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Abstract
With the increasing integration of Distributed Energy Resources (DER) in the power grid, a decentralized approach becomes
essential for scheduling and allocation of resources in a smart grid. Economic Dispatch (ED) and Unit Commitment (UC) are the
two major resource allocation problems that play critical role in the safe and stable operation of a grid system. The uncertainty
associated with renewable energy sources have made the resource allocation problems even more challenging for grid operators.
The future grid will have a higher generation mix of renewable energy sources and a large load of Electrical vehicles, with the
possibility of bi-directional power flow. This complex smart grid system necessitates the development of a decentralized
approach to resource allocation problem, which allows inter-node communication and decision making. Multi-agent systems
(MAS) is a promising platform to decentralize the traditional centralized resource allocation aspects of smart grid. This paper
presents a comprehensive literature review on the application ofMAS to Economic Dispatch (ED) and Unit Commitment (UC) in
smart grids.
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Introduction

The smart grid framework incorporates distributed generation,
advanced communication network, smart meters and sensors
to make the grid more reliable, flexible, adaptive and efficient.
This new power system paradigm necessitates the need to
revisit some of the traditional power system operations tomeet
the challenges of next-generation transmission and distribu-
tion systems [1]. Along with the integration of renewable en-
ergy sources, the deregulation in the energy market has creat-
ed competition for power generation companies. Generation
companies have an obligation to meet the customer energy
demands even during peak hours and system outages. There
is a need to properly allocate the generation sources to maxi-
mize the profit considering renewable generation and custom-
er demand [2].

The presence of increased penetration of Renewable
Energy Sources (RES) in the power system creates many
technological challenges for the power companies owing to
the need for improved system control to maintain the power
quality to consumers [3]. The mix of conventional and RES
must work in tandem to maintain the power generation at the
required level. The process of committing the generators and
allocating the required generation level has become a chal-
lenge to meet the increased demand, while using the genera-
tion from uncertain RES. These factors make the centralized
control of a smart grid system complex and less efficient to
process the diversity of data and controls [4]. The concept of
Multi-Agent Systems (MAS) is put forward to solve this prob-
lem by using automated agent technology. The MAS converts
a centralized control system into a distributed control model at
a component level.

MAS is a collection of agents working together with each
other to achieve an overall objective [5]. An agent can be
defined as a computer system with the ability to take critical
decisions based on the scenario to improve its objective [6, 7].
These software agents in a smart grid environment sense,
communicate, collaborate and act with each other. The agents
can act autonomously or semi-autonomously, with local or
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global information [8]. MAS technology is finding wide range
of applications in the power system domain such as optimal
power flow [9, 10], power system restoration [11–17], elec-
tricity market operation [18–21], power system control
[22–26] and protection [27–29]. The focus of this paper will
be restricted to the application of MAS in the fundamental
resource allocation aspects of the power grid namely,
Economic Dispatch (ED) and Unit Commitment (UC).

ED is one of the most important challenges in the pow-
er systems and it deals with the allocation of power gen-
eration among committed generators in order to meet the
demand while lowering the generation cost [30].
Consumer demand for clean energy and government reg-
ulation has motivated the integration of Distributed
Energy Resources (DERs) like solar photovoltaic, wind
power, and fuel cells into the modern power grid. This
makes ED a highly complex optimization problem which
needs to consider the various factors like generator capac-
ity, ramp-rate, failure rate, emission, load profile and gen-
eration from DER. Unit Commitment (UC) in a smart grid
system is a highly complex optimization problem that
schedules the startup and shutdown of generators to meet
the demand while satisfying system constraints [31, 32].
The committed generators are modeled in the ED for gen-
erator scheduling. The smart grid systems which have
significant DER and the increased interest from con-
sumers to install RES have necessitated the need for a
decentralized approach to commit and schedule genera-
tors. The increased uncertainty from RES has made ED
and UC more complicated due to the intermittent nature
of these power sources.

For understanding the application of MAS in resolving
resource allocation and scheduling problems of smart grid,
the paper is organized in five sections. Section II describes
the architecture of a MAS in a smart grid system, section III
and IV present comprehensive review on the application of
MAS in ED and UC respectively, followed by conclusion in
section V.

