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Abstract
Increasing integration of wind turbines in the electrical grid creates more challenges daily because of the unstable power of these
units because they rely mainly on the wind. One of the solutions used to deal with these challenges is to predict the power
produced from the wind turbine for a short or long term. Prediction of the power to be produced from the wind turbines gives a
future vision of how to deal with these sources. Many techniques are used to improve the prediction of wind turbine energy. In
this paper, a bootstrap hybrid neuro-fuzzy short-term prediction system for wind turbine power is presented. The bootstrap
technique is used to increase the accuracy of the predicted value by creating multiple small datasets with the same features of the
main dataset. A neuro-fuzzy model is created for each dataset using the hybrid optimization agent in MATLAB. The output of
each neuro-fuzzy model is a prediction of wind turbine power. Therefore, the output of all models is combined using the
combination model to calculate the final predicted wind turbine power. The system is simulated using MATLAB and the result
show that the bootstrap hybrid neuro-fuzzy system predicts the wind turbine power for the next 24 h with accuracy 94.3%. The
relative percentage error and average error for the system outputs are calculated and showed that the error is minimized to ±5.7%.
Therefore, this prediction system could be useful for the challenges of integration wind turbine in electrical grid
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Introduction

The amount of electricity generated by wind energy fed into
the electric grid has increase rapidly in recent years and wind
energy penetration levels have reached significant values in
many countries [1]. Increasing the level of wind power pene-
tration in the future, with the uncertainty of wind power, the
electric grid will affect the stability of the power system and
increase the risk of power outages.

Therefore, it is necessary to have a type of system that
predicts the energy production of the wind turbines over the

next 1–2 days to control the fully dispatchable generation, to
increase its value in markets operating on a 48-h time scale,
and to make full use of the wind energy produced.

The power generated by a wind turbine (WT) generator
varies randomly over time due to changing wind speed, tem-
perature, and other factors. Therefore, the necessity and ad-
vantages of short-term wind power forecasting are generally
accepted and highly evaluated by most wind power facilities
[2, 3]. Therefore, short-term (0–36 h) wind energy forecast is a
central issue for proper grid-connected wind farm manage-
ment and to make wind energy a more competitive and reli-
able resource [4]. Due to the difference in temperature, pres-
sure, air density, terrain, and other factors, wind speed is one
of the most difficult meteorological parameters for forecasting
[5]. As a result, it will be difficult to predict the nonlinear
power generated by the WT with acceptable accuracy.

Several methods have been proposed to predict wind pow-
er, namely, physical [6] and statistical methods [7]. The phys-
ical method has advantages in long-term prediction, while the
statistical method does well in short-term prediction [8].

In recent years, with the continuous increase of computer
calculation speed, researchers proposed a number of power
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prediction models based on complex statistics and artificial
intelligence techniques as found in [9–16]. Statistical models
have the advantage that they use available historical measure-
ments for stochastic approximation between wind prediction
and wind power output measurements. However, those
models are not suitable for long-term prediction and it is very
difficult for the prediction models based on statistics to further
improve the prediction accuracy [5].

Generally, the prediction models of wind power generation
are categorized into direct and indirect models. Direct predic-
tion models use the historical information of wind power out-
put as the prediction model’s input, and the output of the
prediction model is the predicted value of wind power gener-
ation. Where, indirect prediction models predict wind power
generation by predicting wind speed and then use the power
curve to convert wind speed into power output [5]. This may
cause a delay and some errors in calculations. The power
curve depends on the wind speed, but not on the efficiency
and other mechanical parameters of the wind turbine which
could be changed with time. Therefore, the power curve
should be correct every specified time interval.

A double-stage hierarchical genetic algorithm trained arti-
ficial neural network (double-stage hybrid GA-ANN) for
short-term wind power forecast of a microgrid wind farm in
Beijing, China, is presented in [9].

In [10], a novel two-stage hybrid approach based on the
combination of the Hilbert-Huang transform (HHT), genetic
algorithm (GA), and artificial neural network (ANN) is pro-
posed for day-ahead wind power forecasting.

In [11], a short-term wind farm output power predic-
tion model is presented using fuzzy modeling derived
from the raw data of the wind farms. The proposed
model uses a new framework based on a combination
of prediction intervals (PI) to overcome the performance
instability of neural networks (NNs) used in the pro-
posed method. In addition, a new fuzzy-based cost func-
tion is proposed with the purpose of having more free-
dom and flexibility in adjusting NN parameters used for
the construction of PIs.

A combination between the adaptive neuro-fuzzy inference
system (ANFIS) and an artificial neural network (ANN) for
1 h ahead wind speed forecast is proposed in [12].

