the advantages of the bootstrap aggregated sup-
port vector machine model over the Single Support Vec-
tor Machine model (SSVM). It underscores the enhanced 
performance of the BASVM model in terms of precision, 
illustrating its superior capability to provide more accurate 
predictions of global solar radiation when compared to the 
single support vector machine model.

Figure 9  nMAE, MPE, 
nRMSE, and SPE of boot-
strap aggregated support 
vector machine “BASVM” 
(stacking 30 ISVM) and signal sup-
port vector machine “SSVM” 
for testing test set

Table 3  Overview of various models for predicting global solar radiation

Reference Location Type of model Evaluation Index

This study Algeria Bootstrap aggregated support vector machine BASVM R = 0.9913
Shamshirband et al. [39] Iran Support vector machine –wavelet transform model (SVM-WT) R = 0.9631
Linares-Rodríguez et al.[40] Spain Multilayered perception (ANN-MLP) R = 0.9400
Dahmani et al. [11] Algeria Bootstrap aggregated neural networks (BANN) R = 0.9680
Yao et al. [7] China Support vector machine(SVM) R = 0.8760
Guermoui et al. [41] Algeria Support vector machine(SVM) R = 93.06
Mehdi Lotfinejad et al. [42] Iran Bat neural network (BNN) R = 0.9810
Fadare [43] Nigeria Multilayered perception, feedforward, back-propagation (MLP-FBP) R = 0.9560
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Comparison with Other Models

To assess the significance of our findings, we conducted a 
comparative analysis with other studies carried out by dif-
ferent researchers, with a particular focus on models that 
used similar inputs to ours. These models were all aimed 
at predicting solar radiation. The results of this assessment 
provide strong evidence of the effectiveness and accuracy of 
the developed  BASVM(Stacking of 30 ISVM) model for predict-
ing global solar radiation. Table 3 displays the outcomes 
obtained from these aforementioned models alongside the 
results from our study.

Conclusion

The primary objective of this current research study is 
to enhance the predictive capabilities of two robust sup-
port vector machine models, namely SSVM and BASVM 
(Stacking of 30 ISVM), by leveraging an accessible struc-
ture–activity relationship. These models are designed for 
the precise prediction of hourly global solar radiation. The 
comparative analysis between SSVM and BASVM (Stacking 
of 30 ISVM) serves to highlight the robustness, reliability, 
and effectiveness of support vector machine models when 
applied to meteorological input parameters, including vari-
ables such as month, day, time, average temperature, rela-
tive humidity, atmospheric pressure, wind speed, and wind 
direction.

The results of this study exhibit a noteworthy perfor-
mance difference between the two models. During the test-
ing phase, BASVM (Stacking of 30 ISVM) achieves remark-
able consistency between the calculated and experimental 
data, boasting a relative Root Mean Squared Error (nRMSE) 
of 6.2509%. In contrast, SSVM records an nRMSE of 
11.0112%. This novel model, BASVM (Stacking of 30 
ISVM), proves to be a valuable tool for predicting solar 
radiation, especially in locations without access to measure-
ment equipment such as solarimeters or pyranometers and 
associated systems. It particularly shines when dealing with 
scenarios marked by limited available data, the presence of 
outliers necessitating exclusion, or instances of missing data.

Additionally, this model can play a pivotal role in sup-
porting the installation of solar-energy systems and evalu-
ating thermal conditions in building studies, particularly in 
regions like Algeria or those with similar climatic charac-
teristics. Its ability to deliver accurate solar radiation predic-
tions makes it a valuable asset for both energy planning and 
building design in such areas.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40866- 023- 00179-w.
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