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Abstract
The stability of decentralized electricity grids is influenced by real-time electricity prices and the cost sensitivity and reaction
times of power producers and consumers. The decentral smart grid control (DSGC) system is designed to provide demand-side
control of decentralized electricity grids by linking real-time electricity prices to changes in grid frequency over the time scale of a
few seconds. This stimulates electricity demand-side consumption / production on similar time scales. Grid stability of DSGC
systems can be simulated by considering a wide range of assumptions for the electricity volumes consumed / produced (P) by
each grid participant, their cost-sensitivity (G) and reaction times (Tau) to changing grid conditions. Such a simulation (10,000
cases) published for a simple four-node star decentralized grid configuration with randomized values for P, G and Tau quantifies
dynamic grid stability (Stbin) in terms of grid mechanical and pricing influences. This study applies an optimized data-matching
machine-learning algorithm, the, transparent open box (TOB) learning network to predict Stbin (ranging from −0.0808 to
+0.1094 s−2) for this published simulation from its independent variables. TOB manages to predict Stbin to a high degree of
accuracy (RMSE ~0.016 s−2; R2 ~0.85) for this grid configuration in which independent variables P, G and Tau are poorly
correlated with Stbin. By involving average G and Tau values for the three consumers as input variables TOB prediction accuracy
is further improved (RMSE ~0.0075 s−2; R2 ~0.90). The study highlights the importance of compound feature selection when
predicting grid stability of decentralized electricity grids.

Keywords Decentralized power grids . Demand response electricity pricing . Grid stability prediction . TOB learning network .
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Introduction

The ability to effectively influence demand response in
decentralized electricity grids without requiring expensive
changes to grid infrastructure is a high-priority goal for the
power sector striving to accommodate more embedded and
intermittent generators and prosumers with fluctuating pro-
duction and consumption. For demand-side grid control
methods to be successful they must demonstrate their ability
to maintain grid stability in terms of rapid changes in

electricity prices and different degrees of price sensitivity
and reaction times to price changes displayed by power con-
sumers and producers. Demand-side control systems for
decentralized power grids can be simulated considering vari-
ous grid configurations. Such simulations can incorporate de-
tails of the grid mechanics, electricity pricing and the response
characteristics of the participant to calculate grid stability un-
der a wide range of conditions.

This study takes the novel approach of applying a data-
matching machine- learning algorithm, that does not utilize
correlations, to predict simulated grid stability from three
key variables, viz. the volumes of electricity consumed / pro-
duced (P) by each grid participant, and the cost-sensitivity (G)
and reaction times (Tau) of the grid participants to changing
grid conditions. The ability to accurately predict grid stability
from such variables and to identify to which of those variables
grid stability is most sensitive is an important capability in
designing effective decentralized grid control mechanisms.
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The hypothesis being tested by this study is that a transparent
data-matching, machine-learning algorithm can provide high-
ly accurate predictions of grid stability and useful insight to
the relative influences of the various input variables in con-
tributing to grid stability of decentralized electricity grids.

The recently developed machine-learning algorithm, the
transparent open box (TOB) learning network [1] is a data-
matching, supervised learning algorithm that does not rely
upon correlations between its input variables, prioritizing
transparency and accuracy as its primary objectives. The main
objectives of this study are to demonstrate the TOB’s effec-
tiveness in evaluating virtual simulations of decentralized grid
performance, to predict the stability of those grids with mean-
ingful accuracy and to provide useful insights to the relative
contributions of the input variables influencing grid stability.

The expansion of decentralized power networks relies part-
ly on embedded and distributed generation [2], with both con-
ventional and renewable contributions, and involves new
complexities such as prosumers [3]. Such networks routinely
have to cope with intermittency of some power supply.
Designing and adapting grid topologies in many regions to
incorporate these features has become the new reality for mod-
ern power network participants in smart grids. In such grids
supply-demand imbalances and fluctuation are commonplace
on a range of timeframes beginningwithmilliseconds, making
it difficult to maintain dynamic stability [4] and potentially
leading to power-price instability [5]. This requires a different
approach to the design and control of decentralized grids to
that traditionally associatedwith centralized systems, crucially
introducing short-term flexibility [6]. Such flexibility needs to
be attainable in a cost-effective and efficient manner that is,
from a pricing perspective, transparent to all grid participants
not just the main power producers, suppliers and system op-
erators [7].

Demand-side management controlling /influencing con-
sumers’ power consumption decision by encouraging them
to respond to market conditions (available supply) through
pricing signals is widely considered as potentially providing
viable routes to the required flexibility via smart meters [8, 9].
Demand-side response programs related to micro-grids are the
focus of much recent research attention [10–13]. However,
pricing routes require rapid information flow and communi-
cation systems that protect systems from cyber violations and
personal data from being compromised, which comes at sig-
nificant cost if a centralized mindset for control prevails
[14–16]. In order to simplify the information to be communi-
cated between electricity consumers, producers and system
operators, Schafer et al. [6] introduced the Decentral Smart
Grid Control (DSGC) mechanism exploiting the well-
established ability to re-schedule power dispatch adapting to
frequency fluctuations [17, 18].

DSGC enables the momentary supply / demand of
prosumers in a smart grid demand to be linked to local

measurements of frequency within the grid on a timescale of
very few seconds. As fluctuations in grid frequency are typi-
cally responses to under- or over-supply of electricity within a
grid (frequency decreases when there is a shortfall of power in
the grid), monitoring grid frequency offers a cheap way to
potentially control demand responses [19]. One way to do this
is with distributed intelligent load controllers [20], especially
with prosumers with loads that are flexible with regard to
timing [21]. Schafer et al. [6, 22] established that DSGC could
enhance dynamic power stability provided that the grid fre-
quency was measured over sufficient time intervals and that it
could potentially be applied in both centralized and
decentralized grids. DSGC also can be configured to limit
non-gaussian power grid frequency fluctuations [23].
Arzamasov et al. [24] conducted a simulation sampling the
key variables over a broad feasible solution space to further
assess grid stability with DSGC applied to a simple
decentralized grid configuration. Their dataset is registered
in the UCI machine-learning repository [25] and is the dataset
further evaluated by this study. Other reinforcement learning
approaches involving simulation of multiple agents are also
applied to grid system decision and control [26–28].

Machine learning algorithms are able to spot patterns and
anomalies in datasets and can therefore be deployed to poten-
tially enable grid system operators to make real-time decisions
about how to best allocate the electricity available. Various
machine-learning and data- mining algorithms have been ap-
plied to the decentralized management and control of
microgrids and to aid reinforcement learning [29]. These in-
clude fuzzy Q-learning [30]; artificial neural networks for
conducting virtual field tests [31]; decision trees [24, 32];
support vector machines [33] for predicting transient grid in-
stability; and, deep learning [34, 35] algorithms applied to
large-scale smart-grid databases. Several studies focus ma-
chine learning studies on the detection of smart grid data com-
promised by cyberattacks (e.g.., [36, 37]). Transparency is
typically not the priority for most machine learning algorithms
as they generally are based on correlations or statistical rela-
tionships among variables.

Following this introduction, the study is presented as fol-
lows: section 2 defines and quantifies the decentral smart grid
control (DSGC) system; section 3 describes the TOB
machine-learning algorithm and how it is applied to the
DSGC stability dataset; section 4 describes the TOB grid sta-
bility prediction results and the influence of key input vari-
ables; section 5 discusses the significance of the results and
future requirements for future simulations on larger, more
complex decentralized grid configurations. and section 6 pre-
sents the conclusions. Appendix 1 summarizes the steps in-
volved and application of the TOB method. Appendix 2 de-
scribes access to the DSGC dataset compiled for this study. A
terminology section following the appendices lists and defines
all symbols and abbreviations used in the study.
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Decentralised and Idealised Power Grid Defined
and Quantified

The physical dynamics of electric power generation and its
connection with consumption loads is expressed for the
DSGC model as Eq. (1) [6, 22, 24] taking into account power
grid synchronization [38, 39]):

d2θ j

dt2
¼ Pj−α j

dθ j

dt
þ ∑kKjksin θk−θ j

� � ð1Þ

Where:

J is an index representing the number of grid
participant (producer(s) generating power to
transmit through the grid and consumers take load
from the grid);

d2θ j

dt2
is a grid stability indicator (negative indicates grid is
unstable; positive indicates grid is stable);

Pj is the mechanical power produced (e.g. by generator
P1) or consumed (e.g. by one of several consumers
P2 to P4) (s

−2);
αj is a damping constant related to the power dynamics

of the grid;
dθ j

dt change in rotor angle for participant j relative to grid
frequency ω;

Kjk Coupling strength between grid participant j and k,
which is proportional to line capacity (s−2); and,

θj and
θk

are rotor angles for grid participants j and k at a
specific point in time t.