MAS for Smart Grid

An agent represents a computer system situated in an environ-
ment where it is capable of making decisions to achieve its
design objectives. Moreover, an agent can be autonomous,
social, reactive and proactive. Multi Agent Systems (MAS)
are composed of agents interacting in a highly dynamic envi-
ronment. These intelligent agents are being developed to have
the functionalities on par with the human experts to act appro-
priately in the various scenarios that take place in a smart grid.
The summary of various MAS architectures used for control
of microgrid is summarized in Table 1 [33].

The centralized MAS architecture for micro grid control is
discussed in the literature [34, 35]. The framework of distrib-
uted and three level hierarchical MAS for a smart grid is ex-
plained in P. Lu et al. [36] and K. E. Nygard et al. [37]
respectively.

Most of the MAS based optimization problems rely on the
technique of consensus algorithm to reach the solution. The
main idea behind the consensus problem is to make a set of
agents agree up on a certain value (usually a global function)
by using local information exchange among agents (local in-
teraction). This concept is utilized in different fields such as
economics (Agreement problem), communication (Gossip al-
gorithms [38]), statistical mechanics [39] (Synchronization)
and robotics (Flocking [40]). It offers several advantages over
traditional centralized methods such as distributed computa-
tion, computational efficiency, independent of graph topology
and robustness to failure [41, 42]. In a consensus algorithm
model, each node in the system is considered as a dynamic
agent with a value or state associated with it. The value of the
agent represents the decision variable with which it can reach
consensus with other agents in the system. Researchers have
explored different census methods for a microgrid system
such as in the work by G. Hug et al. [43] where a combination
of consensus and innovation method was utilized. A novel
framework to model a full automation of a distributed smart
grid system is presented in the work by K. E. Nygard et al.
[37]. The model is based on the concept of an Intelligent
Autonomous Distributed Power System (IDAPS), a microgrid
with sufficient resources and intelligence to function autono-
mously within a global grid. A three-layer hierarchical system
model with agents in higher level supervising the agents in
lower levels is proposed. Themodel accomplishes modularity,
scalability, and a balance between global and local decisions
of agents. Distributed MAS based control offers several ad-
vantages such as autonomy, fault-tolerance low latency, effi-
ciency and much more. It is a way of physically breaking
complex control problems into smaller control problems,
and then solving them closer to the control operation itself.

Development of Smart Grids will involve dealing with a
bigamountofdatacollected inadistributedmanner.Thisdata
is communicated among equipment and devices to support
decision-makingprocess.Certainly, handling the amounts of
data to be acquired and processed in such distributed systems
to extract useful information bring its own challenges.
Computational intelligence techniques are used to extract
knowledge and overcome some of the challenges. In “intelli-
gent” systems, data is pre-processed, processed, and then
information is extracted for decision-making. Given the dis-
tributed nature of Smart Grids (SG), new advancements in
distributed intelligence techniques spawned the MAS tech-
nique development. The following are some advantages and
reasons to explore distributed MAS architectures over cen-
tralized architecture:
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Advantages of Distributed MAS over centralized
control:

1. The SG components are often distributed and the
energy management system is tightly associated with
the communications between stakeholders and enti-
ties (agents) to exchange information, so MAS is an
appropriate platform to develop distributed manage-
ment functions.

2. SG is a holistic system and the failure of some part of it
(e.g., the breakdown of a transmission line or cut down of
a substation, transformer) should not affect the whole ac-
tivities and operations, and hence fault tolerance can be
easily attained in distributed architecture over centralized
architecture.

3. SG should demonstrate the plug-and-play concept for in-
tegrating energy storage, loads, and sources at the build-
ing level with the external utility grid. Plug and play
adaptability is widely proven by MAS. The nature of
MAS enables it to scale up by adding other agents or by
dispersing them in new environment with new resources
and capacities. Hence, Distributed MAS building mod-
ules are highly scalable, and modular.

4. As SG will be composed of an aggregate of Micro grid,
and hence the control can be delegated to micro grids.
With futuristic smart grids being a simple collection of
residential microgrids, each microgrid can exhibit distrib-
uted control.

5. One of the goals of the SG is to develop grid moderniza-
tion technologies, tools, and techniques for Demand-

Response (DR) with the ability to dynamically optimize
grid operations , resources and consumer participation. To
do so, it is important to understand demand participation
of consumers. As number of consumers are growing, it is
essential to do the demand response analytics in a distrib-
uted fashion.

