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Abstract
Net-load is the imbalance between aggregated load and renewable generation. System operations like economic dispatch
necessitate accurate forecasting of net-load. There has been significant progress in load and renewable generation
forecasting, however, little research focus has been there on Net-Load Forecasting (NLF). Therefore, this paper proposes
three Direct Grey index net-load forecasting models (DGM (1, 1), DGM (1, 2) and DGM (1, 3)) using Grey System Theory
(GST). GST based models are suitable for accurate and fast very short-term (five minutes ahead) forecasting due to their
momentum transfer behavior. Proposed NLF models are implemented for the Bonneville Power Administration (BPA)
balancing area. Forecasts obtained from proposed models are compared with actual net load data and forecasts obtained
from reference Artificial Neural Network (ANN) model. Comparison with actual net load shows that proposed models have
strong potential for very short-term NLF. At very short time frames, net load shows a very high correlation with previous time
steps data. Proposed models utilize such characteristics for forecasting, compared to continuous error reduction procedure
in ANN. Continuous error reduction in a very short time frame can lead to under/overestimation of ANN weights and that
lowers the forecasting accuracy. Proposed NLF models, especially DGM (1, 3) show superior performance over ANN.

Keywords Aggregated load forecasting · Grey system theory · Net load forecasting · Power system planning · Solar
generation forecasting · Wind generation forecasting

Introduction

Increasing penetration of uncertain and variable renew-
able energy such as wind and solar in modern power
system enhances uncertain variables in system operational
planning. This necessitates complex operational strategies
to handle such multivariate uncertainties. Various uncer-
tain variables such as aggregated load, wind and solar
power can be combined to form a single uncertain vari-
able, called net load, and can be used to reduce operational
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complexity. Net load is the difference between aggregated
system load and renewable generation [21]. Therefore, con-
ventional generators have to be scheduled for net load and
power system operational planning like generation flexibil-
ity requirement evaluation is planned based on net load [17].
These operations necessitate accurate net load predictions.

Load was the only uncertain operational variable in
conventional power systems and operations like economic
load dispatch were dependent on load forecasts. This
enhanced load forecasting accuracy [1, 25, 28]. Radial
basis function based neural network [1], least square
support vector machine [28] and hybrid algorithms such
as mixed integer programming and genetic algorithm
based aggregated tool [25] are widely used for short
term load forecasting. It can be observed that most of
these models use neural network, support vector regression
and hybrid algorithms as base algorithms for forecasting.
These algorithms have limitations for very short-term
applications in real time due to time consuming learning and
hyperparameter optimization procedures. Massive training
data requirements and forecasts biased to input data are
other major drawbacks of such models [25].
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Increasing renewable penetration over the last decades
has resulted in significant advancement in renewable power
forecasting for wind and solar power, due to operational
challenges arising from highly uncertain generations [4, 5,
11, 15]. Hybrid forecasting model based on Brain storm
optimization [15], Gaussian mixture based neural network
model [5], probabilistic extreme learning machine [11] and
probabilistic multi-model ensemble method [4] are widely
used for wind speed/power and solar power forecasting.
Similar to load forecasting, these models have limitations
for very short-term applications in real time due to massive
training data requirements, forecasts biased to input data,
time consuming learning and hyperparameter optimization
procedures. Attempts are being made to reduce operational
complexity and associated forecasting errors arising out
of considering three different forecasts of load, wind and
solar, by consideration of net load forecast and forecasting
errors by power markets [6, 10, 18, 31]. In such markets,
system operations such as economic dispatch [16, 22] and
generation ramping requirement estimations [8, 29, 30]
are planned based on net load forecasts. Even though
accurate net load forecasts are vital in modern power system
operational planning, it secured little research attention
[6, 10, 18, 27, 31]. Also, most of the NLF approaches
focused on micro grids [18, 31], distribution networks [6]
and residential loads [27]. System level net load forecasting
has secured little attention in existing literature, even
though accurate net load forecasts are essential for various
operations such as economic dispatch.

Real time economic dispatch time frames have reduced
from day ahead to five minutes in several power markets
such asMidcontinent Independent SystemOperator (MISO)
and California Independent System Operator (CAISO), to
manage the uncertain variability of increasing renewable
penetration [9, 13]. This necessitates fast and accurate five
minute ahead net load forecasts. Such net load forecasts
can be obtained from NLF models, which require low
quantum of forecasting inputs. NLF models are classified
as direct and aggregated NLF [18]. Direct NLF uses Net
Load Time Series (NLTS) for obtaining forecasts. NLTS
can be obtained from load, wind and solar power times
series. Individual load, wind and solar power forecasts
and their forecasting errors at each time step are used
to obtain aggregated net load forecasts. Aggregation of
these forecasts and their expected forecasting errors require
complex statistical techniques. Such complex algorithms
increase the time required to obtain net load forecasts.
Direct NLF can be used to obtain faster very short term net
load forecasts due to their lower computational complexity.