A mechanism to bind the electricity price to the DSGC,
proposed by Schäfer et al. [6] involves a proportionality factor
c1, allows grid participants to adjust their production or con-
sumption in response to price changes within a short time
window of a few seconds. Electricity price for grid participant
j is defined as Eq. (2):

pj ¼ pω−c1 � ∫
t
t−T j

dθ j

dt
t−τ j
� �

dt ð2Þ
Where:

pj is the electricity price for grid participant j;
pω is the electricity price when dθ j

dt ≡0, i.e., no net change in
electricity is flowing through the grid;

c1 is a proportionality factor;
τj is a grid participants reaction time (in seconds) to execute

their change in production or consumption in response to
an electricity price change;

Tj is the time interval (up to about 4 s) used to define
electricity prices, and is the period over which the
average grid frequency is measured (Tjis referred to as
the averaging time); and.

t refers to a specific point in time.

The power produced or consumed by grid participant j for a
specific electricity price can then be approximated by the price
relationships expressed by Eq. (2) in the relationship defined
by Eq. (3):

P j≈bPj−c j p j−pω
� �

ð3Þ

Where:

bPj is the power produced or consumed by grid participant j
at electricity price pj; and,

cj is a coefficient proportional to the price elasticity of grid
participant j.

The dynamic measure of grid stability for the DSGC con-
figured in the way described is then defined by substituting Pj
in Eq. (1) with P̂ j derived from Eq. (3) and the electricity
prices (pj) from Eq. (3) defined by Eq. (2).

d2θ j

dt2
¼ Pj−α j

dθ j

dt

þ ∑kKjksin θk−θ j
� �

−
γ j

T j
θ j t−τ j
� �

−θ j t−τ j−T j
� �� � ð4Þ

Where, γj = c1 ∙ cj and represents a coefficient proportional
to price elasticity, which would vary from one grid participant
to another. Eq. (4) effectively couples the mechanical and
pricing influences on stability of the DSGC grid which is

quantified in terms of d2θ j

dt2
such that a negative value for that

metric indicates the grid is stable, whereas a positive number
indicates that it is unstable.

Arzamasov et al. [24] used Eq.(4) to conduct a simulation
to evaluate DSGC stability under a range of feasible values for
ranges of input assumptions applied to a simplistic four node
start motif DSGC network as illustrated in Fig. 1.

They explored the dynamic stability of the grid assuming
linear stability during steady-state operations of electricity
flowing from the one producer to the three consuming partic-
ipants. This involved finding a matrix of roots for a set of four
equations (i.e., one equation in the set for each participant in
the grid, each configured as Eq. (4)). There is a vast array of
possible solutions for this set of equations, depending on the
input assumptions, but only some solutions will yield positive
real parts to their roots, and such conditions, when they occur,
determine the grid to be unstable. There are a significant num-
ber of assumptions in the simple DSGC grid simulated relat-
ing to the mechanical performance of the grid configuration
and these are discussed in detail by Arzamasov et al. [24].

To conduct the simulation three key variables were consider
(each allowed to vary independently for each of the four grid
participants. These three key variable are:Pj (mechanical power
produced/ consumed, with j = 1 designated as the producer and
j = 2 to 4 designated as the electricity consumers); γj
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(coefficient proportional to price elasticity for each grid partic-
ipant, also referred to as G); and, τj (each grid participants
reaction time to an electricity price change, also referred to as
Tau). The feasible solution space values (boundary conditions)
for these three key variables considered for Arzamasov et al.’s
simulation are listed in Table 2 along with assumptions for
some key constants associated with the equations presented.

The simulation model therefore involved twelve dependent
variables (Tau1, Tau2, Tau3, Tau3, P1, P2, P3, P4, G1, G2,
G3, G4) as defined in Table 1 together with one dependent

variable, viz. d
2θ j

dt2
, the grid stability indicator calculated using

Eq. (4), also referred to as Stbin). Note that two-thirds of the
independent variables are electricity-price sensitive.
Arzamasov et al. [24] sampled these variables, throughout
their respective feasible spaces, using a random Latin hyper-
cube simulation (LHS) design with no specific dependencies
applied among the variables (dependent or independent) [40,
41], viz. participants j = 1 to 4 were allowed to vary indepen-
dently of each other throughout the constrained (Table 1) fea-
sible spaces. Ten thousand trials were executed and Stbin was
calculated for each case run.

Arzamasov et al. [24] have deposited the dataset for this
simulation with the UCI Machine Learning Repository [25]
in November, 2018. They explored the data set with
Classification and Regression Trees (CART), using that

machine-learning technique in the manner developed by
Breiman [42] to establish a number of useful characterization
rules for the specific DSGC simulated. For example, the dataset
reveals that stable grid systems lie almost exclusively at or
below a Tau average value of 3.1 and a G average value of less
than 0.67. They present decision tree diagrams to display a
number of such boundary conditions for “stable” (Stbin < =0)
and “unstable” (Stbin > 0) grid conditions for this DSGC, cor-
rectly classifying design points with an accuracy of about 80%.

That DSGC dataset is used in this study to further explore
the relationships between its variables using the transparent
open box (TOB) learning network. Moreover, statistical anal-
ysis reveals how the TOBmethod establishes its predictions of
Stbin from its dependent variables and the prevailing relation-
ships between them. The analysis highlights how the subtle
correlations between grid participants and their respective var-
iables might be exposed and exploited in better managing and
controlling DSGC from a commercial perspective, i.e., effi-
cient price management and price discovery for real DSGC
grids in the future.

Method

Applying the Optimized Nearest-Neighbour TOB
Learning Network to DSGC Stability Dataset

The TOB learning network is a recently introduced machine-
learning algorithm successfully applied to small and medium-
sized datasets [1, 43]. Key benefits of the TOB algorithm are
that it does not employ hidden correlations among the vari-
ables and enables forensic access to the data predictions that it
makes for each data record. These attributes make the TOB
algorithm able to provide useful insights to datasets as well as
generate credible and transparent predictions of dependent
variables that avoid overfitting. The mathematical basis and
detailed implementation steps for the TOB algorithm is de-
scribed in Appendix 1.

The TOB algorithm is comprised of 14 easy-to-execute and
well-defined steps that are configured to provide a two-stage
implementation. TOB Stage 1 involves a data matching pro-
cess between a small tuning subset of data records and a large
training subset. TOB Stage 2 applies an optimizer and variable
weights to the matches identified in TOB Stage 1 to minimize
the root mean square error (RMSE) of its predictions. The
TOB Stage 1 data matching algorithm establishes the top ten
(Q = 10) matching records in the training subset to each spe-
cific record in a tuning subset. It does this by calculating the
sum of the squared errors (SSE) between all the independent
variables with equal weights applied. The data records in the
training subset with the closest matches contribute most to the
predictions TOB Stage 2 takes the top-ten matches identified
by TOB Stage 1 and uses some or all of them (Q is allowed to

Fig. 1 Four-node star motif DSGC design and electricity flow simulated
(after [24]; Schafer et al., 2016) indicating the ranges of consumption
sampled as uniform distributions for grid participants P2 to P4
(consumers) for each simulation case and the P1 production value
assigned such that P1 = −(P2 + P3 + P4)
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vary between 2 and 10) and the optimizer is allowed to apply
variable weights (0 to 1) to the squared errors associated with
each independent variable.

For small data sets (up to a few thousand data records) TOB
Stage 2 can be efficiently conducted using Excel’s Solver
optimizers. For mid-sized and large datasets, a fully coded
customised optimizer is applied. For the simulated DSGC
dataset both approaches are utilized. A fully-coded memetic
firefly optimizer [43], with six memes or metaheuristics con-
figured specifically for the TOB algorithm, and Excel’s Solver
optimizers are both applied to verify the outcomes for the
tuning subsets with up to 100 data records. For larger tuning
subsets just the memetic firefly optimizer is applied. An inde-
pendent testing subset is used to verify that the optimum so-
lutions derived by applying the two stages of the TOB algo-
rithm to the tuning subset provide dependent-variable predic-
tions that are statistically valid when applied to the dataset
more generally. The two-stage process makes prediction re-
sults available for TOB Stage 1 and Stage 2 and this helps to
identify and avoid overfitting datasets.