In [13], an energy forecasting model is presented for anal-
ysis and prediction of power generation from wind farms. The
model has been developed with the help of neural network
methodology. It involves three input variables—wind speed,
relative humidity, and generation hours and one output vari-
able energy output of wind farms.

In [14], an output prediction system of wind power gener-
ation is proposed using a complex-valued neural network
(called CVNN). The CVNN is suitable for treating complex
numbers and nonlinear data. In this model, the wind informa-
tion (wind speed and direction) is expressed by complex

numbers with complex coordinates, and use them as input
information for the CVNN.

In [15], a new method of BP neural network to predict the
wind power output in a period of time is presented. In this
method, to discuss the predictive performance of BP neural
networks, a different number of input variables to observe the
prediction effect of BP neural network is set.

The neural network has a major role in establishing and
development new models for the prediction of wind power.
Therefore, an optimal wind power forecasting model has been
studied using various conventional, neuro-fuzzy and artificial
intelligence techniques in previous literature. Traditional
methods take more time than that by artificial neural network
(ANN) or neuro-fuzzy to calculate the predicted value of
Wind Turbine Power (WTP) [9–16]. The error in the learning
of neuro-fuzzy can be reduced by bootstrap aggregating, also
called bagging algorithm that will increase the accuracy of the
system [16].

Weather statistical or mathematical method that was
displayed before needs a large amount of data to build the
mathematical or statistical model. Dealing with the large
amount of data takes a lot of time and effort and makes the
created model be complex with percentage error. Moreover,
the created complex model takes more time to predict the
WTP value.

The neuro-fuzzy technique proposes a lot of features that
can be used to predict the WTP value using a large amount of
data to train the model and build the fuzzy inference system. If
the amount of data is very large, training the model to be
accurate will take a lot of time and the prediction process is
more complex [12]. Therefore, the bootstrap technique could
help to deal with the large amount of data without losing data
features.

In [17], an Adaptive Neural Fuzzy Inference System
(ANFIS) approach for short-term wind power prediction in
Portugal is proposed using a hybrid particle swarm optimiza-
tion (PSO). The proposed approach is based on the combina-
tion of PSO and ANFIS. In this approach, the prediction error
sometimes arises to more than 21% in different seasons of the
year, which is considered as a high error percentage.

In this paper, the bootstrap technique is used with ANFIS
to increase the accuracy of prediction for WTP. Therefore, the
objective of this paper is to predict the optimal WTP by using
the bootstrap algorithm. Bootstrap technique is used to deal
with a large amount of data by selecting multiple random
samples of data without losing data features. Each sample is
used to build a fuzzy inference model (FIS) to predict the wind
power value. After build the multiple FIS, the final combina-
tion of the multiple FIS is produced to be more accurate.Wind
speed, temperature, air pressure, humidity, and wind angle
will play key roles in the training of neuro-fuzzy and to predict
the optimal value of WTP. The bootstrap aggregation tech-
nique, which called bagging technique [18], is an ensemble
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method that can be used in regression and classification.
Bagging is composed of two parts: aggregation and
bootstrapping. It is used to reduce the error in the predicted
value by distributing the error to datasets that have the same
characteristics as the main dataset.

This paper is organized as following: a background for WT
modeling, bootstrapping aggregating, neuro-fuzzy technology
is presented in “Background” section. In “Proposed System”
section, the proposed prediction system is illustrated, includ-
ing collecting the data used in the prediction model (historical
and real-time), bootstrapping algorithm, prediction neuro-
fuzzy model, and combing model. Finally, the data from
Alaska Center for Energy and Power (ACEP) is used to train
and evaluate the prediction model as a case study and the
result is shown. Case study demonstrates that the prediction
system has a good agreement with the data selected and can
describe input-output relations using a set of rules in the IF-
THEN form. Short-term wind farm power output prediction
model is presented using fuzzy modeling derived from the raw
data of the wind farm. The comparative study of model pre-
diction with different periods is conducted.

Background

Wind Turbine Modeling

This section describes the details of wind turbine modeling.
First, the wind energy conversion system is briefly discussed.
Next, the modeling and key factors affecting wind farm output
power are presented for use in the proposed wind power pre-
diction model. The wind farm’s production capacity comes
from the wind energy captured byWTs. The power generated
by an ideal and practical wind turbine is discussed in the next
section [19].

Essentially, wind energy is the kinetic energy, and it can be
calculated using (1).

E ¼ 1

2
mv2 joulsð Þ ¼ 1

2
ρAxð Þv2 ð1Þ

where m is the air mass (kg) and v is the air velocity in the
upstream wind direction at the inlet of the rotor blades (m/s.),
A is the cross-sectional area in m2, is the air density in kg/m3,
and x is the piece thickness in metres.