With this background, this paper proposes three very
short term Direct Grey index NLF Models (DGM(1, 1),
DGM(1, 2) and DGM(1, 3)) based on GST for accurate
net load forecasting. Index (M, N) of DGM(M, N) shows

the order of differential equation (M) and the number
of input variables (N) used in modeling. DGM(1, 1) is
a first order uni-variate forecasting model, which uses
previous time step net load data for forecasting. DGM(1,
2) and DGM(1, 3) are first order bi-variate and tri-variate
forecasting models, respectively. DGM(1, 2) model uses
previous year similar day data along with previous time
step data and DGM (1, 3) model uses two previous year
similar days data along with previous time step data.
GST based forecasting models can produce ultra fast and
accurate very short term net load forecasts compared to
complex machine learning algorithms, as these models
require low quantum of forecasting inputs due to their
momentum transfer behavior [26]. Proposed GST models
are implemented for data collected from BPA balancing
area. Seasonal analysis is performed to show the forecasting
performance of proposed models throughout the year.
Forecasts obtained from proposed models are compared
with actual net load data and also compared with forecasts
obtained from reference ANN model. Comparison with
actual net load data shows that proposed models have
strong potential to produce accurate very short term net
load forecasts. Backpropagation based ANN is used as a
reference model due to its superior learning capability [24].
At very short time frames such as five minute steps, net load
shows a strong correlation with previous time steps data.
Proposed models utilize such characteristics for forecasting
compared to continuous error reduction procedure in ANN.
Continuous error reduction in a very short time frame
can leads to under or over estimation of ANN weights,
which lowers the forecast accuracy. Therefore, forecasting
performance comparison with ANN shows that proposed
very short term direct NLF models, especially DGM (1,
3) has superior performance over ANN in very short time
frames.

Remaining part of the paper is arranged as follows.
Mathematical modelling of the proposed GST based model
is explained in “Proposed Direct NLF Model”. “Forecast-
ing Model Performance Evaluation and Comparison”
gives model evaluation parameters and “Results and
Discussions” gives seasonal performance of proposed
models. “Conclusions” concludes that proposed forecasting
models are able to produce net load forecasts with low
quantum of training data.

Proposed Direct NLFModel

GST based forecasting models use trend-based forecasting
strategy, where trend depends on the set of most recent
data. First order differential equation is used to represent the
models, which themselves have time varying coefficients.
Those coefficients are continuously changing based on the
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availability of new data and those are obtained by solving
first order differential equation using least square method.
Three GST based direct NLF models; DGM(1, 1), DGM(1,
2) and DGM(1, 3) are proposed depending on the number
of input variables used for forecasting. DGM(1, 1), DGM(1,
2) and DGM(1, 3) are uni-variate, bi-variate and tri-variate
forecasting models, respectively. These models use previous
time steps and previous years similar days net load data as
forecasting inputs. Historical similar days are used along
with previous time steps data to absorb net load behaviour
in similar climatic conditions. This can improve forecasting
accuracy.

Historical load, wind and solar generation data can be
used for historical NLTS estimation. Therefore, proposed
very short term direct NLF starts with five minutes interval
historical NLTS estimation. Second step obtains very short-
term net load forecasts using three GST based forecasting
algorithms (DGM (1, 1), DGM (1, 2) and DGM (1, 3)) and
third step compares forecasting performance parameters as
shown in Fig. 1.

Historical NLTS Estimation

Net load (NLt ) at each time step is estimated as the
difference between aggregated system load (Lt ) and sum of
aggregated wind (WGt ) & solar power generation (SGt ) at
same time step as follows [12],

NLt = Lt − (SGt + WGt) (1)

Historical NLTS data obtained from Eq. 1 is applied to the
following GST based Grey index models for obtaining very
short term net load forecasts.

Grey IndexModels

Model selection is the primary task for every forecasting
problem and it should consider type of data used for
forecasting. Different techniques like ACF can be used for
forecasting model selection. ACF based model adequacy
test is conducted in the proposed work. Very short term
forecasting time frame varies from fraction of minutes to
several minutes. NLTS shows high auto correlation for such
time frames. Grey index models are suitable for highly
auto correlated data sets as they use momentum transfer
behaviour to obtain forecasts. This enables the use of
previous data as forecasting input and also reduces quantum
of input data required for forecasting. Therefore, accurate
very short time frame net load forecasts can be obtained by
Grey index models.