Due to the inherent advantages of distributed MAS archi-
tecture, it is well suited to resolve the complex ED problem of
smart grid. A general framework for the implementation of
MAS in smart grid (SG) system is shown in Fig. 1 [44]. SG
system is an integration of the physical grid with the commu-
nication layer where the agents act as an interface. The com-
munication layer is a strongly connected network with varying
and configurable topologies. Each agent can be categorized
into three units; namely Device Unit (DU), Decision Making
Unit (DMU) and Communication Unit (CU). DUs can be
considered as physical power system buses with components
such as Synchronous Generators (SGR), Renewable
Generators (RG), flexible load and rigid load. DMUs perform
the local computing for the agents and CUs are the communi-
cation nodes, which transmit and receive information [45].

The internal structure of an agent model is shown in Fig. 2.
An agent model consists of three units; Communication Unit
(CU), Decision Making Unit (DMU) and Device Unit (DU).
CUs are generally signal receivers/transmitters used to ex-
change information with neighbors. The calculator, sensors
and controllers are part of DMU, which are responsible for
the local computing in an agent. DMU is the brain of an agent
node and capable of generating control instructions for the DU

Table 1 Different MAS architectures for microgrid control [33]

MAS architecture Type of agent Role Features

Centralized Cognitive Agent Higher level of intelligence/
communication capabilities

+ collects information
at a single point

+ capable of making global decision
+ flexibility and openness in

the operation of smart grid
− suffers from computational burden

in case of large number of agents
− single point of failure affects the

entire system

Reactive Agent Fast Response

Two-level hierarchical High level agent Infrastructure management,
low level scheduling

+ distinct levels of decision making
− failure of higher level agents results

in critical conditions of the lower level agentsLow level agent Accept schedule from High
level agent, asset management

Three-level hierarchical High level agent Critical decisions, data and
policy management

+ good scalability through delineation
of roles to agents

− failure of higher level agents results in
critical conditions of the lower level agents

Middle level agent Fault location, switching of grid
connected/islanded mode

Low level agent Sensor management

Distributed Local Agent Local information discovery/
communication

+ robust system with agents being capable
of reorganizing and coping up with the
loss of other agents
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as well as responsible for communicating the information to
the CU. DUs represent the traditional buses in a network
which consists of different elements such as synchronous gen-
erators, Renewable Generators (RG), battery storage systems
(BESSs), flexible and rigid loads. DU performs the control
suggestions from DMU and also sends the feedback to the
DMU.

There are number of simulation and open source tools
available for modeling MAS platforms [46]. The most com-
mon ones are ZEUS, AgentBuilder, JADE, and MADKit.
Features of these MAS modeling tools are listed in Table 2.

Economic Dispatch

Economic Dispatch (ED) is one of the fundamental problems
in the power system domain. It is basically an optimization
problem with the objective of reducing cost while maintaining
the generation-load balance. ED schedules the committed

generators in the system to meet the demand. ED needs to
conform to several other constraints for a safe and secure
operation of the grid. The integration of uncertain renewable
energy sources to the grid has made ED and power quality
analysis more important and also more complicated [52, 53].

Distributed algorithms are becoming popular for intelligent
decision-making and control and these algorithms appear to
be promising in the context of smart grid. These algorithms
are robust, immune to topological variations and can support
the “plug-and-play” feature of the future grid. However, it is
more challenging to include the operational constraints in such
a distributed formulation. Many researchers have proposed a
consensus-based approach for ED without losses and lower
and upper power boundaries. A consensus algorithm is widely
used in solving the ED problem in smart grid. It is a method
used to achieve agreement on a single data value among dis-
tributed systems. This algorithm is designed to achieve reli-
ability in a network involving multiple unreliable nodes. [36,
54–56].
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multi-agent system for smart grid
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In a conventional centralized method (e.g. Lagrange mul-
tiplier method), at the optimal point, all the generators will
have the same incremental cost. An appropriate consensus
algorithm can guarantee a similar result by having all the
consensus variables to converge to a common value asymp-
totically. Based on this concept, Z. Zhang and M. Chow [57]
introduced an Incremental Consensus Algorithm (ICC) to de-
centralize the ED problem by choosing incremental cost (IC)
as a consensus variable. The model consists of a local control-
ler (generation unit) which will update its consensus variable
depending up on the neighbor’s values. The proposed ap-
proach requires a leader node, which will decide whether to
increase or decrease the IC based on the demand constraints.
The authors tested the approach on a 3 unit and 5 unit system
to test the validity and convergence of the proposed approach.
They showed a successful implementation of consensus algo-
rithm in ED but lacked a fully distributed model since it need-
ed a leader node to control the agents. A more detailed de-
scription about ICC is provided in [58].