Prediction Performance Measures Assessed

Several statistical measurements of prediction accuracy are
determined to monitor the prediction performance of the
TOB learning network’s for the grid-stability dependent-vari-
able in the DSGC dataset. These statistical measures, and
components used in their calculation, are expressed in Eq.
(5) to Eq. (12), where Xi refers to the measured value and Yi
the TOB predicted value of a data record i in the subset being
considered.

Mean Square Error (MSE)

MSE ¼ 1

n
∑
n

i¼1
X ið Þ− Y ið Þð Þ2 ð5Þ

Root Mean Square Error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
ð6Þ

RMSE calculated with Eq. (5) and Eq. (6) is used as the
objective function of the TOB algorithm.

Percent Deviation between Measured and Predicted
Values for Data Set Record I (PDi)

PDi ¼ X i−Y i

X i
x 100 ð7Þ

Average Percent Deviation (APD)

APD ¼ ∑n
i¼1PDi

n
ð8Þ

APD combines both positive and negative percent devia-
tions Eq. (7) and is expressed in percentage terms.

Absolute Average Percent Deviation (AAPD)

AAPD ¼ ∑n
i¼1 PDij j

n
ð9Þ

Table 1 Input assumptions for the grid stability simulation conducted by Arzamasov et al. [24] for a four-node star motif DSGC design

Input Variable Values & Distributions for Four-node Star DSGC Simulation

Variable Equation Symbols Simulation
Abbreviations

Selected value or
distribution range
for simulation

Unit Comment

Grid Infrastructure
Factors

Mechanical power
produced

Pj= 1 P I (1.5. 8) S′ Constrained by:
PI + P2 + PS.P4 a0

Mechanical power consumed Pj P2 to P4 40.5. 2) S4

Damping constant
(dynamic power)

aj alpha 01 0.1 S 4 In real grids could
vary F-0.1,-11

Coupling strength
between grid participants)
and k

Kjk Simulation constant 8 S4 In real grids could
vary (−4.-12)

Electricity Pricing
Factors

Grid participant js coefficient
of price elasticity

vj Cl to G4 (0.05.1] 34

Grid participant Is reaction
time to price change

tj Taut to Tau4 (0.5.10) S Upper limit could
be lowered for
some gilds

Time interval used to
define electricity prices

T Averaging time constant 2 S In real grids T code’
vary (0.4)
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AAPD combines the absolute values of the percent devia-
tions Eq.(7). and is also expressed in percentage terms.

Standard Deviation (SD)

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Di−Dimeanð Þ2
n−1

s
ð10Þ

Where:

Di is (Xi – Yi) for each (ith) data record of a dataset;
and,

Dimean is the mean of the Di values of all the data records
in a dataset

Dimean ¼ 1

n
∑
n

i¼1
X i−Y ið Þ ð11Þ

Correlation Coefficient (R) between variables Xi and Yi
(on a Scale between −1 and + 1)

R ¼
∑
n

i¼1
Xi−Xmeanð Þ Yi−Ymeanð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1
Xi−Xmeanð Þ2 ∑

n

i¼1
Yi−Ymeanð Þ2

r ð12Þ

Coefficient of Determination = R2 (on Scale between 0
and 1)

Note that Eq. (11) and the squaring of Eq. (12) to derive R2

provide the same results as the correlation coefficient and
coefficient of determination functions in Excel (i.e.
CORREL and RSQ), respectively.

Results

Relationships between Variables in the DSDG Dataset

The data variable ranges and means of the 10,000 cases in-
cluded in the DSGC data set are listed in Table 2. Of these
cases, 3620 were calculated (Eq.(4)) to result in a stable grid
condition (Stbin negative) and 6380 were associated with an
unstable grid condition (Stbin negative).

The LHS sampling with no specific dependencies applied
among the variables (dependent or independent) leads to very
low correlations among the independent variables. This is

revealed by the correlation matrix for the full DSGC dataset
(Table 3) in which correlation coefficient values (R from Eq.
(11)) are displayed.

Between almost all the independent variables R is
<0.02. The exceptions are between the electricity produc-
tion (P1) and consumption variables (P2 to P4) for which R
is ~0.58 (R2 ~ 0.33). The simulation model allowed P1 to
P4 to vary independently but applied the constraint that for
each case P1 = ∑(P1 to P4). This explains the observed
correlations between P1 and the electricity consumption
variables (R2 ~ 0.33 for each), despite there being no cor-
relations among P2 to P4 variables (R < 0.013). Dependent
variable Stbin shows no correlation with P1 to P4, suggest-
ing that grid stability is independent of electricity volumes
flowing through the grid with the range constraints applied
(Table 2). However, Stbin does show minor positive corre-
lations (Fig. 2) individually with the Tau1 to Tau4 and G1
to G4 variables (R in the range 0.28 to 0.30; R2 0.08 to
0.09), indicating that for the simulation assumptions grid
stability is more influenced by the commercially-related
independent variables. Considered on a compound basis
for the consuming participants (Table 4), taking the aver-
age of Tau2 to Tau4 and the average of G2 to G4, some-
what more significant correlations (Fig. 3) are displayed
with Stbin (R in the range 0.56 to 0.58; R2 0.31 to 0.33),
despite there being no correlation between the sum of P2 to
P4 and Stbin.

The correlation relationships between the input variables
and the dependent variable also vary subtly for the cases that
result in grid stability versus the cases that result in grid insta-
bility (Table 5).

For the segment of the dataset that results in grid instability
the correlation between the average G2 to G4 and Stbin is
much higher(R = 0.55) than for the segment resulting in grid
stability (R = 0.24). This is also the case, but with lower R
values, for G1 to G4 individually (Table 5) and the correla-
tions between Tau1 to Tau4 and the average of Tau2 toTau4
and Stbin. The correlation coefficient between the average of
Tau2 to Tau4 and Stbin for the unstable grid segment (R =
0.35) is slightly greater than that for the stable grid segment
(R = 0.30), but both of these show lower R values between
these variables than for the full dataset (R = 0.56) (Table 5).
These relationships are influenced by the subtly variations in
the poor correlations between the Tau and G variables in the
stable and unstable grid segments of the dataset (Table 6).
Whereas, Tau and G show essentially no correlations among
them for the full dataset, this is not the case for the stable and
unstable grid segments considered individually.

For the complete dataset R for the G versus Tau variables is
in the E-04 to E-07 range (no correlation). For the unstable
segment of the grid R for the G versus Tau variables is in the
E-02 to E-03 range (very poor correlation). For the stable
segment of the grid R for the G versus Tau variables is in
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the E-02 to E-06 range (very poor correlation to no correla-
tion), but interestingly, the correlations for this segment be-
tween G1 and Tau1, G2 and Tau2, G3 and Tau 3, G4 and Tau4
are all in the E-02 range. These very subtle distinctions may be
an artefact of the variable sampling technique. As will be
shown, these subtle very poor correlations do have some sig-
nificance when it comes to predicting the dependent variable
for this dataset by machine learning methods.

Applying TOB Learning Network to the Simulated
DSGC Dataset

The TOB learning network is applied initially to the complete
DSGC dataset (12 independent variables) with a series of
sensitivity cases run with different sized tuning and testing
subsets. The results of ten sensitivity cases are displayed in
Tables 7 to 11.

The ten cases (Table 7) are configured with a range of data
records distributed between the tuning (left side), testing (right
side) and training (extreme right-hand column) subsets. For
most of the cases, the accuracy of four alternative Stbin pre-
dictions are displayed for both the tuning subset and with
those solutions (Q value and variable weights) applied to the
testing subset. These alternative prediction are: the TOB stage
1 prediction, the TOB Stage 2 prediction applying the coded
memetic firefly optimizer; the TOB Stage 2 prediction apply-
ing the Excel Solver’s GRG optimizer; and, the Excel Solver’s
evolutionary optimizer. For the cases with tuning subsets larg-
er than 100 data records the Solver optimizers have not been
applied due to the time required to enter cell formulas into a
spreadsheet.