Wind energy Pw (in watts) is the time derivative of kinetic
energy and can be derived from the wind kinetic energy using:

Pw ¼ dE

dt
¼ 1

2
ρA

dx

dt

� �
:v2 ¼ 1

2
ρ:Avð Þ:v2 ¼ 1

2
:ρAv3 ð2Þ

Actually, the output mechanical power Pm extracted from
WT blades can be obtained using (2) multiplied by coeffi-
cients as follows [20].

Pm ¼ k Cp
1

2
:ρ:Av3 ð3Þ

Where:

Pm Mechanical power output, kilowatts.
Cp Maximum power coefficient, ranging from 0.25 to 0.45,

dimension less (theoretical maximum = 0.59).
A Rotor swept area, ft2 or π D2/4 (D is the rotor diameter

in ft., π = 3.1416).
v Wind speed, mph.
k 0.000133, A constant to yield power in kilowatts.

(Multiplying the above kilowatt by 1.340 converts it to
horse- power [i.e., 1 kW 1.340 hp]).

ρ Air density, lb./ft3, The air density ρ is calculated by
[21]:

ρ ¼ P

RSpecific:T
ð4Þ

Where P is the absolute pressure, T is the absolute temper-
ature (K), and R is the specific gas constant for dry air.

According to eq. (3), the extracted mechanical power of a
WT generator is proportional to the air density ρ, and the air
speed in the upstream wind direction at the entrance of the
rotor blade v, where ρ is determined mainly by the air tem-
perature as shown in eq. (4) [21].

Therefore, the major factors affecting wind farm output
power are the relationship of the factors temperature, wind
speed, density, and pressure which have been shown above
in (3, 4). These factors are assembled in the proposedmodel to
predict the expected wind power.

Bootstrap Aggregating

For a given data set, the neuro-fuzzy works well without
changing in the dataset. However, when the data set changes
in the next hour or the next day, two problems could be oc-
curred, overfitting or underfitting. Even after training several
times of neuro-fuzzy, the result between the actual and desired
values does not match and the error is increase. The reason for
this error is in the learning process due to overfitting and
underfitting problems. Therefore, the error in learning de-
pends on three main factors; noise, bias, and variance [22] as
shown in (5).

Error ¼ Noiseþ Baisþ Variance ð5Þ

The large bias causes with data underfitting while the large
variance causes with overfitting of data. Therefore, if the
dataset is bootstrapped to multi-dataset and neuro-fuzzy
adapted to multi-dataset, the bias and variance will be reduced
to a minimum as the data will not suffer the problem of
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overfitting and underfitting anymore. Therefore, the error in
learning also reduces and the overall prediction improves.

The bootstrap bagging technique is used to improve the
stability and precision of neuro-fuzzy models. It mini-
mizes the variance which further helps in reducing the
overfitting [23]. The bootstrap technique creates multiple
small data sets from the main data set. The small data sets
have statistical features like the main dataset. Therefore, a
classifier is used to calculate the statistical features of
each small data set. A combine classifier takes the statis-
tical features from all small datasets and combines these
features to one value.

The bootstrap technique uses two classifications, small
and disjoint partition. In this study, small bootstrap bag-
ging is implemented by using MATLAB to subset the
data. In the small bag, the union of subsets may not nec-
essarily be equal to the original data set because of the
repetition of numbers.

Neuro-Fuzzy Technique

A fuzzy logical system is a nonlinear mapping of an input
vector to a scalar output, but it can handle numerical
values and linguistic knowledge. In general, a fuzzy logic
system has four components: Fuzzifier, Grammar,
Inference Engine, and Puzzle Remover. Fuzzifier trans-
forms a clear input variable into a fuzzy representation,
where the membership functions give the degree of be-
longing of the variable to a particular attribute.
Ambiguous grammar is of the “if-then” type and can be
derived from numerical data or from specialized linguis-
tics. Mamdani and Sugeno inference engines are the main
types of inference mechanisms [24].

The Mamdani engine combines fuzzy rules in mapping
from fuzzy input group to fuzzy output group, while the
Takagi-Sugeno type links blurred inputs to clear outputs.
Eliminator converts a fuzzy set to a crisp number using
the centroid of the region, the median of the region, the
mean of the maximum, or the extreme criteria [25].

The advantage of a neural network with fuzzy logic
models is that knowledge is acquired automatically during
the learning process. However, this knowledge cannot be
extracted from a trained network that acts as a black box.
On the other hand, fuzzy systems can be understood
through their rules, but these rules are difficult to define
when the system has a lot of variables and their relation-
ships are complex [26].