The previous paper utilized ICC algorithm to implement
ED in a distributed fashion but relied on a leader-follower
consensus algorithm. A leader node needs to be selected,
which will gather the local power mismatch from the follower
nodes to calculate the total power mismatch. The follower
nodes need to report their power mismatch to their leader. Z.
Zhang et al. [59] introduced a two-level consensus approach

to acquire system power mismatch. This new approach will
eliminate the need for a single leader node to do all the calcu-
lation. An average consensus will run at the lower level of the
two-level method and ICC will be employed at the second
level to process the mismatch information. This is an im-
proved version from the method proposed in [57]. It is more
distributed and does not require a fixed communication
network.

A decentralized approach to ED in a microgrid with
Distributed Generators (DG) was explored by N. Cai et al.
[7] using a MAS. Here, each DG was assumed to have an
agent which could receive local information and communicate
only with its nearest neighbors. Agents compete with others to
obtain a local solution, thereby obtaining a global optimum.
The authors used the concept of consensus among agents to
obtain the optimum solution for the ED. The authors validated
the approach on five and fifty agent systems but did not com-
pare the results with a centralized approach.

A consensus control based approach to solve the ED prob-
lem in a smart grid was developed by S. Yang et al. [60]. The
approach solves the ED in a distributed fashion with the gen-
erators acting collectively to receive the mismatch between
demand and power generation information, which is the feed-
back for the agents. The total mismatch is generated in a col-
lective fashion from the estimate of local mismatch by the
agents, which removes the need for a leader agent to collect

Table 2 MAS modeling tools

MAS tools Description

ZEUS ZEUS [47] is a multi-agent platform developed by the research program of
British Telecom intelligent system research laboratory. ZEUS allows the
design of multi-agent distributed systems. This platform, developed in Java,
automatically generates Java code from the agents specified graphically.

Agent Builder Developed by Reticular Systems Inc., AgentBuilder [47], it is based on BDI
(Believe - Desire - Intention) models Agent [48] and AGENT-O language [49].
It is remarkable for the quality of its software and a good academic model.
AgentBuilder is a commercial design software for “intelligent” agents i.e.,
cognitive and collaborative agents. AgentBuilder consists of two main components:
the toolkit and runtime system.

JADE JADE [50] is a multi-agent (multi-host) platform developed by Bellifemine.
F., Poggy. A., Rimassa. G. and P. Turci by Telecom Italia Lab “Tilab formerly CSELT”
in 1999. This platform aims to simplify the construction of interoperable MAS, achieve
compliant applications with the standard FIPA97 (Foundation for Intelligent Physical Agents)
to facilitate the communication of JADE agents with non-JADE agents, and optimize the
performance of a distributed system agent. JADE includes all accredited component that
manages the platform: Agent Communication Channel (ACC), Agent Management System
(AMS), and Director Facilitator (DF).

MADKit MADKit [51] is a platform for MAS developed by Olivier Gutknecht and Jacques
Ferber in Laboratory of Computer Science and Robotics and Microelectronics of
Montpellier. MADKit was motivated by the need for a more flexible platform possible,
and able to adapt to different agent models and application areas. MADKit is a modular
multi-agent platform and scalable, written in the Java language. It allows the creation of MAS
based on the relational model Aalaadin or AGR (Agent / Group / Role): agents are located in
groups and play roles. MADKit takes advantage of object-oriented programming: MADKit
features are contained in the MADKit kernel.
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the global information. The incremental cost of the generators
is chosen as the consensus variable and incremental cost cri-
terion was used to obtain the optimal dispatch. The method
was found to have the same precision as the Lambda-Iteration
approach, a centralized method, with less communication
overhead.

A distributed ED model considering line loss was devel-
oped by G. Benetti et al. [61]. The nodes in the model run two
consensus methods in parallel; one to find the Lagrangian
variable and a second one to find the power mismatch. The
first method is a first-order consensus algorithm which uses a
proportional controller to bring the power mismatch to zero
and to satisfy the generation-demand equality constraint. The
second consensus method uses the work allocation concept to
find the power mismatch. The authors assert that the proposed
method can satisfy generation constraint and can handle line
loss in the system. The comparison between the distributed
approach and the centralized approach to verify its conver-
gence speed and accuracy was not attempted by the authors.