For the testing subset the performance of TOB stage 1 is
quite consistent (Table 6) for all the sensitivity cases run
(RMSE from 0.01608 to 0.01705 s−2; R2 from 0.82451 to
0.87269). It demonstrates that by matching with the closest
ten records in the training subset based on the sums of the
weighted squared errors (∑SSE) for all twelve independent
variables with equal weights applied TOB stage 1 can achieve
good prediction accuracy (Fig. 4). It is clear from this cross
plot of predicted versus measured, that the accuracy achieved
improves as becomes more positive. This is due to the

Table 2 Value ranges and means for the DSGC simulated dataset [24]
for which the grid stability metric Stbin is the dependent variable and the
other twelve variables are the independent variables

DSGC Simulated Dataset

(10,000 records
)

Variable Min Max Mean

Tau1 0.5008 9.9995 5.2500

Tau2 0.5001 9.9998 5.2500

Tau3 0.5008 9.9995 5.2500

Tau4 0.5505 9.9994 5.2500

P1 1.5826 5.8644 3.7500

P2 −1.9999 −0.5001 −1.2500
P3 −1.9999 −0.5001 −1.2500
P4 −1.9999 −0.5000 −1.2500
G1 0.0500 0.9999 0.5250

G2 0.0501 0.9999 0.5250

G3 0.0501 1.0000 0.5250

G4 0.0500 0.9999 0.5250

Stbin −0.0808 0.1094 0.0157

For 3620 records Stbin < =0 (grid stable); for 6380 records Stbin > 0 (grid
unstable)
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Table 3 Correlation matrix displaying correlation coefficient (R) for the
DSGC simulated dataset [24] for which the grid stability metric Stbin is

the dependent variable and the other twelve variables are the independent
variables

Correlation Matrix for the Variables in the DSGC Dataset (10,000 records)

R Tau1 Tau2 Tau3 Tau4 P1 P2 P3 P4 G1 G2 G3 G4 Stbin

Tau1 1.000 0.016 −0.006 −0.017 0.027 −0.015 −0.016 −0.016 0.011 0.015 −0.001 0.005 0.276

Tau2 0.016 1.000 0.014 −0.002 −0.005 0.007 0.008 −0.006 −0.002 0.015 0.017 −0.012 0.291

Tau3 −0.006 0.014 1.000 0.004 0.017 −0.003 −0.009 −0.018 −0.012 0.008 0.015 −0.011 0.281

Tau4 −0.017 −0.002 0.004 1.000 −0.003 0.011 0.006 −0.011 −0.004 0.008 0.003 0.000 0.279

P1 0.027 −0.005 0.017 −0.003 1.000 −0.573 −0.585 −0.579 0.001 0.015 0.001 −0.015 0.010

P2 −0.015 0.007 −0.003 0.011 −0.573 1.000 0.002 −0.007 0.016 −0.018 0.008 0.020 0.006

P3 −0.016 0.008 −0.009 0.006 −0.585 0.002 1.000 0.013 −0.003 −0.012 −0.006 −0.010 −0.003
P4 −0.016 −0.006 −0.018 −0.011 −0.579 −0.007 0.013 1.000 −0.014 0.003 −0.004 0.018 −0.021
G1 0.011 −0.002 −0.012 −0.004 0.001 0.016 −0.003 −0.014 1.000 0.008 −0.006 0.012 0.283

G2 0.015 0.015 0.008 0.008 0.015 −0.018 −0.012 0.003 0.008 1.000 −0.013 −0.015 0.294

G3 −0.001 0.017 0.015 0.003 0.001 0.008 −0.006 −0.004 −0.006 −0.013 1.000 0.007 0.308

G4 0.005 −0.012 −0.011 0.000 −0.015 0.020 −0.010 0.018 0.012 −0.015 0.007 1.000 0.279

Stbin 0.276 0.291 0.281 0.279 0.010 0.006 −0.003 −0.021 0.283 0.294 0.308 0.279 1.000



correlation differences described between the grid-stable and
grid-unstable segments of the dataset.

Comparing the prediction performance of TOB stage 1 and
TOB stage 2 for the testing subsets is a useful way to deter-
mine whether the dataset is being overfitted by the optimized
solution derived from the tuning subset. If the prediction ac-
curacy is better for TOB stage 1 results than TOB stage 2
results that is a sure indicator that the data is being overfitted.
It generally means that the tuning subset size (number of data
records) is too small. This is the case for Cases #4 (76 data
records in the tuning subset) and Case#5 (51 data records in
the tuning subset) (Tables 7 and 9). For Cases #1, #2,#3,#7,
and #8 (all with 100 data records in the tuning subset) this
comparison is not so clear cut. For Cases#1, #2 and #3 the
TOB stage 2 prediction for the testing subset are better than
the TOB stage 1 predictions but for Cases#7 and #8 they are
slightly worse. This suggests that ~100 data records in the
tuning subset is close to the minimum required to avoid over
fitting.

For Cases #6, #9 and #10 the prediction performance of
TOB stage 2 is clearly superior (but only by a small amount)

than TOB Stage 1. This indicates that with tuning subsets of
> = 147 records the TOB Stage 2 optimization is picking out
valid relationships in the dataset. For those three datasets the
TOB Stage 2 predictions vary within a relative narrow range
(RMSE from 0.01252 to 0.01651 s−2; R2 from 0.83912 to
0.86090). The improvement in prediction accuracy achieved
by TOB Stage 2 is very small in comparison with TOB Stage
1, which is to be expected due to the almost negligible corre-
lations that exist between the independent variable for the
complete dataset (Table 3).

Tables 7 and 8 highlight that although it is possible to
achieve quite impressive prediction performance for a small
tuning subset (<=100 data records), when applied to an inde-
pendent testing subset that prediction performance is not rep-
licated (e.g. Cases #4 and #5) across a range of statistical
performance indicators (Eq. (5) to Eq. (12)). It is the results
for the independent testing subsets (Table 9) on which these
optimized solutions derived should be judged not the predic-
tion results for the tuning subsets (Table 8). The TOB Stage 2
solutions from all ten cases applied to the large testing case of
916 data records summarizes that performance (Table 10).
The first row in that table displays the TOB Stage 1 results
which are useful to use to benchmark the TOB Stage 2 per-
formance. It is apparent that only the cases relating to the last
three rows of Table 10 have achieved demonstrable improve-
ments on the predictions easily derived by TOB stage 1, and
those improvement unimpressively small.

The main limitation on the TOB Stage 2 prediction perfor-
mance for this dataset is the lack of correlation between the
individual independent variable, a feature imposed on the
dataset by the random uniform LHC sampling. Clearly it does
not make a huge difference using constant squared-error
weights of 0.5 (TOB Stage 1) or squared-error weights
allowed to vary between 0 and 1 (TOB Stage 2) applied to
the independent variables of this dataset when deriving pre-
dictions (Table 10). However, it is revealing to look at the

Fig. 2 Tau2 versus Stbin for one
of the independent variables that
displays a minor correlation with
the dependent variable (grid
stability metric) for the DSGC
simulated dataset [24]

Table 4 Correlation matrix displaying correlation coefficient (R) for the
DSGC simulated dataset [24] for three compound independent variables
and the grid stability metric Stbin

Correlation Matrix for Compound Variables in DSGC Dataset (10,000
records)

R Average
Tau2 to Tau4

Sum
P2 to P4

Average
G2 to G4

Stbin

Average Tau2 to Tau 4 1.000 −0.018 0.014 0.562

Sum
P2 to P4

−0.018 1.000 −0.001 −0.10

Average
G2 to G4

0.014 −0.001 1.000 0.583

Stbin 0.562 −0.010 0.583 1.000
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variable squared-error weights that are selected by the TOB
Stage 2 optimum solutions (Table 11).

What stands out for the final few rows in Table 11 is that the
optimum TOB Stage 2 solutions select high weight for Tau
variables, in some instances also the G variables, but apply
near-zero squared-error weights to the P variables. This is
consistent with the more significant correlations observed be-
tween Tau 1 to 4 and Stbin and between G 1 to 4 and Stbin, but
negligible correlations between P 1 to 4 and Stbin (Table 3).
There are even stronger correlations between average Tau 2 to

Tau4 and average G2 to G4 and Stbin (Table 5). This indicates
that the optimizers applied as part of TOB stage 2 are
exploiting indirectly these relationships among the dataset
variables.