Particular day in any year may have almost similar
climate compared to previous years’ similar days, as year
to year climate change is minimal. Therefore, load, wind
and solar power generation data at any day show very
strong correlation with previous year’s similar day’s load,
wind and solar power generation data, respectively. So,
previous year’s similar day’s net load data can be used,
along with previous time steps net load data, for very short
term NLF. Proposed uni-variate (DGM(1, 1)) model uses

Fig. 1 Proposed direct NLF
model
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only previous time steps data as forecasting inputs, while
bi-variate (DGM(1, 2)) and tri-variate (DGM(1, 3)) models
use previous one year and previous two year data along
with previous time steps data, respectively. Grey index
models use Accumulated Generated Operation (AGO) as
input data pre-processing technique. Model parameters are
estimated from AGO sequence. Therefore, model adequacy
test is applied on net load AGO sequence. The estimated
model creates forecasts as AGO sequence and Inverse
Accumulated Generation Operation (IAGO) is required to
obtain the actual predicted sequence.

Uni-Variate GreyModel (DGM(1, 1))

Grey index models are suitable for positive time series data
[7, 14, 19, 20, 23, 26, 33]. NLTS is positive in most of
the power markets as magnitude of base load is higher
than sum of maximum possible wind and solar generation
[3]. DGM(1, 1) is a first order one variable time series
forecasting technique. First order differential equation
represents that model has time varying coefficients. Time
varying coefficients of model can be obtained by solving
first order differential equations.

Proposed model uses AGO as input data processing
technique. AGO creates monotonically increasing time
series data and such monotonically increasing data shows
less randomness as compared to original input data.
Proposed model produces forecasts as AGO sequence.
IAGO is applied to AGO sequence forecast for obtaining
actual forecasts [7, 14, 19, 20, 23, 33].

Consider NLTS data S0 that denotes previous N five
minute time steps,

S0(t) = (S0(1), S0(2), S0(3), ..., S0(N)) (2)

AGO converts NLTS into a monotonically increasing
sequence S1, which is random as compared to actual data.

S1(t) = (S1(1), S1(2), S1(3), ..., S1(N)) (3)

where,

S1(t) =
t∑

k=1

S0(k) (4)

where, k is that time step up to which S1(t) is evaluated.
DGM(1, 1) model whitening equation for the previous N

time steps net load series can be written as,

d

dt
S1(t) + μS1(t) = μ1 (5)

where μ and μ1 are DGM(1, 1) model parameters. DGM
(1, 1) first order differential equation least square estimate
series can be obtained from previous N time steps net load
series S0 and generated mean sequence I 1,

S0(t) + μI 1(t) = μ1 (6)

AGO output of previous N time steps NLTS is used to create
generator mean sequence. Such generated mean sequence
can be written as,

I 1 = [I 1(1), I 1(2), I 1(3), ..., I 1(N)] (7)

where, I 1 is calculated as the average of subsequent AGO
outputs,

I 1(t) = 0.5(S1(t) + S1(t − 1)) (8)

DGM(1, 1) model parameters can be obtained using
following matrix operations,
[
μ μ1

]T = [
BT B

]−1
.BT .Y (9)

where,

Y = [S1(2), S1(3), ..., S1(N)]T (10)

B =

⎡
⎢⎢⎢⎢⎣

−I 1(2) 1
−I 1(3) 1
−I 1(4) 1

: :
−I 1(N) 1

⎤
⎥⎥⎥⎥⎦ (11)

where, B is model matrix. Monotonically increasing
forecasted value for next time step t +1 (S1

p(t +1)) is given
by,

S1
p(t + 1) = [S1(0) − μ1

μ
]e−μt + μ1

μ
(12)

Actual net load forecast at t + 1 (S0
p(t + 1)) is obtained

from forecasted AGO sequence by applying IAGO [19, 26].
Forecast at t + 1,

S0
p(t + 1) =

[
[S1(0) − μ1

μ
]e−μt + μ1

μ

] (
1 − eμ

)
(13)

In DGM(1, 1) model, S0
p(t + 1) is obtained using only

previous N time steps net load data.

Bi-Variate GreyModel (DGM(1, 2))

Addition of previous year similar day data along with
previous time step’s data can help to improve forecasting
accuracy, because climatic conditions are almost similar
with negligible changes. DGM(1, 2) is a first order bi-
variate time series forecasting technique, where N previous
time steps and previous year similar day net load data are
used as forecasting inputs. Previous year similar day’s data
consists of previous year forecasting time step data and N −
1 previous five minutes net load data. First order whitening
differential equation of proposed DGM(1, 2) model is,

dS0
1

dt
+ μS1

1 = μ2 − S1
2 (14)
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where μ, μ1 and μ2 are DGM(1, 2) model parameters.
DGM(1, 2) forecasting model parameters can be estimated
by following matrix operations:
[
μ μ1 μ2

]T = [
BT B

]−1
.BT .Y (15)

where,

Y = [S1(2), S1(3), ..., S1(N)]T (16)