A. Cherukuri et al. [62] explored the concept of distributed
consensus-based approach to model an ED which can handle
changing load conditions and can remain stable under inter-
mittent power sources. The proposed model employs two dy-
namical systems namely, dynamic average consensus and
Laplacian non-smooth gradient. The mismatch between gen-
eration and load is estimated in a distributed fashion by the
consensus method and the Laplacian non-smooth gradient dy-
namically allocates the generation. The approach can reach
optimum solution from any initial power allocation and does
not require a feasible allocation as the initial value. The au-
thors verified the effectiveness of the method to handle dy-
namic loads and intermittent power sources.

K. Luo et al. [63] developed a MAS based distributed ED
model for an electrical grid system with RES, which can be
deployed for real-time applications. The proposed approach is
a two-step process, with the first step calculating the initial
generation values using adjacency average allocation algo-
rithm and the second stage performs the ED in a distributed
manner using local replicator dynamics. The first stage han-
dles the equality constraints in the model while the second
stage conforms to the inequality constraints. They validated
the effectiveness of the proposed method but did not compare
the performance of the method with similar approaches.

A distributed ED model for an islanded microgrid system
was developed by P.P. Vergara et al. in [64]. The model con-
sidered both active and reactive power in the optimization
model. The primal-dual constrained optimization method
was used to solve the problem in a distributed fashion, in
which two consensus methods are executed in parallel to ob-
tain the dual values or incremental costs. The authors validat-
ed the performance of the proposed method by comparing to a
classical Lambda method and also the capability of the meth-
od for fault tolerance.

F. Guo et al. [65] explored the potential of a distributed ED
model for a smart grid system with random wind power. The
proposed model works on the projected gradient and Finite-
time Average Consensus Algorithm (FACA) and supports the
plug-and-play feature of new generation smart grids. The ran-
dom wind power generation is modeled using the determinis-
tic method with overestimation and underestimation cost var-
iables. The agents can choose arbitrary initial values and are
not required to share gradient or incremental cost information
with the neighbors. The authors validated the effectiveness
and performance of the proposed method on IEEE test
systems.

A consensus-based distributed ED taking into account gen-
erator dynamics was studied by J. Cao et al. in [66]. The
authors used comprehensive generator constraints to improve
the consensus algorithm and analyzed the effect of different
communication topologies on the speed of the consensus al-
gorithm. The model relies on local power mismatch data from
the agents rather than a leader node to collect global informa-
tion. The authors asserted the superiority of the proposed
method by comparing with Lambda iteration and PSO
methods. The generator dynamics was found having a signif-
icant effect on the speed of the consensus method while the
effect of communication topology was not significant.

A distributed consensus-based approach to solve ED in a
microgrid was developed by Z. Yang et al. [67]. They used a
novel concept of virtual incremental cost as the consensus
variable which does not require the nodes to share power
output or generator parameters. The algorithm has the advan-
tage of not depending on the local power mismatch to reach
the optimum and maintaining the supply-demand balance
even during transients. They reported reduction in communi-
cational burden between nodes and improved reliability of the
algorithm.

Y. Li et al. [68] developed a distributed ED model for a
combined heat and power system. TheMAS based framework
utilized two consensus protocols, one optimizes the electrical
incremental cost function while the other gets a common value
for the heat incremental cost. The heat and power coupling in
the objective function and constraints are managed by these
two consensus variables. It works in a completely distributed
fashion without the need for a leader agent with the global
information. They report the effectiveness of the proposed
ED model by comparing to a centralized approach using
Lagrangian relaxation method.

Z. Yang et al. [69] proposed a distributed consensus-based
model for the ED in a smart grid system which maintains the
supply-demand balance even during the transient process. The
method has the advantage of not relying on the supply-demand
mismatch and hence can be used online. The proposed method
does not require a leader node with the complete information of
power demand in the grid system. It uses the maximum incre-
mental cost of the neighboring generators and developed a
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method to increase or decrease the incremental cost of a satu-
rated generator to maintain the supply-demand balance during
iterations. H. Xing et al. [70] utilized an average consensus
based bisection approach to perform distributed ED. The meth-
od has the advantage of not relying on prior information or a
leader node to perform the optimization.