The combination of a neural network and a neuro-fuzzy
system has its own advantages. In a neuro-fuzzy system, neu-
ral networks automatically extract fuzzy rules from digital
data, and through the learning process, the membership func-
tions are adaptively modified.

Proposed System

The proposed system has been built to forecast the WTP
value with high accuracy and minimum time. Traditional
neuro-fuzzy with the large amount of data takes more
time to calculate the predicted value of WTP. Moreover,
the error in the learning of neuro-fuzzy can be reduced by
a bootstrap aggregating algorithm that will increase the
accuracy and speed of the system. Therefore, the data is
entered to the bootstrap algorithm to produce multiple sets
of data, then a neuro-fuzzy model will be created for each
data set. The output of each neuro-fuzzy model (predicted
value) will be combined with each other to produce the
final value of prediction.

Figure 1 shows the framework of the proposed pre-
diction system. The proposed system is divided into the
main data set which enters to the bootstrap algorithm.
The bootstrap algorithm creates multiple small data sets
and then path these data sets to the neuro-fuzzy creator.
The neuro-fuzzy creator and learning (NF-agent) create
the neuro-fuzzy prediction module for each data set and
apply learning for each. After the prediction, the neuro-
fuzzy module is learned and predicts the value of WTP,
The combining model combines the neuro-fuzzy model
output with each other to calculate the final output pre-
dicted value.

The proposed system is divided into the following steps:

1- Determine and collect the data parameters to be collected
from the historical database.

2- Design the bootstrap algorithm to create multiple data
sets.

3- Design a neuro-fuzzy model for each data set and learn
each model.

4- Combine the output of each neuro-fuzzy model to com-
pute the final predicted output of WTP.

5- Compare the system with the traditional neuro-fuzzy
model.

Determine and Collect Data Parameters

Wind turbine data is usually collected by a Supervisory
Control and Data Acquisition (SCADA) system in the moni-
toring center [27]. Therefore, historical data can be obtained
from a SCADA system installed at a wind farm. The data used
in this paper are based on the ones collected at one 1 h interval
from Alaska Center for Energy and Power for a period of
1 year [28].

As mentioned earlier, the major factors affecting wind
farm output power are air temperature, wind speed, air
density, and air pressure. Considering all these factors
will increase the prediction accuracy of the proposed
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model. The historical power output collected by the
Energy Management System (EMS) can be used as input
to improve the accuracy of prediction. The data used in
this paper includes the parameters of output power, tem-
perature, density, pressure, and wind speed for 1 year by
using as input to bootstrap algorithm to produce the
multidata set. The proposed model uses the latest 5 real
values for all measured parameters as inputs to the pre-
diction system to predict the power in the next day, i.e.,
the model uses historical data for 4 days and current real-
time data for predicting the power in the next day.
Therefore, the input parameters of the model are listed
in Table 1.

The parameters air temperature T (t), wind speed V (t), air
density ρ (t), pressure P (t), and output power S (t) are the real-
time measured values coming from SCADA historical
database.

Bootstrap Algorithm

Bootstrap is a recently developed technique for making
certain kinds of statistical inferences. The bootstrap

ensemble method creates individual data set samples with
N sizes of the original dataset. Many of the original
datasets may be repeated in the resulting datasets while
others may be left out. Therefore, the bootstrap algorithm
is responsible to create multiple data sets depending on
the original data parameters collected. Each data set
should have the same features of the main database.
Algorithm 1 shows the bootstrapping method to generate
R number of the dataset.

The bootstrap algorithm starts to calculate the mean
and standard deviation of the main dataset (M_avg,
M_Dev), and then generate R number of the dataset.
The algorithm generates the dataset by generating N
random numbers and selects the dataset members ac-
cording to the random numbers. For each dataset, it
computes the mean and standard deviation (Sj_avg,
Sj_Dev), and then compares them with the main mean
and main standard deviation. Flowchart 1 shows the
bootstrap method to generate multiple datasets for the
prediction of WTP.

Algorithm (1): bootstrap method to create multiple
datasets.

Main data set

Data
set1

Bootstrap algorithm

Data
set2

Data
set3

Data
setn

Neuro-fuzzy Creator/Learning (NF-Agent)

Neuro
model1

Neuro
model2

Neuro
model3

Neuro
modeln

Combining model

Final predicted value

…….

…….