B =

⎡
⎢⎢⎢⎢⎣

−I 1(2) S1
2(2)−I 1(3) S1
2(3)−I 1(4) S1
2(4): :

−I 1(N) S1
2(N)

⎤
⎥⎥⎥⎥⎦ (17)

Monotonically increasing forecasted value for next time
step t + 1 is given by,

S1
p(t +1) = (S1(0)− μ2

μ
S1
2(t +1))e−μt + μ2

μ
S1
2(t +1) (18)

Actual net load forecast at t + 1 is obtained from forecasted
AGO sequence by applying IAGO [19, 23]. Forecast at t+1,

S0
p(t + 1) = S1(t + 1) − S1(t) (19)

In DGM(1, 2) model, S0
p(t + 1) is obtained using previous

time steps and previous year similar day net load data.

Tri-Variate GreyModel (DGM(1, 3))

Addition of one more previous year’s net load data can
be used to improve forecasting accuracy, because climatic
condition may be different in last year and also may have
more similarity with the year before last. DGM(1, 3) is
a first order tri-variate time series forecasting technique,
which uses previous two years similar day net load data
(S0

2 and S0
3 ), along with previous time steps net load data

(S0
1 ). Addition of last to last year’s similar day data along

with previous time steps and previous year similar day data
can help to improve forecasting accuracy from DGM(1, 2)
model. This will help to dilute the unusual conditions in
the just previous year similar day and previous time steps
net load data. First order whitening differential equation of
DGM(1, 3) model is given as follows:

dS0
1

dt
+ μS1

1 = μ2 + μ3 − S1
2 − S1

3 (20)

where μ, μ1, μ2 and μ3 are DGM(1, 3) model parameters.
DGM(1, 3) forecasting model parameters can be estimated
by following matrix operations:
[
μ μ1 μ2 μ3

]T = [
BT B

]−1
.BT .Y (21)

where,

Y = [S1(2), S1(3), ..., S1(N)]T (22)

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

−I 1(2) S1
2(2) S1

3(2)−I 1(3) S1
2(3) S1

3(3)−I 1(4) S1
2(4) S1

3(4)−I 1(5) S1
2(5) S1

3(5): :
−I 1(N) S1

2(N) S1
3(N)

⎤
⎥⎥⎥⎥⎥⎥⎦

(23)

Monotonically increasing forecasted value for next time
step t + 1 is given by,

S1
p(t + 1) = S1(0) − μ2

μ
S1
2 (t + 1)e−μt − μ3

μ
S1
3 (t + 1)e−μt + μ2

μ
S1
2 (t + 1) +

μ3

μ
S1
3 (t + 1) (24)

Actual net load forecast at t +1 is obtained from forecasted
AGO sequence using IAGO [26]. Forecast at t + 1,

S0
p(t + 1) = S1(t + 1) − S1(t) (25)

Adding more than two year’s similar day data may not
help to improve accuracy further, because there may
be significant changes in load, wind and solar power
generation. Significant connected load variation can happen
in every year due to the addition of new loads. An average
annual load growth rate of 5 to 15% is present in most of
the power industries [3]. Similarly, the installed capacity of
wind and solar generation is also rapidly increasing around
the world. This also restricts the selection of more than two
previous year net load data [3]. Therefore, selecting more
than two previous year net load data cannot help to improve
the forecasting accuracy.

ForecastingModel Performance Evaluation
and Comparison

Net load forecasts obtained from the above models should
be compared with actual net load values for forecasting per-
formance evaluation. Forecasting performance parameters
such as Mean Absolute Error (MAE) and Mean Absolute
Percentage Error (MAPE) can be used for forecasting per-
formance evaluation [2, 32]. Mean value of absolute errors
over an interval can be given as,

MAE =
∑

εt

n
(26)

Percentage Error (PE) can be estimated as the ratio of
absolute error εt and actual net load (NLt ),

PE(t) =
∑

εt

NLFt

∗ 100 (27)

MAPE is the arithmetic mean of percentage errors PE(t)

over an interval and MAPE can be written as

MAPE =
∑

PE(t)

n
(28)

Performance comparison of proposed Grey index mod-
els (DGM (1,1), DGM (1, 2) and DGM (1, 3)) with an
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Fig. 2 Load, wind & solar
generation and estimated net
load data
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established reference model such as ANN highlights the
improvement in forecasting accuracy. ANN is used as a ref-
erence model, due to their versatility arising from superior
learning capability and forecasting accuracy, as compared to
time series models like Auto Regressive Integrated Moving
Average Models (ARIMA). Backpropagation based ANN
model is implemented for comparison [24].

Optimal performance of proposed model can be ensured
by evaluating correlation residues such as ACF. Low
correlation and zero mean residues show that no information
remains in input net load data, which could be used for
improving the forecasting accuracy. Therefore, residual
correlation evaluation can be done for proposed models to
ensure optimal performance.