Based on the information provided in Table 11, it is possi-
ble to explore ways to improve the optimized prediction per-
formance of the TOB learning network. As the P2 to P4 var-
iables contribute little to the optimized solutions an alternative
worth considering is to combine variables P2 to P4 into a
single compound variable (Sum P2 to P4) and replace variable

Fig. 3 Average Tau2 to Tau4
versus Stbin for one of the
compound independent variables
that displays a moderate
correlation with the dependent
variable (grid stability metric) for
the DSGC simulated dataset [24]

Table 6 Correlation coefficient (R) for G versus Tau for the complete
DSGC simulated dataset [24] and for the stable grid and unstable grid
segments of the simulation considered individually

Subtle Correlations Between Tau and G in Segments of the DSGC
Simulated Dataset

Full Dataset (10,000 records)

R Tau1 Tau2 Tau3 Tau4

G1 1.11E-04 3.04E-06 1.35E-04 1.72E-05

G2 2.36E-0.04 2.37E-04 5.89E-05 7.11E-05

G3 1.63E-06 2.73E-04 2.16E-04 1.06E-05

G4 3.02E-05 1.38E-04 1.32E-04 2.41E-07

Grid Table (3620 records)

R Tau1 Tau2 Tau3 Tau4

G1 4.85E-02 6.86E-07 3.01E-04 3.77E-04

G2 1.64E-06 4.16E-02 1.65E-04 1.63E-05

G3 3.51E-05 5.88E-04 5.22E-02 1.45E-03

G4 1.70E-06 6.97E-04 8.66E-06 5.34E-02

Grid Unstable (6380 records)

R Tau1 Tau2 Tau3 Tau4

G1 6.07E-03 7.51E-03 7.91E-03 5.75E-03

G2 3.71E-03 3.77E-03 4.52E-03 5.99E-03

G3 8.51E-03 7.08E-03 4.88E-03 4.36E-03

G4 5.55E-03 8.15E-03 1.10E-02 3.60E-03

Table 5 Correlation coefficient (R) for key segments of the DSGC
simulated dataset [24] between key independent variables and the grid
stability metric Stbin

Correlation Coefficients for Key Segments of the DSGC Dataset

Full Dataset Grid Table
<=1

Grid Unstable
>1

Cases 10,000 3620 6380

R Stbin Stbin Stbin
Tau1 0.276 0.105 0.175

Tau2 0.291 0.140 0.176

Tau3 0.281 0.126 0.173

Tau4 0.279 0.117 0.167

Average Tau2 to Tau4 0.562 0.304 0.354

P1 0.010 0.001 0.005

P2 0.006 0.008 0.000

P3 −0.003 −0.006 −0.005
P4 −0.021 −0.003 −0.004
Sum P2 to P4 −0.010 −0.001 −0.005
G1 0.283 0.156 0.243

G2 0.294 0.108 0.248

G3 0.308 0.106 0.255

G4 0.279 0.108 0.236

Average G2 to G4 0.583 0.243 0.552
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P3 in the dataset with that compound metric. This opens the
opportunity to replace variable P2with the compound variable
“average Tau 2 to Tau 4” and to replace variable P4 with the
compound variable “average G2 to G4”. This adjusted dataset
still retains the same number of variables but the compound
variables make the independent variable components less ran-
dom (Table 12).

Case#12 evaluates this adapted dataset with the TOB algo-
rithm using a tuning set of 147 data records and a testing
subset of 151 data records and does demonstrate a more accu-
rate prediction performance (Table 13 and Fig. 5). Note that
the optimum TOB Stage 2 solution applies high weights to the
Tau 1 to 4 variables and the “average Tau2 to Tau4” and
“average G2 to G4” compound variables to achieve its im-
proved predictions.

A supplementary data file providing the adjusted dataset
divided into the training, tuning and testing subsets used for
Case #12 is available (Appendix 2).

Discussion

Effectively managing and controlling demand response in
decentralized electricity grids is challenging. This is because
the consumption / production behaviour of grid participants is
driven by price signals issued and responded to on the scale of
seconds. The stability of such grids is influenced by a number
of variables related to the physical attributes and complexity
of the grid. Key influencing variables are the cost-sensitive
status of the participants (price elasticity, abbreviated as γ or
G) and the ability of the participants to react to price signals on
scale of a few seconds (abbreviated as τ or Tau).

The Decentral Smart Grid Control (DSGC) decentralized
grid management and pricing system [6] offers the potential to
achieve effective demand response on the time scales required
by linking electricity price to grid frequency. A simulation of
grid stability for DSGC applied to a four-node star grid (Fig.
1), based on its key controlling independent variables, includ-
ing G and Tau, has been shown to effectively explore the
solution space of that decentralised grid design [24]. The sce-
nario simulated in that dataset involves four grid participants
with a very low level of dependency between their indepen-
dent variables. It is the simulated scenario evaluated by the
TOB algorithm in this study.

Arzamasov et al. [24] have effectively used the CART
decision-tree algorithm to data mine and provide some insight
to this dataset. That decision tree analysis correctly classified
design points with a prediction accuracy for grid stability (R2

~0.80). The main contributions of this study applying TOB,
combined with statistical analysis are:

& to provide grid stability predictions in a novel way by
avoiding correlations between the variables.T
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& to achieves improved grid stability prediction accuracy;
R2 varies between about 0.86 and 0.90, depending upon
the input metrics selected.

& to reveal complementary information with respect to Stbin
predictions regarding the relative contribution of the input
variables to prediction accuracy and the prediction accu-
racy achieved for specific segments of the calculated grid
stability distribution are revealed (e.g., Table 5).

However, the simulated four-star node dataset evaluated
here represents a very simply decentralized grid configuration.
To more comprehensively evaluate and better define the dy-
namic grid stability performance of DSGC, there is clearly the
need for future studies to conduct further simulations on: 1)
larger decentralized grids, (e.g. 5 to 10 participants, and > 10
participants); 2) grids involving multiple prosumers; and, 3)

different grid architectures (e.g. circular and multi-branched
configurations).

The assumed behavioural relationships between the partic-
ipants in that simulated grid (i.e., complete independence with
no inherent correlations each sampled with random uniform
distributions) is also idealized. The twelve independent vari-
ables (Tau1 to Tau4, P1 to P4, G1 to G4) are sampled as
random uniform distributions with the only constraints ap-
plied being minimum and maximum limits on each variable
(Table 3) and P1 + P2 + P3 + P4 = 0 for each simulation case.
This approach is very effective at fully exploring the feasible
solution space with the 10,000 cases evaluated, as it was de-
signed to do. However, in real decentralized grids it is likely
that there would be some slightly more significant correla-
tions, albeit complex and non-linear ones, between the behav-
iours of the participants and their responses to price

Table 8 Seven statistical measures of Stbin prediction accuracy for the optimum TOB solution derived for the tuning subsets of ten sensitivity cases
applied to the complete DSGC dataset

Tuning Sunset TOB Stage 2 Performance Accuracy Metrics for the Optimum Case Found by the Memetic Firefly Optimizer

Case Identifier RMSE Mj/kg MSE Mj/kg APD% AAPD% SD R R2

Case#1 0.01431 0.00020 30.09286 91.04497 0.01428 0.94092 0.88533

Case#2 0.01358 0.00018 −38.33784 130.70179 0.01361 0.94804 0.89878

Case#3 0.01294 0.00017 1.57592 62.80097 0.01292 0.95416 0.91042

Case#4 0.1298 0.00017 77.09508 114.17727 0.01305 0.94775 0.89823

Case#5 0.01656 0.00027 26.86381 71.01395 0.01662 0.91466 0.83660

Case#6 0.01325 0.00018 13.60574 85.97295 0.01313 0.9557 0.91350

Case#7 0.04336 0.00018 44.74258 84.05263 0.01343 0.94842 0.89949

Case#8 0.01225 0.00018 44.74258 84.05263 0.01343 0.94842 0.89949

Case#9 0.01325 0.00018 13.60574 85.97295 0.01313 0.95577 0.91350

Case#10 0.01434 0.00021 8.74797 111.75690 0.01428 0.94184 0.88706

Case#10 is highlighted as this is considered to be the most statistically valid of the cases run

Table 9 Seven statistical measures of Stbin prediction accuracy for the optimum TOB solution derived for the testing subsets of ten sensitivity cases
applied to the complete DSGC dataset

Testing Subset TOB Stage 2 Performance Accuracy Metrics for the Optimum Case Found by the Memetic Firefly Optimizer

Case Identifier RMSE Mj/kg MSE MJ/kg APD% AAPD% SD R R

Case #1 0.01570 0.00025 76.36281 120.56600 0.01552 0.93013 0.86514

Case #2 0.01589 0.00025 53.73404 120.51189 0.01564 0.92093 0.84812

Case #3 0.01577 0.00025 13.30152 79.60956 0.01561 0.92409 0.85394

Case #4 0.01765 0.00031 −37.31452 122.01271 0.01753 0.88961 0.79140

Case #5 0.01985 0.00039 45.64318 102.02251 0.01973 0.85766 0.73558

Case #6 0.01651 0.00027 71.94960 109.62548 0.01649 0.91603 0.83912

Case #7 0.01617 0.00026 40.03990 126.23447 0.01603 0.91260 0.83283

Case #8 0.1679 0.00028 58.88503 129.26977 0.01663 0.90212 0.81382

Case #9 0.01552 0.00024 28.19072 99.61400 0.01530 0.92785 0.86090

Case #10 0.01568 0.00025 29.22230 101.80000 0.01541 0.92676 0.85888

Case#10 is highlighted as this is considered to be the most statistically valid of the cases run
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fluctuations, i.e., relationships between their reaction times to
price changes (Tau); their price elasticities (G), and the chang-
es they would make in the quantities of electricity they would
produce / consume (P). Such correlations should significantly
limit / constrain the likelihood of certain cases materializing
within the feasible solution spaces defined. More centralized
distributions of the Tau, G and P are also more likely in real
grids than the uniform distributions used to explore the feasi-
ble solution space in the simulated case studied. The presence
of more extensive correlations and centralized distributions is
likely to improve the Stbin prediction accuracies of machine
learning algorithms, including TOB in predicting grid
stability.