G. Binetti et al. [71] developed a distributed model to
solve non-convex ED problems. The non-convexity comes
from the valve-point effect, prohibited operating zones,
multiple fuel option and transmission losses but makes the
model more realistic for real-time operations. The proposed
model is fully decentralized and does not require a leader
node with the global information. The method has the added
advantage of being deterministic while heuristic methods do
not guarantee the uniqueness of the solution from a single
run. A combination of auction mechanism and market-
based MAS was used to design the distributed ED and the
authors tested the validity of the method on standard test
systems. G. Binetti et al. [72] also proposed a distributed
ED model which considered transmission losses in the sys-
tem using a combination of two consensus algorithms run-
ning in parallel. The model utilized a first order consensus
protocol to calculate the local power mismatch to satisfy the
demand constraint and a second consensus algorithm to cal-
culate the system power mismatch.

A transition of the MAS based distributed ED from labo-
ratory set up to industrial model is studied by G. Zhabelova
et al. [73]. An incremental cost consensus approach model
based on the industrial standard IEC 61499 is used to solve
ED in a smart grid environment. IEC 61499 is a promising
industrial standard used as an architecture for the development
of distributed systems in control and automation. The agent-
based system modeled after the IEC 61499 standard will be
suited for industry application and can be executable on the
target platforms. The authors tested the proposed model on a
5-node system with industrial controllers.

A combination of MAS and Particle Swarm Optimization
(PSO) called MAPSO (Multi-Agent Particle Swarm
Optimization) was proposed by C. Wu et al. [74] and was
applied to the ED problem. The proposed method overcomes
the shortcomings of PSO, the fast convergence to the local
optima, and achieves high convergence speed and precision.
The agents are modeled to have the ability of self-learning to
improve the problem-solving ability. The authors verified the
effectiveness of the proposed method on IEEE test buses and
the method was found to be faster than evolutionary algo-
rithms. A hybrid of MAS with PSO, deterministic search
and bee decision-making process called HMAPSO (Hybrid
Multi-Agent based Particle Swarm Optimization) was pro-
posed by R. Kumar et al. [75]. The HMAPSO method was
applied to an ED model with valve-point effect and was ob-
served to be more robust and accurate than other PSO
methods.

A dynamic agent-based approach to model a decentralized
EDwas developed by V. Loia et al. [76]. ED was solved using
self-organizing dynamic agents equipped with distributed
consensus method. C. Zhao et al. [77] explored the effect of
cyber-attacks on a consensus-based ED model. The authors
tested the performance of the algorithm for false data injection
into the broadcast information, offline and online ED models,
and bounded and unbounded generation cases.

The increased amount of communication between nodes in
a smart grid system can lead to communication bottlenecks
which can cause convergence issues in consensus-based ED
models. C. Li et al. [78] developed an event triggered
consensus-based ED model to reduce the communication
overhead in a smart grid system. The authors reformulated
the ED model using θ-logarithmic barrier to conduct the in-
formation exchange in a distributed fashion. The reformulated
ED model is solved in a two-stage process; the initial values
for the agents are generated using connected dominating set
based distribution algorithm as the first stage and in the next
stage a consensus-based optimization is applied to the system.
The authors stated that asynchronous communication-based
event triggered ED model can significantly reduce the com-
munication exchange in a smart grid system, but the event
triggered mechanisms can have a negative impact on the con-
vergence rate. A fast gradient-based method is used to accel-
erate the convergence rate in the optimization model.

Most of the papers discussed above assume a perfect com-
munication between agents without any information loss, but
in a realistic smart grid environment can have packet loss and
communication failures. Y. Zhang et al. [79] proposed a dis-
tributed ED model which remains robust under information
loss among agents. A combination of two algorithms running
in parallel, Robust distributed system Incremental Cost
Estimation (RICE) algorithm, was introduced by authors to
handle the issue. The model contains a Gossip algorithm to
find the power mismatch estimation and consensus algorithm
for the incremental cost estimation. They report that their
method outperforms the consensus method to packet loss
and delivered good results even with a 5% information loss
in the network. Another study on distributed ED under com-
munication uncertainties is by G. Wen et al. [80]. The pro-
posed approach utilized a robust consensus model to counter
the communication uncertainties. A study of consensus-based
ED model under dynamic communication network is evaluat-
ed by M. Hamdi et al. in [81]. T. Yang et al. [82] explored a
distributed ED model for a system with potentially time-
varying topologies and network delays. The authors proposed
a gradient push-sum based method to handle the network
challenges.