Results and Discussions

Historical NLTS is estimated by Eq. 1 using load, wind
and solar power generation data of Bonneville Power
Administration (BPA) balancing area [3]. Load and wind
power generation data is directly taken from BPA and
solar power generation is modelled using solar radiation
data. BPA load is composed of aggregated load & net
interchange, and has an average load of 13500 MW. Large
number of wind plants are available in BPA balancing
area, having an aggregated installed capacity of 4500 MW.
Aggregated capacity of 1200 MW solar power generation
is modelled using solar radiation data, to account globally
increasing solar PV generation. Selected system has 5700
MW installed capacity of renewable generation and total
renewable generation never reaches to total load, which has

an average value of 13500MW. This results in a positive
NLTS data for all time steps.

Load, wind generation, solar generation and estimated
net load of one morning hour in winter season is shown in
Fig. 2. Figure 2 shows that net load is positive for all time
steps as renewable generation is too low as compared to
system load. Load is slightly increasing for the shown hour
as industrial and commercial loads start to build in morning
hours. Solar generation also increases due to increasing
radiation in morning, while wind generation does not show
any trend.

Proposed models obtain point net load forecasts. Figure 3
shows forecasting procedure of proposed point NLF and
reference ANN models. It explains training and testing data
selection of DGM (1, 1), DGM (1, 2), DGM (1, 3) and
reference ANN models. DGM (1, 1) model is trained using
2016 data and tested on 2017 data. DGM (1, 2) and both
DGM (1, 3) as well as ANN are trained using data obtained
from 2015, 2016 and 2014, 2015, 2016 years, respectively.
Similarly, DGM (1, 2) and both DGM (1, 3) as well as ANN
are tested using data obtained from 2016, 2017 and 2015,
2016, 2017 years, respectively.

Proposed Grey index models use AGO as data pre-
processing technique. AGO transform actual net load time
series into monotonically increasing data. Model parameters
are evaluated from those monotonically escalating data.
Therefore, model adequacy test is conducted on net load
AGO data. Model adequacy is evaluated by ACF. ACF plot
of net load AGO data is shown in Fig. 4. Figure 4 shows
that net load AGO data has moving characteristics and
strong auto correlation with previous time steps. So, Grey
index models are suitable for net load AGO data forecasting
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Fig. 3 Forecasting procedure of proposed point NLF and reference ANN models

as those can transfer momentum present in previous time
steps data. Proposed model accuracy can also increase by
adding previous years similar day net load data as they
show almost similar climatic conditions. Similar days are
selected based on date, weekday or weekend or holiday
information. For obtaining forecasts of weekdays, same date
day in the previous year is selected, if it is weekday and
nearest date day is selected, if it is weekend. For obtaining
forecasts of weekend days, same date day in the previous
year is selected, if it is weekend day and nearest date
weekend day is selected, if it is weekday. For obtaining

Fig. 4 ACF plot of net load data

forecasts of holidays, same holidays are selected from
previous years. Addition of previous year’s net load data
along with previous time steps data as forecasting inputs
can be observed in DGM(1, 2) and DGM(1, 3) models.
Reference ANN model uses previous two year similar days
historical NLTS data and previous time steps data similar to
DGM(1, 3) model in all seasons. Proposed Grey index based
direct NLF models are implemented for different seasons
such as winter, transition and summer.

Winter Season

Net load forecasts are obtained for morning, noon, evening
and night hours of winter season to show the performance
throughout the day. Performance plot of one morning hour is
shown in Fig. 5. Figure 5 shows that forecasts obtained from
Grey index models have same pattern, because previous
time step values are common in all Grey index models.
Previous years similar day data addition in DGM(1, 2) and
DGM(1, 3) models helps to improve the accuracy and it can
be observed that forecasts obtained from DGM(1, 3) model
are closer to actual values, than any other model. Absolute
errors of proposed Grey index models and reference ANN
model in complete winter season are shown in Fig. 6.

Error distribution of DGM(1, 1), DGM(1, 2), DGM(1,
3) and ANN models show that forecasting accuracy is
improved from DGM(1, 1) to DGM(1, 3). Also, DGM(1, 3)
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Fig. 5 Performance plot of
morning hour in winter season
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model shows better performance as compared to reference
ANN model. Red lines in Fig. 6 show median of absolute
errors for different models and it can be observed that
DGM(1, 3) model has lowest median. It can also be
observed that box’s upper border of DGM(1, 3) model is
lower than other models. Therefore, 75% of absolute errors
in DGM(1, 3) are distributed closer to zero. However, long
upper whisker shows that some extreme absolute errors are
present in DGM(1, 3) model. Absolute error distributions
can be summarized in terms of forecasting performance
parameters. MAE and MAPE of DGM(1, 1), DGM(1, 2),
DGM(1, 3) and reference ANN models for morning, noon,
evening and night hours in winter season are shown in
Table 1.