Fig. 1 Framework of the
prediction system

Table 1 Input parameters of the
model input No. Parameter name Abbreviation Symbol Unit

1–5 Air temperature T T(t-4), T(t-3), T(t-2), T(t-1), T(t) C

5–10 Wind Speed V V(t-4), V(t-3), V(t-2), V(t-1), V(t) mph

10–15 Air density Ρ ρ(t-4), ρ(t-3), ρ(t-2),ρ(t-1), ρ(t) lb./ft3

15–20 Pressure P P(t-4), P(t-3), P(t-2), P(t-1), P(t) Pa

20–25 Output power S S(t-4), S(t-3), S(t-2), S(t-1),S(t) kw
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Prediction Neuro-Fuzzy Model

The datasets created by the bootstrap algorithm are represent-
ing the input data space and it is used to create, train, and
validate the neuro-fuzzy models. For each dataset, a neuro-
fuzzy model is created. The datasets are clustered using a
modified Fuzzy C-Means (FCM), which is a data clustering
algorithm to decide the optimal number of fuzzy rules by
grouping the dataset into M clusters with every data point in
the dataset belonging to every cluster to a certain degree and
assign a rule for each cluster [29]. Based on the data in each
cluster, the number of rules and membership functions are
adjusted. Hybrid optimization method, which combines
least-squares and back propagation gradient descent method,
is used to train the membership function parameters to emu-
late the training data [30].

Based on ANFIS tool in MATLAB simulation program,
the datasets are clustered and the neuro-fuzzy model is created
and trained [11]. The ANFIS tool clusters each input in each
dataset into k subspaces based on factor range of influence,
squash factor, accept ratio, and reject ratio.

After clustering each training dataset parameter to C clus-
ters, each input is illustrated to C membership function with
Gaussian membership function. ANFIS tools design the
neuro-fuzzy model as a set of rules depending on the number
of clusters number. The rules are set in the IF-THEN form to
describe input-output relations using Takagi-Sugeno with a
linear function of output. A multi-input and single-output
fuzzy model is represented as a collection of fuzzy rules in a
Sugeno fuzzy model which has the following form.

Rk : IF X1 is A1j and…::Xn is Anj then output ¼ fk Xið Þ

¬ where X = (X1,X2,…Xn) are the inputs to the neuro-
fuzzy model, A1j,A2j,….Anj are linguistic variables, Rk rep-
resents the kth rule, k, j = 1,2,…C which represent the cluster
number, f(Xi) is Linear relation between inputs and output
which is illustrated in (6).

f k xð Þ ¼ b0 j þ ∑
n

i¼1
bijxi ð6Þ

The crisp output is calculated using eq. (7). The output level
fp of each ru le is weighted by the firing strength wp of the rule.

output ¼
∑
k

p¼1
wp f p

∑
k

p¼1
wp

ð7Þ

Wp is the weight of a and membership value for a linguistic
variable for the inputs in the STATEMENT of the rule P. The
weight wp relation is illustrated in eq. (8).

wp ¼ andmethod μij

� � ð8Þ

The and-method may be in the form of product or mini-
mum for membership value. In this paper, the product and-
method is used. The block diagram of the prediction model is
shown in Fig. 2. The input of the neuro-fuzzymodel is coming
from the bootstrap algorithm which generates R number of
datasets. These data are fuzzified using the Gaussian member-
ship function which generated using the parameters from the
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clustering block. The clustering block generates the center and
width of the membership function depending on the format-
ting of the data. The crisp input enters to the rule base to
inference inputs and calculate the output. Number of rules
(C) is calculated by the clustering block. The fuzzy logic sys-
tem with wtaver de-fuzzifier, product inference rule, and
Gaussian-minimum fuzzifier is designed to predict the output
power of the wind turbine for the next future 1 days. The
wtaver is a defuzzifier method in ANFIS tool in matlab.

Algorithm 2 shows the neuro-fuzzy prediction algorithm for
WTP generation. The input for this algorithm is real and histor-
ical data of the wind turbine parameters as shown in Table 1. The
output is the predicted value of the WTP generation in the next
future one day. The steps of the algorithm beginwith fetching the

real and historical values of parameters. These data are clustered
using the c-means technique and calculate the membership func-
tion for each value. The rule base for these values is built in the
fuzzy inference system (FIS) according to the rule stock gener-
ated by the clustering algorithm. The prediction value of the
WTP generated is calculated and evaluated by the human-
machine interface (HMI) users.

An Adaptive Network based Fuzzy Inference System can
incorporate fuzzy if - then rules and which provide fine-tuning
of the membership function according to a desired input-output
data pair. Figure 3 shows the adaptive network with 5 layers for
the neuro-fuzzy model of the prediction model. As mentioned
before, a first-order linear sugeno fuzzymodel is used as ameans
of modeling fuzzy rules into desired outputs.