The application of distributed ED using consensus the-
ory in a microgrid is by proposed R. Wang et al. [83]. The
proposed method is a fully distributed approach without a
leader or a virtual control node. The incremental cost of
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each bus in the system is taken as the consensus variable.
The authors validated the performance and convergence
of the distributed ED in a microgrid model. A similar
approach for distributed ED in an islanded microgrid is
proposed by Z. Tang et al. [84] by using IC as the con-
sensus variable. A distributed power dispatch model for a
multi-microgrid scenario is reported by X. He et al. [85]
utilizing a primal-dual consensus algorithm. They evalu-
ated the performance of the proposed algorithm on an
IEEE 30, 57 and 300 bus systems. A study on distributed
control architecture for a hybrid AC/DC microgrid is per-
formed by P. Lin et al. in [86]. In most of the above cited
papers for ED, an evaluation of generation cost is not
performed for the different approaches and moreover the
problem of ED is not solved in a more realistic manner
with non-negligible losses. Limited work has been done
on the implementation cost of these approaches in a smart
grid system. A summary of the above cited papers and
their features are listed in Table 3.

Unit Commitment

Unit Commitment is the process of determining the schedule
of generating units within a power system. The optimized
schedule is generated subject to device and operating con-
straints of the systemwith the objective of minimizing the cost
for utilities [92]. The ED optimization is usually performed on
the committed generators from the UC step. Various ap-
proaches were used to find the optimal schedule from the
UC problem ranging from highly complex and theoretical
methods to simple rule of thumb methods [93–97]. The scope
of the UC problem depends on the generation mix, operating
and security constraints set by the utility. The focus of this
review is on the decentralized approaches which utilized
MAS to solve UC problem.

Authors in [87] developed a centralized approach to solve
UC in a smart grid system using a MAS based architecture.
The agents communicate information to neighboring agents,
but the UC happens in a centralized controller. Figure 3 shows
the different agents in a centralized UC. The proposed method
helps to reduce the communication overhead but has the de-
merits of a centralized controller such as a single point of
failure, increased computation time with complexity, unavail-
ability of plug-and-play functionality etc.

A distributed UC model based on MAS was developed
by T. Nagata et al. [31, 98]. The proposed model consists
of three types of agents namely Generator Agents (GA),
mobile agents (DA, UA) and Facilitator Agent (FA). The
FA contains the objective function. The system level con-
straints are satisfied by the interaction between GA and
mobile agents and the GA handles the local constraints.
The two mobile agents are provided to improve the

communication in the system. The decrease mobile agent
(DA) are intended to reduce the generated output and
increase mobile agents (UA) initiates an increase in gen-
erated output. In the proposed approach, mobile agents
travel throughout the system and negotiates with the gen-
erator agents, depending up on the operating conditions.
The performance comparison of the method with dynamic
programming yielded similar results but it is not a fully
decentralized method since it has a leader and mobile
nodes as an interface between generator agents. Figure 4
shows the architecture of the proposed method.

An improved version of the method proposed in [31]
was presented by J. Yu et al. in [88]. The proposed MAS
agents are more intelligent and have the capability to
solve complex optimization problems. The profit maximi-
zation objective is obtained using three types of agents,
namely central agent, mobile agent and generator agent.
The central operator in the system is the central agent
which commands the mobile agents to achieve the objec-
tive function. The mobile agents travel to each generator
to negotiate and reach a satisfactory result. The model is
not fully decentralized as there is an agent acting as a
central controller. The authors validated the proposed
model against a hybrid Lagrange Relaxation - Evolutio
nary Programming (LR - EP) method.

A MAS based UC model for a smart grid system consid-
ering RES uncertainty was developed by X. Zhang et al. [89].
The model considered the uncertainty associated with wind,
solar and load along with the charging and discharging of
PHEVs (plug-in hybrid electric vehicles). The hierarchical
system consisted of management agents, work agents, coop-
erative co-evolution agent and object cooperative agent. The
work agents used adaptive GA to solve the optimization.

