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Abstract The cascading propagation and evolution of 
metro operation failures can significantly impact the safety 
of metro operation. To overcome this challenge, this study 
pre-processes a massive amount of metro operation log data 
through noise reduction. Moreover, a professional terminol-
ogy dictionary is constructed along with a custom stop-word 
dictionary to segment the preprocessed data. Subsequently, 
the AFP-tree algorithm is employed to mine the segmented 
log data and identify key hazards. A weighted urban rail 
transit network is established, considering the effective path 
time cost, and the shortest travel OD path. To simulate the 
dynamic evolution of the failure chain propagation, a model 
based on disaster propagation theory is constructed. Tak-
ing the Shanghai Metro line as a case, multiple simulation 
scenarios are established with 25 key hazards as triggering 
points, and the number of cascade failure stations affected 
under different scenarios is outputted. The results indicate 
that the fault stations caused by the large passenger flow are 
the largest. Meanwhile, the number of stations affected by 
the door clamp is the smallest. The scale of fault stations 
reaches a maximum value in 16–20 min. Through case anal-
ysis, a positive correlation is found when the self-recovery 
factor is between 14 and 18, and the number of fault stations 
shows a significant increasing trend. The research results can 
provide decision-making support and theoretical guidance 
for rail transit operation safety management enterprises.

Keywords Urban rail transit · Complex network · Hazard 
identification · Cascading failure · Fault propagation

1 Introduction

With the continuous increase in demand for rail transit in 
various cities, the metro network structure and scale are 
rapidly developing, presenting a networked and complex 
characteristic [1]. As the backbone of large-scale urban 
transportation, urban rail transit systems have two main 
characteristics: First, there is a strong correlation within the 
network—stations and lines are interconnected, and their 
interactions affect each other. Second, the network has lim-
ited carrying capacity: each line and node on the line has 
a maximum carrying capacity. Only when each node and 
line in the network operate within the carrying capacity 
range can the entire network system run smoothly. When 
an abnormality occurs at a node in the network, such as a 
sudden increase in passenger flow, natural disasters, terror-
ist attacks, or severe weather, a station may become over-
loaded or directly paralyzed. Because of the strong correla-
tion within the urban rail transit network, faults can spread 
to surrounding stations, and the limited carrying capacity of 
stations restricts their ability to share loads. When they bear 
a load beyond their capacity, these stations will also become 
paralyzed due to overload operation, leading to a cycle of 
failure and even causing the entire line or network to fail, 
which poses great danger. Complex networks have scale-free 
and small-world characteristics and have been applied in 
multiple fields, including power facilities, communication 
facilities, and transportation [2, 3]. Complex networks can 
intuitively describe the process of node failure and find the 
weak links in the network. Due to the robustness of urban 
rail transit networks, they are not easily destroyed under 
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random attacks. However, when one or more stations in the 
network are attacked due to unexpected situations, the oper-
ating status of the stations can easily be destroyed, and the 
entire network may be affected by the propagation of these 
abnormal situations [4]. Some existed studies have evaluated 
the stability of the entire network by assuming the failure of 
a node or edge in the network.

However, these studies have inherent limitations, as they 
generally simulate the attack on a station in the network 
without considering specific risk factors that cause the sta-
tion to malfunction. The impact of different types and levels 
of risk events on stations is also different. Additionally, the 
dynamic changes within the metro network over time are 
difficult to accurately characterize. Therefore, this paper pro-
poses a method for predicting and estimating the cascade 
failure propagation trend of the subway network based on 
key risk sources, which can overcome these limitations.

2  Literature Review

Research on the network propagation of operational fail-
ures in rail transportation has focused primarily on explor-
ing methods for text mining of hazard sources and failures, 
analyzing cascading failures, and studying the spread of 
disasters. This section covers these three aspects from the 
perspectives of text mining, cascading failure analysis, and 
disaster propagation.