J=R

Start

Z: Main dataset
L: Number of data elements in main dataset
R: number of datasets to be generated
N: number of data members in each dataset

Calculate:
M_avg, M_Dev

i=0
J=0
K=0

Rand=Random(L)
Sj(k)=Z(Rand)
K=k+1

k=N

No

No

Calculate:
Sj_Avg, Sj_Dev

Yes

Chk1=|M_avg-Sj_avg|/M_avg
Chk2=|M_Dev-Sj_Dev|/M_Dev

Chk1>0.1
Or

Chk2>0.1

To check if the created dataset
have the same features of main
dataset or not.

K=0Yes

J=J+1

No

To start create next new dataset

Select elements of new dataset
randomly from main dataset.

Load inputs

Initialize variable

End Yes

Flowchart 1 Is a bootstrap method to generate multiple datasets for the prediction of wind turbine power
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Algorithm 2: Wind Power Generation Prediction
Algorithm.

The adaptive network consists of 5 layers. Layer 1 corre-
sponds to a linguistic label and the membership function of
this linguistic label. Layer 2 estimates the firing strength of a
rule, which is found from the and-method (multiplication or
minimum) of the incoming signals. Layer 3 estimates the ratio
(wi) of the i-th rule’s firing strength to sum of the firing
strength of all rules, C. Layer 4 is the product of the previously
found relative firing strength of the ith rule and the rule. The
final layer computes the overall output as the summation of all
incoming signals from layer 4 [11].

Combining Model

The combining model combines the outputs of neuro-fuzzy
models to calculate the final output of WTP. The combining
model calculates the mean of the output of neuro-fuzzy
models as shown in (9).

WTPP ¼ 1

R
∑
R

i¼1
Pi ð9Þ

WhereWTPP is the wind turbine predicted power for the next
day, R is the number of datasets created by the bootstrap algo-
rithm, Pi is the output predicted power of the neuro-fuzzy model.

Experimental Results

The data used in this paper is based on the ones collected at 1 h
intervals from Alaska Center for Energy and Power for a pe-
riod of 1 year [28]. For the selected wind turbine data, the
bootstrapping algorithm is set to generate 10 datasets (R =
10 in the bootstrap algorithm), where each dataset contains
200 row data (N = 200) selected randomly with the same

DatasetR

Fuzzification
Gaussian

)
)(

exp()(

2

ij

ijij
iij

x
xu

T,V,ρ,P,S

Rule Base

IF xn is Acn then yi is fi
Takagi-sugeno system

)( iij xu

n

i
iijojk xbbxf

1

)(

Defuzzification
(Wtaver)

C No. of rules

N (No. of input variable)

)
)(

exp()(

2

ij

ijij
iij

x
xu

Main dataset

Bootstrap
Algorithm

Neuro-fuzzy prediction model

Output Power
value of WT

Fig. 2 Block diagram of neuro-fuzzy prediction model for dataset R
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features of the main dataset. Table 2 shows the datasets creat-
ed by the bootstrap algorithm from the main dataset collected.

The flowchart for the steps of creating 10 datasets, building
neuro-fuzzy models, train, and evaluating the prediction
models using MATLAB is shown in flowchart 2. In Step-1,
the main dataset is loaded, and then the key values to be
divided are initiated. The number of divided datasets is R =
10 and every dataset contains N = 200 data rows. In step-2,
each dataset was clustered using the clustering technique in
ANFIS. The ANFIS cluster parameters are set, then a cluster is

created for dataset and passed to the next step. In step-3, the
fuzzy rules are created and then the model training is started.
The RMSE is calculated and compared with the acceptable
RMSE. If RMSE is accepted, the system will check if it isn’t
the last dataset, it will repeat step-2 and step-3 for the next
dataset. In step-4, the outputs of the neuro-fuzzy models were
combined. Step-5 is to evaluate the model and compute error.

To measure the accuracy of the bootstrap prediction model,
Root Mean Square Error (RMSE), Average Root Mean
Square Error (ARMSE), relative Error (ReErr), and average
of Err (AErr) are measured. The considered performance met-
rics were illustrated in Table 3. The RMSE assesses the qual-
ity of a prediction model. The use of RMSE is widespread and
it makes an excellent general purpose error metric for numer-
ical prediction. ARMSE is the average of RMSE for all
datasets. ReErr gives an indication of how good a predicted
value is relative to the measured value. AErr is the average of
ReErr for all datasets.

The prediction system was evaluated using the evaluated
dataset containing 1000 data rows from Alaska Center for
Energy and Power [28]. The data is bootstrapped to 10
datasets (R = 10) and a neuro-fuzzy model is built to each
of them.