A MAS based approach to solve the profit based UC
problem was explored by J. Yu et al. [99]. Rule-based,
and dynamic programming methods were used to solve
the profit based UC. D. Sharma et al. [91] introduced an
improved version for the profit based UC. The ISO agents
in the proposed method used a rule-based intelligence to
work in conjunction with generator agents to maximize
the objective function. The functionality of generator
agents is limited to maximize their profit for a given de-
mand and reserve using real – parametric Genetic
Algorithm and to share the information with the ISO
agents. The maximum profit generating agents are com-
mitted to the system by ISO agents while satisfying the
up/down time constraints. The authors reported the per-
formance of the proposed method with several hybrid
methods.

T. Logenthiran et al. [2] utilized MAS concept to de-
velop a resource scheduling model for an islanded power
grid with integrated microgrids and DER. The proposed
methodology has three stages; microgrid scheduling to
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satisfy its internal demand as the first step, the second
stage being contacting the network to analyze the possi-
bility of exporting power, and the final step is to schedule
the whole microgrid considering both internal demand
and the power transfer from the second stage. The authors
used the JADE platform to simulate the MAS system and
used Lagrangian Relaxation with Genetic Algorithm to
schedule the microgrid resources internally. They report
the robustness and scalability of the method by testing it
in a PoolCo energy market.

E. Kaegi et al. [90] proposed a decentralized ap-
proach to solve the UC problem using the MAS con-
cept. The methodology was based on zonal approach
consisting of generator agents, load agents and zone
agents. The generator agents (GA) and load agents
(LA) handle the local profit maximization within a zone
while the zone agent handles the interaction with other
zones. The zone agents have no financial objectives but
only acts as a service agent for the entities within its
zone. The optimization is done in two stages. The intra
zone level is the competition between agents within a

zone to reach the profit maximization. In the next stage,
the optimization happens during the interaction between
zones. The paper only focused on the intra zonal activ-
ities, but the inter-zonal activities also play a significant
role in profit maximization. Figure 5 represents the zon-
al approach used by the authors. A summary of the
work done by different researchers on ED and UC prob-
lem which utilized MAS concepts are summarized in
the Table 3.

Conclusion

This paper presented a literature review on the applica-
tion of MAS for ED and UC in a smart grid. The inte-
gration of DERs into a grid requires a decentralized con-
trol strategy to incorporate these resources and to main-
tain the grid resiliency. The multi-agent technology is a
promising and scalable platform to implement distributed
resource scheduling and allocation using various compu-
tational techniques.

Fig. 3 Smart grid communicating
agents in a centralized UC [87]

Fig. 4 MAS based UC model
[31]
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Though there are many centralized algorithms being
used to solve the ED problem, a small change in the smart
grid may lead to redesign of these centralized approaches.
Thus, there is a need for a distributed ED approach which
can enjoy the benefit of robustness, scalability and less
information requirement. Different distributed algorithms
for solving ED problem have been proposed by many
researchers in the literature. Of all these distributed ap-
proaches, consensus-based algorithm has evolved as the
promising computing method for solving ED. The
consensus-based ED algorithm can make the analysis
tractable by simplifying the system into linear for the it-
eration process. Most of the consensus-based algorithms
available in the literature are useful in solving only con-
vex ED problem without transmission losses. On the other
hand, an auction-based algorithm has been proposed to
solve nonconvex ED problem. However, most of the in-
vestigations reported in the literature are limited to imple-
mentation in the simulation environment without address-
ing the challenges of different scenarios of a smart grid in
real time. Hence, these approaches have to be established
in real time which would be helpful in solving ED prob-
lem in a smart grid.

Researchers have explored the application of MAS in cen-
tralized, hierarchical and distributed models for an UC prob-
lem. Most recent works focused on a distributed model utiliz-
ing concepts from the negotiation strategies and genetic algo-
rithm. The distributed UC models used a zonal approach
consisting of controller/zonal agents facilitating the commu-
nication among agents and these models are not completely
distributed. There is a need for a completely distributed UC

model which considers the increased DER penetration into the
future grid. Most of the reviewed articles focused on the im-
plementation and convergence ability of the proposed
methods, more work needs to be done on evaluating these
methods for their speed and cost savings in a real -time
environment.

We believe that this paper can act as a resource for re-
searchers in academia and analysts in utilities to understand
the background on MAS’s application for smart grid manage-
ment and control.
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