Table 1 shows that night hours have least MAE values
for all models, because net load is the function of only two

uncertain variables (load and wind power generation) dur-
ing night intervals. Night hours also show higher MAPE,
because aggregated load is lowest during night hours.
Aggregated load in night hours is low due to the absence
of industrial and commercial loads, even though heating
load is higher. Morning and evening hours show higher
MAE and lower MAPE than noon hours, because net load
magnitude in noon hours is low due to higher solar power
generation and lower heating load. DGM(1, 1) model has
an average MAE and MAPE of 311.98 MW and 4.82%
respectively in winter season. DGM(1, 2) model shows
7.91% and 8.3% reduction in MAE and MAPE, respec-
tively from DGM(1, 1) model. DGM(1, 3) model shows
21.4% and 22.88% reduction in MAE and MAPE, respec-
tively from DGM(1, 1) model. Also, 10.75% and 11.02%
reduction in MAE and MAPE, respectively is there from

Fig. 6 Absolute error box plot
of winter season
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Table 1 MAE (MW) and MAPE (%) of winter season

Time Performance Parameter DGM(1,1) DGM(1,2) DGM (1,3) ANN

Morning MAE 335.84 327.17 260.8 318.34

MAPE 4.66 4.54 3.62 4.41

Noon MAE 324.37 303.24 289.9 299.14

MAPE 4.94 4.62 4.26 4.42

Evening MAE 329.49 296.74 277.4 294.37

MAPE 4.68 4.22 3.95 4.19

Night MAE 258.22 229.27 199.8 226.63

MAPE 5.01 4.45 3.86 4.4

reference ANN model to DGM(1, 3) model. Therefore, it
is clear that proposed DGM(1, 3) model outperforms other
models in winter season.

Transition Season

Morning, noon, evening and night hours of transition season
are also selected to show the performance throughout
the day. Similar to winter season, performance plot of
one morning hour is shown in Fig. 7. Transition season
performance plot also follows the pattern of winter season.
Net load magnitude of transition season is lower compared
to winter season due to higher solar power generation and
absence of heating load. Lower net load magnitude results
in higher MAPE even for lower absolute errors. Absolute
error distribution of various models in transition season is
shown in Fig. 8.

Error distribution of DGM(1, 1), DGM(1, 2), DGM(1,
3) and ANN models in transition season also shows that
forecasting accuracy is improved from DGM(1, 1) model
to DGM(1, 3) model. DGM(1, 3) model shows better

performance compared to other models, as box’s upper
border of DGM(1, 3) model error distribution is lower than
other models. This shows that 75% of absolute errors in
DGM(1,3) model are distributed closer to zero. However,
long upper whisker shows that some extreme absolute errors
are present in DGM(1, 3) model. Figure 8 also shows
that ANN model has least median, but more than 50%
of absolute errors are distributed above the median. Error
distribution of different models can be summarized in terms
of forecasting performance parameters. MAE and MAPE
of DGM(1, 1), DGM(1, 2), DGM(1, 3) and reference ANN
models for morning, noon, evening and night hours in
transition season are shown in Table 2.

Similar to Tables 1 and 2 also shows that night hours have
least MAE as night time net load is the function of only
two uncertain variables (load and wind power generation).
Night hours show higher MAPE, because aggregated load
is lowest during night hours due to the absence of industrial
and commercial loads. Noon and evening hours show
highest MAE and MAPE, respectively in transition season.
MAE is highest in noon, because contribution of all three

Fig. 7 Performance plot of
morning hour in transition
season
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Fig. 8 Absolute error box plot
of transition season
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uncertain variables (load, wind and solar power generation)
is quite high in net load. MAE magnitudes of morning
and evening hours are comparable in transition seasons.
However, transition season evening hours show highest
MAPE as net load magnitude is low due to high wind
power generation. DGM(1, 1) model has an average MAE
and MAPE of 256.88 MW and 7.04% respectively in
transition season. DGM(1, 2) model shows 2.55% and
2.62% reduction in MAE and MAPE, respectively from
DGM(1, 1) model and DGM(1, 3) model shows 5.87%
and 6.02% reduction in MAE and MAPE, respectively
from DGM(1, 1) model. Also, 1.35% and 1.36% reduction
in MAE and MAPE, respectively is there from reference
ANN model to DGM(1, 3) model. Therefore, its clear that
proposed DGM(1, 3) model outperforms other models in
transition season, similar to winter season.