The main dataset was used to create and train the neuro-
fuzzy model without bootstrapping algorithm and calculate
the root mean square error (RMSE) and relative Error
(ReErr). The main neuro-fuzzy model was used to determine
the performance of the bootstrapping technique and multiple
neuro-fuzzy models. Moreover, the bootstrapping output
dataset was used to create a prediction model and train it

Table 2 Dataset created with main features

Main dataset=2000 row (mean=43.4, standard deviation=8.0025)
Period from 15 to 3-2014 to 1-2-2015

dataset Checked values No. of data row
Mean Standard deviation

1 40.75 8.8 200

2 41.21 8.7 200

3 45.65 8.3 200

4 39.84 7.5 200

5 42.41 8.3 200

5 44.92 8.8 200

6 46.72 7.7 200

7 39.25 7.4 200

8 47.53 8.4 200

9 43.94 7.9 200

10 41.01 7.9 200
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Fig. 3 Adaptive network with 5 layers for the neuro-fuzzy model for the prediction of WTP model
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evaluated. Each prediction model was trained on one dataset
and RMSE and ReErr was calculated for each dataset. After
calculating RMSE and ReErr for each data set, the average
root mean square error (ARMSE) and the average of Err
(AErr) were calculated as the average of the RMSE and
ReErr. The RMSE for the main prediction fuzzy model was
compared with ARMSE for the R pridection fuzzy models as
shown in Fig. 4.

Table 4 shows the maximum and minimum RMSE for
training neuro-fuzzy models on each dataset created using
the bootstrap algorithm. The RMSE is calculated to 10
datasets (R = 10). Then the average of the 10 values of max-
imum and minimum RMSE is calculated as ARMSE. The
ARMSE is ranged between 0.22712 and 0.0426 as shown in
the results in this table.

Figure 4 shows the relation between ARMSE of the 10
datasets (R = 10) compared with the RMSE of the main

dataset prediction model. The maximum value of ARMSE
for 10 datasets is 0.22712, where the maximum value of the
RMSE for the main dataset is 0.3173. The minimum value of
ARMSE for 10 datasets is 0.0426, where the minimum value
of the RMSE for the main dataset is 0.1966. Therefore, the
prediction model using the bootstrapping algorithm mini-
mizes the RMSE.

The real measured value of the output power and predicted
power which combined from 10 predicted values was plotted
and compared with the prediction value from the main dataset
predicted model.

Table 5 shows the neuro-fuzzy model number and the cor-
responding ReErr (%) value. The ReErr percentage was cal-
culated using eq. 7 between realWTP and the predicted power
from the 10 neuro-fuzzymodels. The average of error percent-
age (AErr %) was calculated using eq. 8 between real WTP
and predicted WTP from each 10 neuro-fuzzy models with

Load next dataset

Start Clustering data

Step-2

Set (ANFIS) clustering parameters
Range of influence(R) =0.5
Squash factor(Sf) =1.25
Accept ratio (Acc) =0.5
Reject Ratio (Rej) =0.15

R=R-0.01, Sf=Sf-0.1
Acc=Acc+0.1, Rej=Rej-0.01

Create Clusters

Step-2

Create Fuzzy rules

Set Epochs=0

Set Epochs=Epochs+100

Step-3
C,αij,σij

Start training with error
tolerance Zero

RMSE
accepted Epochs=1000NO

NO

Yes

Start Combine outputs
of all neuro-fuzzy

models

Step-4

Load main dataset

R=10, N=200
Bootstraps data to R
datasets with N rows

Step-1

Last Dataset

Yes

No Yes

Evaluate Subset and plot RMSE,
ERROR, real and predicted value

Step-4

END

Flowchart 2 Steps of creating 10 datasets, clustering, building neuro-fuzzy models, train, and evaluating the prediction models using MATLAB
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value ±5.7%. The ReErr percentage was calculated using eq. 7
between real WTP and the predicted power from the main
neuro-fuzzy model with value ±15.3%. This means that the
error in the prediction value of WTP using the bootstrap tech-
nique with neuro-fuzzy was reduced form ±15.3% to ±5.7%.

Figure 5 shows the real measured WTP and the average of
predicted WTP for the output of the combined models which
combine the output of 10 neuro-fuzzy models. The output
predicted power using the main neuro-fuzzy model which
created on the main dataset without bootstrapping was plotted
and compared with the real measured WTP. As shown in this
figure, the WTP predicted using the bootstrap neuro-fuzzy
model is much near to the real WTP than the WTP predicted
using the main neuro-fuzzy model without bootstrap.