The transparent attributes of the TOB algorithm, enabling it
to provide forensic analysis of each prediction it makes [44],
could also be exploited to reveal the significance of the subtle
relationships between the DSGC variables of more complex
grid configurations.

The balance between data transparency and data security /
protection is an important issue in the design of decentralized
power grids. For market confidence and credible price discov-
ery it is essential that themetrics influencing electricity price are
transparently recorded and reported. On the other hand, to in-
hibit potential cyberattacks it is important that grid attributes
(mechanical and/or commercial classifiers) that could be
exploited to precipitate grid instability cannot be externally

Table 10 Performance of prediction accuracy for the optimized solutions (variable weights and Q values) for the ten sensitivity cases applied to a
testing subset of 916 records the complete DSGC dataset

TOB Stage 2 performance AccuracyMetrics for the Optimum Solutions found by theMemetic Firefly Optimizer Applied 916-data-record testing Subset
and Compared to TOB Stage 1 Prediction Performance for that dataset

Case Identifier Tuning Subset
#Data records

RMSE Mj/kg MSE MJ/kg APD% AAPD% SD R R2 Performance Relative
to TOB Stage 1

TOB Stage 1 N/A 0.01669 0.00028 45.26816 118.12046 0.01634 0.91864 0.84390 Benchmark

case#5 51 0.01906 0.00036 53.88974 148.87810 0.01882 0.86861 0.75449 Generate a less
accurate prediction
than TOB Stage 1

Case#4 76 0.01789 0.00032 61.48925 151.66466 0.01756 0.89240 0.79638

Case#7 & #8 100 0.01679 0.00028 58.88503 129.26977 0.01663 0.90212 0.81382

Case#1 100 0.01619 0.00026 30.57080 106.51584 0.01589 0.91992 0.84626 Match but do not
improve upon
TOB stage 1

Case#2 100 0.01604 0.00026 23.74633 101.91158 0.01581 0.92105 0.84834

Case#3 100 0.01578 0.00025 32.47710 103.67095 0.01556 0.92426 0.85426 Slightly improve upon
TOB Stage 1 sCase #6 & #9 147 0.01552 0.00024 28.19072 99.61400 0.01530 0.92785 0.86090

case#10 200 0.01568 0.00025 29.22230 101.80000 0.01541 0.92676 0.85888

Fig. 4 Predicted versus actual
Stbin for sensitivity case #10 for
TOB Stage one applied to an
independently selected 200-
record testing subset extracted
from the entire DSCG dataset
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manipulated. Note that whereas the system operator should be
able to calculate quite specifically grid stability conditions from
a suite of relatively complex differential equations (such as
Eq.(4)), other grid participants (major producers, consumers
and prosumers) would likely not have access to the necessary
information to do so. However, the grid participants and third
parties (without access to all the mechanical and commercial
data for the DSGC) are likely, for commercial and competitive
reasons, to be interested in price prediction, discovery, forecast-
ing and economic modelling. Indeed, reliable price discovery is
essential for market confidence in such grids. Consequently,
grid participants and price discovery agencies need to be able
to predict price relationships governed by grid stability and grid
frequency mechanisms from estimates of the key variables in-
volved. These variables would likely include grid frequency
and G, P, and Tau distributions (or other defined and less-
commercially-revealing but cost-sensitive metrics defined for
grid participants) for each grid participant. Correlation-free, da-
ta-matching, machine-learning algorithms, such as TOB, ap-
plied to datasets established with such variables for specific
decentralized grids managed by DSGC principles, have the
potential to provide the necessary prediction accuracy and
transparency required by system operators, grid participants
and third parties without compromising grid security. Further
studies of more complex decentralized grid configurations are
required to verify that potential.

Conclusions

This study applies the transparent open box (TOB) machine-
learning algorithm to evaluate a published virtual simulation
of decentralized smart grid performance with the objective of
predicting the stability of that grid accurately and transparent-
ly. The TOB model is applied to a Decentral Smart Grid
Control (DSGC) dataset that simulates electricity price linked
to grid frequency. Key input variables that influence grid sta-
bility in that model are the power produced or consumed by
the grid participants (P) the cost sensitivity of the grid partic-
ipants (G) and the ability of grid participants to react to elec-
tricity price signals (Tau). The model evaluated involves four
grid participants with low levels of interdependency between
either their P, G or Tau values.

Applying the transparent open box (TOB) learning algo-
rithm to a published DSGC simulated dataset demonstrates
how its two-stage prediction process, coupled with detailed
statistical analysis of the relationships between the variables,
can provide further insight to the DSGC functionality. TOB
achieves a grid stability prediction accuracy root mean
squared error (RMSE) of about 0.016 s−2 and a coefficient
of determination (R2) of about 0.85 for the dataset just involv-
ing the poorly correlated P, G and Tau variables of the four
participants. However, when compound variables (averageTa
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Tau and average G for the three consuming participants) are
introduced as independent variables, the TOB algorithm is
able to substantially improve it grid stability predictions
(RMSE ~0.0075 s−2; R2 ~ 0.90). A key finding of this study
is therefore that assessing the stability of decentralized sys-
tems by including input variables with certain levels of depen-
dency can improve predictions of grid stability.

Other novel and significant findings of this study are: 1)
themagnitudes of the variableweights applied byTOBStage
2 indicate that it is able to exploit the underlying relationships
(both high and low correlations) that exist among the inde-
pendent variables without actually relying on such correla-
tions to derive its predictions. 2)TOB’s ability to forensically
interrogate the contributions made by specific dataset re-
cords to each TOB prediction (Stage 1 or Stage 2) could be
used effectively to enhance transparency in the electricity
pricing controls of a decentralized DSGC grid. 3) The provi-
sion of transparent information, such as that provided by the
TOB prediction model, to all grid participants and third
parties (such as price discovery agents) with which to esti-
mate electricity price trends would likely enhance market
confidence and price discovery for DSGC systems without
compromising grid security and stability.

More complex decentralized grids would likely involve
much more complex relationships, displayed variable degrees
of dependency between their input variables and grid stability.
This should enhance the ability of the TOB data-matching,
machine-learning algorithm’s ability to achieve highly accu-
rate predictions of grid stability exploiting such dependent
input variables. Future studies are required to simulate more
complex grid configurations using higher numbers of

Table 12 Correlation matrix displaying correlation coefficient (R) for an adaption to the DSGC simulated dataset [24] for which the grid stability
metric Stbin is the dependent variable but with three compound metrics replacing P2 to P4 variables of the original dataset as shown in Table 3

Correlation Matrix for the Variables in the DSGC Dataset (10,000 records) with three Compound Variables substituted for Variables P2 to P4 of the
Original Dataset