Summer Season

Net load forecasts are obtained for morning, noon, evening
and night hours of summer season to show the performance
throughout the day. Performance plot of one morning hour

is shown in Fig. 9. Forecasts obtained by Grey index models
show similar pattern, because inputs of all three models
contain previous time step net load data. Similar to winter
and transition season, use of previous years similar day
data as input in DGM(1, 2) and DGM(1, 3) models helped
to improve the accuracy. It can be observed that forecasts
obtained from DGM(1, 3) model are very close to actual
values than other models. Absolute errors of proposed
Grey index models and reference ANN model in complete
summer season are shown in Fig. 10.

Similar to other seasons, box plot of absolute error shows
that forecasting accuracy is improved from DGM(1, 1)
model to DGM(1, 3) model. Also, DGM(1, 3) model shows
better performance compared to reference ANN model.
DGM(1, 3) model has lowest median and also absolute
errors are distributed closer to zero than other models. In
contrast with other two seasons, DGM(1, 3) model shows
shortest whisker in summer season. Therefore, there is no
extreme forecasting errors for DGM(1, 3) model in summer
season. Absolute error distributions can be summarized in
terms of forecasting performance parameters. MAE and
MAPE of DGM(1, 1), DGM(1, 2), DGM(1, 3) and reference

Table 2 MAE (MW) and MAPE (%) of transition season

Time Performance Parameter DGM(1,1) DGM(1,2) DGM (1,3) ANN

Morning MAE 249.33 241.57 231.7 238.18

MAPE 5.31 5.15 4.94 5.07

Noon MAE 315.17 311.11 302.9 303.81

MAPE 7.51 7.41 7.22 7.24

Evening MAE 260.22 251.87 246.3 249.17

MAPE 7.84 7.59 7.42 7.51

Night MAE 202.81 197.34 189.6 192.44

MAPE 7.5 7.3 7.01 7.12
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Fig. 9 Performance plot of
morning hour in summer season
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ANN models for morning, noon, evening and night hours in
summer seasons are shown in Table 3.

In contrast to winter and transition seasons, summer
season night hours show highest MAE and lower MAPE
values as night time wind power generation and load
are comparatively high. Load is higher due to cooling
loads. High wind power generation results in high net load
forecasting errors, which leads to higher MAE values. High
aggregated load results in higher net load magnitudes and
results in lower MAPE values, as actual net load values are
present in the denominator of percentage error estimation.
This can be observed in Table 3. Noon hours show
lowest MAE and comparatively high MAPE due to lower
net load magnitudes. DGM(1, 1) model has an average
MAE and MAPE of 99.72 MW and 4.77% respectively
in summer season. DGM(1, 2) model shows 12.17% and

13.03% reduction in MAE and MAPE, respectively from
DGM(1, 1) model. DGM(1, 3) model shows 19.35% and
20.15% reduction in MAE and MAPE, respectively from
DGM(1, 1) model. It can also be observed that summer
season performance of reference ANN model is almost
similar to DGM(1, 3) model. However, there is small
reduction of 0.93% and 0.75% in MAE and MAPE,
respectively from reference ANN model to DGM(1, 3)
model. Therefore, its clear that proposed DGM(1, 3) model
outperforms other models in summer season, similar to
winter and transition seasons. However, net load forecast
trajectory shows slight variation from net load trajectory
(minute dynamic variations), because proposed models use
momentum of last twelve data points to produce next time
step forecast. Forecast may vary if next time step data shows
extreme trend variation as compared to recent data.

Fig. 10 Absolute error box plot
of summer season
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Table 3 MAE (MW) and MAPE (%) of summer season

Time Performance Parameter DGM(1,1) DGM(1,2) DGM (1,3) ANN

Morn. MAE 98.34 83.27 76.3 77.81

MAPE 6.13 5.19 4.76 4.85

Noon MAE 91.81 82.03 79.9 79.96

MAPE 5.44 4.86 4.74 4.74

Even. MAE 102.64 92.17 85.9 86.42

MAPE 4.26 3.83 3.57 3.59

Night MAE 106.11 98.14 92.1 93.14

MAPE 3.25 3.01 2.82 2.85

Annual Performance

Annual performance is evaluated by compiling seasonal
analysis. Forecasts obtained in winter, transition and
summer seasons are used for annual analysis. Absolute error
distribution of DGM(1, 1), DGM(1, 2), DGM(1, 3) and
ANN are shown in Fig. 11. Absolute errors successively
reduce from DGM(1, 1) model to DGM(1, 3) model.
DGM(1, 2) model has lower median compared to ANN
model, but absolute errors are quite higher. DGM(1, 3)
model has least median compared to other models and also
more than 75% of absolute errors are distributed closer to
zero. However, long upper whisker of DGM(1, 3) model
shows that some extreme absolute errors are present in
DGM(1, 3) model.