2.1  Text Mining

In recent years, natural language processing technology 
has matured and has been widely applied in various fields 
[5–7]. In the safety field, some scholars have extracted risk 
item features from texts, such as Luo [8], who proposed the 
preprocessing of road traffic accident reports to enhance the 
feature representation of risk sources, build a double-hidden-
layer adaptive convolutional neural network, and identify 
risk sources through sample training. Li [9] extracted fea-
tures from reports on high-altitude construction accidents, 
obtained causal feature items, causal networks, and causal 
sets, and displayed the results using word clouds and network 
structure graphs. Some scholars have also used network mod-
els to mine risk factors and make predictions, such as Xue 
[10], who focused on the safety accident reports of construc-
tion projects, constructed a safety network model, graded the 
influencing factors, and implemented graded control to verify 
the feasibility of the model in handling such problems. Wu 
[11] used R language to mine ship collision accident text 
reports, studied methods for processing rare professional 
terms, and based on the mining of causal key factors, built a 
Bayesian network model to predict river ship accident risks. 
Others have implemented risk mining and control through 

system construction or design management frameworks. Fa 
[12] used coal-mining accident reports, used text mining 
technology to establish a coal mine human factor analysis 
and classification system, extracted strong association rules 
among influencing factors, and proposed relevant hypotheses 
to identify and analyze the hierarchical structure relationship 
in the human–machine interaction system framework from 
multiple perspectives. Xu [13] used text mining technology, 
based on data from construction accident reports, designed a 
translation management framework, and proposed informa-
tion entropy-weighted term frequency for term importance 
evaluation, ultimately extracting core factors affecting con-
struction safety. Chu [14] proposed a global supply chain 
risk management framework based on text mining, and col-
lected and analyzed the existing literature; the analysis results 
revealed the importance of content related to terms, further 
defining potential supply chain risk factors. Zhao [15] pro-
posed a network news risk factor extraction method based 
on the latent Dirichlet allocation (LDA) model, ultimately 
determining 28 risk factors, analyzing the relationships 
among these factors, and evaluating the risk factor structure 
of the oil market. Later, some scholars combined text min-
ing technology with complex networks to find the connec-
tions between accident causation items. Qiu [16] creatively 
combined text mining technology with complex networks to 
identify 52 main accident causation factors, further construct-
ing a coal mine accident causation network, clarifying eight 
core factors and their associated sets, as well as seven key 
links. Abdhul [17] proposed an automatic, semi-supervised, 
and domain-independent accident report analysis method, 
identified specific domain keywords in complex network 
structures, and grouped them into topics with expert par-
ticipation, using these keywords and topics for various data 
mining purposes. Meanwhile, other scholars have utilized 
text mining techniques in practical applications to achieve 
quantitative analysis of accidents. For example, Liu [18] 
extracted train derailment accident data for various track 
types from the Federal Railroad Administration (FRA) Rail-
way Equipment Accident Database and statistically analyzed 
them based on the frequency and severity of occurrence to 
derive the main causes of train derailment accidents. Wang 
[19] designed a railroad safety dictionary and comprehen-
sively used algorithms including tire tree, directed acyclic 
graph (DAG), Viterbi, hidden Markov model (HMM) and 
other algorithms to extract causative keywords from accident 
reports, and then mined the correlation rules between the 
causative factors and the accidents, and combined with the 
high-speed railroad derailment matching model based on the 
risk factors of external environments to achieve an accurate 
and quantitative analysis of the safety situation of high-speed 
railroads.

The above literature focuses on the use of text mining 
technology to mine and analyze risks or risk causes from 
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accident reports in the industry, and has achieved certain 
results. However, this type of research generally relies on 
experts or focuses on the features of risk causation items 
for risk analysis, and there is still a need for improvement in 
terms of the mining of risks or risk causes from texts.