The AErr (%) between real measured WTP and predicted
WTP from 10 neuro-fuzzy models was calculated using eq. 8
as shown in Fig. 6. In this figure, the AErr (%) was ±7%.
Figure 7 shows the ReErr (%) between the real measured
WTP and predicted WTP from the main neuro-fuzzy model
without bootstrap. This figure shows that the ReErr (%) was
±16%. Thus, the error in predicted WTP using the bootstrap
algorithm was reduced from ±16% to ±7% compared with the
predicted WTP from the main neuro-fuzzy without bootstrap.

Conclusion

The power generated by aWT generator varies randomly with
time due to the variability of factors of wind (temperature,
wind speed, and other factors). This change in the generated

Table 3 Metrics calculated in the experimental results section

Metrics Description

Root Mean Square Error (RMSE) The RMSE assesses the quality of a prediction model. The use of RMSE is widespread and it makes an excellent
general purpose error metric for numerical prediction. The RMSE is calculated using (5)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n ∑

n

i¼1
Pimeas−PiPredð Þ

r
2 (5)

Where: n is the number of rows in the dataset, Pmeas is the real power measured, and Ppred is the predicted power
value.

Average Root Mean Square Error
(ARMSE)

ARMSE is the average of RMSE for all datasets. ARMSE is calculated using (6)

ARMSE ¼ 1
R ∑

R

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n ∑

n

j¼1
P jmeas−PijPred

� �s
2 (6)

Where: n is the number of rows in the dataset, R is the number of datasets (10 datasets), Pmeas is the real power
measured, and Ppred is the predicted power value.

relative Error (ReErr) ReErr gives an indication of how good a predicted value is relative to the measured value. The ReErr is calculated
using (7)

ReErri %ð Þ ¼ Pimeas−Pipred

� �
Pimeas

� 100% (7)

Where: I is the row number of data, Pmeas is the real power measured, and Ppred is the predicted power value.

average of Err (AErr) AErr is the average of ReErr for all datasets. AErr is calculated using (8)

AErr %ð Þ ¼ 1
R ∑

R

i¼1

1
n ∑

n

j¼1

P jmeas−Pijpred

Pijmeas

 !
�100% (8)

Where: n is the number of rows in the dataset, R is the number of datasets (10 datasets), Pmeas is the real power
measured, and Ppred is the predicted power value.

Table 4 The maximum and minimum RMSE for training neuro-fuzzy
models on each dataset created using the bootstrap algorithm

Dataset NO. RMSE value

Maximum Minimum

1 0.255 0.055

2 0.232 0.05

3 0.203 0.047

4 0.198 0.034

5 0.211 0.031

6 0.253 0.047

7 0.2112 0.031

8 0.234 0.067

9 0.249 0.015

10 0.225 0.049

Average ARMSE 0.22712 0.0426
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power from WT creates challenges for the electric grid oper-
ators. One of the solutions used to deal with these challenges
is to predict the power produced from the wind turbine for a
short or long term. Prediction of the power to be produced

from the wind turbine gives a future vision of how to deal
with these sources. Many techniques were used to improve
the prediction of wind turbine energy.

Therefore, the necessity and advantages of wind power
short-term forecasting are generally accepted and highly eval-
uated by most wind energy utilities. In this paper, short-
term(24 h) forecasting system is proposed for wind power
forecast for the correct management of a grid-connected wind
farm and tomakewind energy amore competitive and reliable
resource.

The bootstrap with neuro-fuzzy technique was used to
implement the forecasting system of wind turbine power.
The bootstrap algorithm was used to generate R datasets
and the neuro-fuzzy agent in MATLAB generates a
neuro-fuzzy model for each dataset. The output of the
models was combined in the combination model to calcu-
late the final predicted wind turbine power. A main neuro-
fuzzy model was generated using the main data without
bootstrap. This main model was used to determine the
efficiency of our system by comparing the statistical pa-
rameters with it.

Fig. 4 ARMSE for 10 datasets compared to RMSE of the main dataset

Fig. 5 Real WTP and average predicted WTP of 10 neuro-fuzzy outputs compared with the main predicted WTP without bootstrap

Table 5 ReErr the
predicted value from
each neuro-fuzzy model

Neuro-fuzzy NO. ReErr (%) Value

1 ±5.57

2 ±3.89

3 ±5.98

4 ±6.27

5 ±5.24

6 ±6.71

7 ±5.76

8 ±5.85

9 ±5.79

10 ±5.94

Average (AErr) ±5.7
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The forecasting system was tested using MATLAB. The
relative percentage error and average error for the model out-
puts was calculated and showed that the error was minimized
to ±5.7% compared to the main neuro-fuzzy model with an
error ± 15.3%. The accuracy of the prediction system shows
that the prediction system of WTP for 24 h is accurate by
94.3%, where the accuracy of the prediction system using
the main dataset with the main neuro-fuzzy module is 84.7%.
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