Error distribution of different models can be summarized
in terms of forecasting performance parameters. MAE and
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Fig. 11 Annual absolute error box plot

MAPE of DGM(1, 1), DGM(1, 2), DGM(1, 3) and reference
ANN models of complete year are shown in Table 4.
DGM(1, 1) model has an average annual MAE and MAPE
of 222.86 MW and 5.54%. There is 6.38% and 6.94%
reduction in MAE andMAPE respectively, from DGM(1, 1)
to DGM(1, 2) model. DGM(1, 3) model shows 14.65% and
14.46% reduction in MAE and MAPE respectively, from
DGM(1, 1) to DGM(1, 3) model. Also, DGM(1, 3) model
shows 5.48% and 3.92% reduction inMAE andMAPE from
reference ANN model. Therefore, it is clear that annually
DGM(1, 3) model outperforms other models.

Proposed DGM (1, 3) model has an annual accuracy of
above 95% as shown in Table 4 and reflects the capability
to produce accurate forecasts. However, proposed models’
forecasts show slight deviations from actual net load trajec-
tory (Figs. 7, 8 and 9). Reference ANN model forecasts do
not exactly follow the actual net load/ those obtained from
the proposed models. Model parameter/weight estimation in
proposed Grey index models and reference ANN model is
fundamentally different and produce different trend among
these. Reference ANN model use backpropagation-based
weight adjustment to minimize error.

Proposed models use momentum of last twelve data
points to produce next time step forecast and a rolling
approach by regularly data updating. Forecast may vary
if next time step data shows extreme trend variation as
compared to recent data. Proposed models use momentum

Table 4 Annual performance parameters

Model MAE (MW) MAPE (%)

DGM(1, 1) 222.86 5.54

DGM(1, 2) 209.49 5.18

DGM(1, 3) 194.38 4.84

ANN 204.95 5.03
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of last 12 data points to produce next time step forecast and
a rolling approach by regularly data updating. Forecast may
vary if next time step data shows extreme trend variation
as compared to recent data. Same can be observed from
Figs. 5, 6 and 7. Proposed model forecasts follow increasing
and decreasing trend of actual data; however, momentum
transfer is leads to overestimated point forecasts. Addition
of previous years’ similar day data in DGM (1, 2) and DGM
(1, 3) helps to reduce overestimation and can be observed
as accuracy improvement. Also, overestimation tendency is
less as compared to reference ANN model.

Proposed models can produce accurate forecasts even
with renewable generation changes, as historical renewable
generation variations are included in net load time series
and model parameters are estimated using such data.
However, high uncertainty in renewable generation may
enhance net load forecasting error. Positively correlated
uncertain changes among load and renewable generation,
and negatively correlated wind and solar generation reduces
the effect of uncertainty. Negatively correlated uncertain
changes among load and renewable generation, and
positively correlated wind and solar generation increases the
effect of uncertainty.

Residual correlation is estimated for best model
(DGM(1, 3)) using ACF. ACF of residues of DGM(1, 3)
model are shown in Fig. 12. ACF plots show that residues
have low correlation; apart from one outlier, all residual cor-
relations are with in 0.2. Also, mean value of residuals is
closer to zero and ACF plot does not show any kind of cor-
relation pattern. Therefore, no information remains in input
net load data to improve forecasting model performance.
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Fig. 12 ACF of DGM(1, 3) model

Conclusions

High renewable penetrated power systems necessitate accu-
rate net load forecasts for optimal system operations such
as generator scheduling and generation ramping require-
ment estimation. Also, increasing renewable penetration in
power systems continuously forces to reduce dispatching
times frames from day ahead to fives minutes in markets
like MISO and CAISO. This necessitates fast and accurate
net load forecasts in such very short time frames. Such fast,
accurate and very short time frame net load forecasts can be
obtained by direct NLF. Therefore, this paper proposes three
very short time frame direct NLF models based on GST.
Forecasting performance analysis show that proposed mod-
els are suitable to obtain accurate net load forecasts in all
seasons. Addition of previous years similar day data along
with previous time step data as forecasting inputs helped to
improve forecasting accuracy from DGM(1, 1) to DGM(1,
3) model. Proposed DGM(1, 3) model outperforms pro-
posed DGM(1, 1), DGM(1, 2) and reference ANN model
through out the year. Therefore, accurate net-load forecasts
obtained from proposed DGM (1, 3) model can be used
for different power system operations such as generation
scheduling. Seasonal analysis shows that summer season
shows least error compared to other seasons due to the less
uncertain weather.

Direct net load forecasting accuracy can be further
improved by avoiding input data outliers using digital sig-
nal processing-based data filtering techniques. Also, minute
dynamic variations in net load can be addressed using
advanced machine learning/deep learning algorithms. Accu-
rate net load forecasts are beneficial for micro/community
grid and low voltage network operations, and current work
can be extended for such systems. These can be done as
future work.
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