R Tau1 Tau2 Tau3 Tau4 P1 Avg Tau2
to Tau4

∑P2 to P4 Avg G2 To G4 G1 G2 G3 G4 Stbin

Tau1
Tau2
Tau3
Tau4
P1
Avg Tau2

to Tau4
∑P2 to P4
Avg G2

To G4
G1
G2
G3
G4

1.000
0.016
−0.006
−0.017
0.027
0.495
−0.027
0.015
0.011
0.015
−0.001
0.005

0.016
1.000
0.014
−0.002
−0.005
0.513
0.005
0.009
−0.002
0.015
0.017
−0.012

−0.006
0.014
1.000
0.004
0.017
0.505
−0.017
0.000
−0.012
0.008
0.015
−0.011

−0.017
−0.002
0.004
1.000
−0.003
0.491
0.003
0.004
−0.004
0.008
0.003
0.000

0.027
−0.005
0.017
−0.003
1.000
0.018
−1.000
0.001
0.001
0.015
0.001
−0.015

0.495
0.513
0.505
0.491
0.018
1.000
−0.018
0.014
−0.003
0.023
0.017
−0.009

−0.027
0.005
−0.017
0.003
−1.000
−0.018
1.000
−0.001
−0.001
−0.015
−0.001
0.015

0.015
0.009
0.000
0.004
0.001
0.014
−0.001
1.000
0.508
0.491
0.495
0.503

0.011
−0.002
−0.012
−0.004
0.001
−0.003
−0.001
0.508
1.000
0.008
−0.006
0.012

0.015
0.015
0.008
0.008
0.015
0.023
−0.015
0.491
0.008
1.000
−0.013
−0.015

−0.001
0.017
0.015
0.003
0.001
0.017
−0.001
0.495
−0.006
−0.013
1.000
0.007

0.005
−0.012
−0.011
0.000
−0.015
−0.009
0.015
0.503
0.012
−0.015
0.007
1.000

0.276
0.291
0.281
0.279
0.010
0.562
−0.010
0.583
0.283
0.294
0.308
0.279

Stbin 0.276 0.291 0.281 0.279 0.010 0.562 −0.010 0.583 0.283 0.294 0.308 0.279 1.000

Table 13 Improved optimum solutions established by TOBStage 1 and
Stage 2 algorithms applied to the adapted DSGC dataset including
compound independent variables

Case #12 DSGC Dataset (10,000 records) (tuning subset 147;testing
subset 151)

optimum Solution TOB Stage 1 TOB Stage 2

RMSE 0.00806 0.00745

MSE 6.4954E-05 5.55558E-05

APD% −9.676 −7.765
AAPD% 16.840 15.443

SD 0.00799 0.00745

R 0.9416 0.9501

R2 0.8866 0.9026

Q 10 10

Weights

Tau1 0.5 9.842E-01

tau2 0.5 3.456E-01S

Tau3 0.5 2.117E-01

Tau4 0.5 3.455E-01

P1 0.5 0.000E+00

Avg Tau2 to Tau4 0.5 9.917E-01

ΣP2 TO P4 0.5 5.640E-06

Avg G2 to G4 0.5 7.553E-02

G1 0.5 8.701E-04

G2 0.5 5.877E-02

G3 0.5 1.470E-04

G4 0.5 1.470E-04
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participants. Applying TOB analysis to transparently and ac-
curately predict the stability of more complex grid is also
required to confirm the methods prediction and data mining
capabilities.

Compliance with Ethical Standards

Conflict of Interest The author declares no conflicts of interest related to
the topics addressed in this study.

Nomenclature αj, Damping constant related to the power dynamics
of the grid; APD, Average percent deviation; AAPD, Absolute aver-
age percent deviation; c1, Proportionality factor; DSGC, Decentral
smart grid control; f, Fractional contribution to VSE; γj=, A coeffi-
cient proportional to cost sensitivity /price elasticity (also referred to
as G); j, Grid participant identifier (j = 1 is designated the producer;
j = 2 to 4 are designated to the consumers); K, Coupling strength
between grid participants j and k; LHS, Latin hypercube simulation;
Mh, Metaheuristic; MSE, Mean square error; n, nth variable; N,
Number of independent variables; pj, is the electricity price for grid
participant j; P̂ j , is the power produced or consumed by grid
participant j at electricity price pj.; pω, is the electricity price when
no net change in electricity is flowing through the grid; PDi, Percent
deviation; q, One of the top-ranking data records used in predic-
tions; Q, The maximum number of top-ranking data records used
in predictions (2 < =Q < =10); R, Correlation coefficient; R2,
Coefficient of determination; RMSE, Root mean square error; s−2,
Per second per second; SD, Standard deviation; Stbin, Dynamic grid
stability metric simulated; θj and θk, Are rotor angles for grid par-
ticipants j and k at a specific point in time t; t, Refers to a specific
point in time; Tj, is the time interval used to define electricity prices;
τj, is a grid participants reaction time (in seconds) also referred to as
Tau; te, Testing subset; tr, Training subset; tu, Tuning subset; TOB,
Transparent open box machine learning algorithm; UCI, University
of California, School of Information and Computer Science; VBA,
Visual basic for applications; VSE, Variable squared error; Wn,
Weight applied to the VSE of variable n; Xi, the ith data record in
the data set being predicted

Appendix 1 Outline of TOB Learning Network
Method

The steps and mathematical basic for the optimized nearest-
neighbour, transparent open-box (TOB) algorithm [1, 43] are
summarized here.

General Basis of TOB Algorithm

The TOB algorithm has attributes that relate it to locally-
weighted learning methods [45] following lazy-learning prin-
ciples [46] that built upon nearest-neighbour matching [47,
48] that also provide valuable transparency [49]. Nearest
neighbour and k-learning algorithms are successfully applied
to solve many pattern recognition challenges [50–53].
Nearest-neighbour-prediction algorithms often attempt to lin-
earize non-smooth dataset locally around small groups of data
records [54]. The TOB algorithm uses squared errors between
the independent variables to establish close matches between
records in a dataset to derive its stage 1 predictions of depen-
dent variables. It then applies an optimizer with variable
weightings applied to the squared errors of closely matching
records to derive its Stage 2 predictions.

TOB Stage 1 (Data Matching to Provide an Initial
Prediction)

Step 1: Assemble a 2-D array [number of variables (N + 1),
number of data records (M)]. N independent vari-
ables plus the dependent variable to be predicted.

Step 2: Sort data records in value order of the dependent
variable.

Fig. 5 Improved Stbin prediction
performance by TOB Stage 2
applied to the adapted DSGC
dataset (Case #12)
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Step 3: Generate statistical summary for the dataset includ-
ing maximum and minimum of each variable (e.g.
Table 2).

Step 4: Use maximum and minimum values to normalize all
data variables to a range of −1 to +1 by applying Eq.
A1.

X i* ¼ 2* X i−Xminð Þ= Xmax−Xminð Þ½ �−1 ðA1Þ

Where:

Xi the ith data record for X of N+ 1 variables.
Xmin minimum of variable X for the entire dataset.
Xmax maximum of variable X for all data records.
Xi* normalized value for the ith record for X of N+ 1

variables.

Step 5: Verify that the complete dataset is appropriately nor-
malized and sorted in order of the dependent vari-
able, which makes visual inspection of the data re-
cords easier.

Step 6: Divide the complete dataset into three subsets: a
large training subset and smaller tuning and inde-
pendent testing subset. Trial-and -error sensitivity
analysis is required to establish the optimum sizes
for the tuning and training subset to provide mean-
ingful data and avoid overfitting. Comparing the
prediction performances of TOB stages 1 and 2 for
the testing subset is a useful indicator of overfitting
[55]. A tuning subset size is selected such that the
TOB Stage 2 TOB predictions for the testing subset
consistently and reliably outperform the stage 1 pre-
dictions for the testing subset.

The requirement for separate tuning and training
subsets is to enable the optimizer to tune the weights
applied to the independent variables in the records
of the training subset to provide better predictions
for a representative, but relatively small, tuning sub-
set records. This reduces computational time.

Step 7: Calculate squared errors of the independent variables
(VSE) for each of J tuning-subset data records versus
the K training-subset data records using Eq. A2:

VSE Xð Þjk ¼ X k trð Þ−X j tuð Þ� �2 ðA2Þ

Where:

Xk(tr) variable X value for the kth training-subset record.
Xj(tu) variable X for the jth tuning-subset record.
VSE(X)jk variable-squared error (VSE) for variable X of the

jth tuning-subset record versus variable X of the kth

training-subset record.

∑VSEjk computes the weighted sum of the computed VSE
values applying Eq. A3:

∑VSEjk ¼ ∑
n¼Nþ1

n¼1
VSE Xnð Þjk* Wnð Þ ðA3Þ

Where:

SE(Xn)jk the variable-squared error (VSE) for variable Xn
for the jth tuning-subset record versus the kth

training-subset record.
∑VSEjk sum of variable-squared errors (VSE) for the N+ 1

variables (including the dependent variable) for
the jth tuning-subset record versus the kth data
training-subset record.

Wn =weights (0 <Wn < = 1) applied to the calculated VSE
for all variables involved in the prediction (i.e., N+ 1). Each
weight is set to a constant value (e.g. 0.5 or 1.0) in TOB stage
1. This means that TOB Stage 1 establishes the high-ranking
data record matches initially without any biases introduced by
weights applied to the squared errors of the independent
variables.

Step 8: For TOB Stage 1Establish the top-ten matching re-
cords (Q = 10) in the training subset for each record
in the tuning subset, i.e. those data records with the
lowest calculated ∑VSE.

Step 9: The contribution fraction applied to the top-Q-(Q =
10)-ranked, matching records is calculated applying
Eq. A4, Eq. A5 and Eq. A6. The computed contri-
bution fraction depends upon the relative magni-
tudes of the ∑VSE values for each training-subset
record versus the jth tuning-subset record.

f jq ¼ ∑VSEjq= ∑r¼Q
r¼1∑VSEjr

h i
ðA4Þ

Where:

q the qth of Q top-ranking training-subset records from the
training subset for the jth tuning subset record.

r the rth of Q top-ranking training-subset records from the
training subset for the jth tuning subset record.

fq the contribution fraction calculated for the qth of Q top-
ranking records for the jth tuning subset record.

Eq.(A5) imposes a key constraint that normalizes the fq
values to sum to 1. Q always equals 10 for TOB stage 1.

∑
q¼Q

q¼1
f q ¼ 1 ðA5Þ
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The data record in the training subset with the highest-
ranking match (i.e., the one with the lowest ∑VSEjk value) then
makes the greatest contribution to the prediction of the depen-
dent variable associated with the jth tuning-subset record. This
is achieved by applying (1 − fq) multipliers in Eq. A6

XNþ1ð Þpredictedj ¼ ∑
q¼Q

q¼1
XNþ1ð Þq* 1− f q

� �h i
ðA6Þ

Where:
(XN + 1)qDependent variable for the qth training-subset re-

cord (i.e., one of Q best-matching records).

XNþ1ð Þpredictedj TOB-stage-one predicted-dependent-

variable value for the jth tuning-subset record.
TOB Stage 1 calculations provide a provisional prediction

based upon a fixed number of matching records (Q = 10) and
equal weights (Wn) applied to the squared errors between the
variables. This prediction is further refined in TOB stage 2 by
applying an optimizer and allowing Q and Wn to vary within
specified limits.

Step 10: The accuracy of the TOB Stage 1 predictions are
assessed in terms of the statistical accuracy metrics
defined in the main text (Eq. 5 to Eq. 12) with
closest attention paid to root mean squared error
(RMSE), used as the objective function of the op-
timizer in TOB Stage 2.

TOB Stage 2 (Optimizing the Weights and Number
of Matching Records)

Step 11: An optimizer is applied to minimize RMSE for the
collective predictions calculated for the tuning sub-
set (i.e., the J tuning-subset data records). Q andWn

are allowed to vary (unlike in TOB Stage 1):
TheN input-variable weights (Wn) applied to the

squared errors are allowed to vary (0 <Wn < = 1).
The optimizer is allowed to vary Q (2 < =Q

< =10) defining how many of the best-matching
records should be used for the prediction calcula-
tions (Eqs. A4, A5 and A6).

Eq. A3 is re-evaluated in the optimization calcu-
lations by varying Wn across its constrained range.
TOB stage-2 ∑VSEjq values are recomputed with
Eq. A4 for different Q values (2 < Q < =10) in each
iteration of the optimizer.

For tuning subsets with less that about 100 data records,
the Generalized Reduced Gradient (GRG) non-linear and
evolutionary optimization algorithm options of the stan-
dard “Solver” optimizer available in Microsoft Excel
spreadsheets [56] can be conveniently employed for TOB

Stage 2 optimization. These are readily applied using visu-
al basic for application (VBA) code combined with calcu-
lations for Eqs. A3 to A6 setup as cell formulas in an Excel
spreadsheet. For mid-sized and large datasets, such as the
DSGC dataset evaluated here, with tuning subsets contain-
ing more than 100 data records it is more convenient to
fully code a customized optimizer without the nee to enter
the calculations as Excel cell formulas. TOB can be con-
figured in a fully coded manner in any programming lan-
guage (.e.g., Octave, Matlab, Python, VBA etc.). For the
DSGC dataset a customized memetic firefly optimizer [43]
coded in VBA is applied and the results compared with
Excel Solver results for some of the smaller tuning subsets
evaluated (Table 7).

The firefly optimizer was developed [57, 58] with com-
putational analogies made to the behaviour of fireflies.
Fireflies progressively move towards brighter individuals
in a swarm incorporating some random components to
their positional adjustments. The firefly algorithm adjusts
the position of each member of a population based on spe-
cific rules related to a calculated “brightness” metric that is
proportional to how close their objective function value is
to the lowest value achieved so far [59]. The greatest
brightness is assigned to the highest-performing solution
and the lowest brightness to the poorest-performing solu-
tion [60, 61].

The memetic firefly algorithm, customized specifically to
the requirements of the TOB learning network, involves six
integrated memes or metaheuristics (Mh) [43]. These memes
improve its convergence speed, compared to the standalone
firefly optimizer, to the global minimum. They enhance its
ability to resist becoming trapped it sub-optimal local minima.
These memes operate on each of the multiple iterations ap-
plied to a progressively modified population of potential
solutions:

Mh1: Creates some solutions generated randomly;
Mh2: Creates some solutions applying the firefly

algorithm;
Mh3: Creates some solutions bymakingminor adjustments

to several selected variables (Wn or Q) of existing high-
ranking solutions;

Mh4: Creates some solutions by adjusting a single variable
weights to very low (~0) or very high values (~1) for existing
high-ranking solutions;

Mh5: Creates some solutions by mutating one randomly se-
lected variable (Wn or Q) in existing solutions of various rank;

Mh6: Creates some solutions by modifying one variable
(Wn or Q) by alternating large and small amounts in each of
the top-ten ranked existing solutions.

The effectiveness of each meme in contributing to a solu-
tion is monitored by a metaheuristic profiling technique [62,
63], a graphical representation of which is illustrated by Fig. 6
for an optimization solution derived for Case#12.
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Figure 6 indicates that memesMh2 toMh6 are all frequent-
ly involved in providing a top-ten ranking solutions for the
memetic firefly optimizer up to iteration #50 or so. On the
other hand, random solutions only contribute to the top-ten
solutions in the first few iterations Beyond iteration 60 the
top-ten solutions are dominated by Mh2 and Mh3. Such pro-
filing verifies that all the memes in the memetic algorithm are
contributing to the performance of the optimizer as a whole.
The optimizer collects the details (Wn and Q values) for all the
solutions it evaluates. This is an advantage over the Solver
optimizers that just provide details of the best solution found.

Step 12: The accuracy of the TOBStage 2 predictions for the
tuning subset are assessed in terms of the statistical
accuracy metrics defined in the main text (Eq. 5 to
Eq. 12) and compared with the statistical accuracy
achieved by TOB Stage 1 for the tuning subset. It is
often revealing to perform sensitivity analysis in
step 12 by optimizing with different fixed values
of Q (i.e. Q = 2 to 10) as it helps to assess
underfitting or overfitting issues associated with
the data set being evaluated.

Step 13: Step 13. Compute TOB Stage 1 and TOB Stage 2
predictions for all the data records in the indepen-
dent testing-subset by applying the optimum values
established for Wn and Q in step 11 for the tuning
subset. Assessing the full set of statistical accuracy
measures (Eq. 5 to 12) and comparing them for
stage-1 and stage-2 predictions is important. If
stage-2 predictions are less accurate than stage-1
predictions for the testing subset it is an indication
that the optimization of the tuning set is overfitting
the data and probably a larger tuning subset is

required. For most datasets TOB Stage 2 predictions
can improve on the prediction accuracy achieved by
TOB Stage 1. It is often useful in Stage 13 to audit
the intermediate calculation for individual records in
the tuning subset steps to reveal which variables are
having the greatest impact on the TOB predictions.
The TOB algorithm readily allows forensic investi-
gation of all the calculations involved in the predic-
tions of each data record [44].

Step 14: Compare the results provided by the TOB algo-
rithm and associated statistical analysis with empir-
ical calculations and/or other machine-learning and
data-mining algorithms and, if available, empirical
correlations. Such comparisons can be used to
complement the insights provided to the dataset
(e.g., decision tree analysis of the DSGC dataset)
and/or benchmark the prediction performance.

Appendix 2 Supplementary Data File

A supplementary Excel data file is provided splitting the
DSGC simulated dataset adapted with three compound vari-
ables for Case#12 into training, tuning and testing subsets.
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