2.2  Cascading Failure

Currently, in some research on metro network failures, it is 
assumed that when a node or edge in the network fails, it 
does not affect other nodes or edges in the network. This is 
referred to as static robustness research. However, in com-
plex networks in the real world, such as urban rail transit net-
works, power networks, and communication networks, some 
nodes or edges may fail due to random accidents or deliber-
ate attacks, causing cascading failures that may affect other 
nodes or edges in the network, leading to a chain reaction; 
this phenomenon is known as cascading failure [20]. Experts 
and scholars in various fields have extensively studied the 
cascading failure process, and the models proposed for cas-
cading failure mainly include the load-capacity model [21], 
binary model [22], and sandpile model [23]. Among them, 
the load-capacity model has the widest impact and has been 
applied in empirical research and analysis of real networks.

Research on the load-capacity model focuses mainly on 
three basic issues: the definition of the initial load of nodes 
or edges in the network, the definition of the capacity of 
nodes or edges, and the method of load redistribution. Free-
man [24] defined the initial load of nodes as their between-
ness centrality, and the capacity of nodes as a linear function 
of the initial load, which is a reasonable and widely used 
characterization. However, considering that betweenness 
centrality is a global quantity and the calculation complex-
ity is high, it is necessary to obtain the global properties of 
the entire network. Later, Wang [25] and others defined the 
initial load of nodes based on the degree of nodes and the 
total degree of adjacent nodes, which proposed a new con-
cept of the probability of overload node failure.

Currently, commonly used load redistribution methods 
can be divided into two categories: one is based on the 
global allocation of the entire network, and the other con-
siders the nearest allocation strategy of the capacity of adja-
cent nodes to failed nodes. Li [26] posited that the informa-
tion processing capacity of nodes could be reflected by the 
size of node degree, and effective allocation of additional 
capacity through vertex quotas could prevent cascading 
failure and effectively improve the robustness of the net-
work. Duan [27] proposed a cascading failure model with 
adjustable load redistribution range and load redistribution 
heterogeneity, and analyzed the cascading failure conditions 
of the model on scale-free networks. The results showed 
that reasonable adjustment of the load redistribution range 
and heterogeneity can significantly improve the robustness 

of complex networks. Fang [28] introduced the concept of 
neighbor links and proposed a load distribution method 
which can average the load of failed nodes to their adjacent 
nodes, and studied the cascading failure phenomenon on 
directed complex networks in a new environment. Ma [29] 
proposed a new load-capacity model, which redefined the 
load distribution rule based on the self-repair time factor 
of nodes and analyzed the adjustable parameters of node 
capacity and self-repair factor. Ju [30] combined the degree 
and betweenness centrality of nodes, and redefined the load 
distribution of adjacent edges, studying the robustness of 
network cascading failure. Li [31] constructed a model of 
urban passenger transport network in the city cluster, and 
evaluated the anti-destructive performance of cascading fail-
ure by adopting an improved optimal load allocation strategy 
based on actual passenger flow weighting.

Analyzing and summarizing the above domestic and for-
eign research, it can be found that most research on cascad-
ing failure in metro networks is based on real cities, and 
through the analysis of the network structure and the study 
of cascading failure models, it provides a theoretical basis 
and decision-making support.

2.3  Disaster Propagation

Buzna et al. [32] first proposed a model of fault propagation 
in a general network system that considers node recovery 
capability and transfer mechanisms to describe the dynamic 
spread and impact of disasters in complex networks. The 
model combines network nodes into active bistable elements 
with delayed interactions along directed links. Later, Buzna 
et al. [33] applied disaster propagation theory to study the 
effectiveness of different emergency strategies and optimized 
resource allocation based on network state and topology. By 
changing network topology, delay time factors, and overall 
resource allocation, the effectiveness of different emergency 
strategies was evaluated. Hu [34] proposed a resource node 
attribute model based on disaster propagation theory, which 
combines resource value, disaster energy of each node, dis-
aster propagation path, and disaster propagation charac-
teristics. Finally, the optimal timing for disaster relief and 
emergency resource preparation was determined through the 
model. Yi [35] used a method for simulating multiple failure 
events to describe the random factors that trigger disasters. 
Ouyang [36] presented an improved model of redundant sys-
tems in networks, and analyzed the differences in the spread-
ing process and the role of important parameters. The results 
show that the disaster spreading process becomes slower 
with the existence of redundant systems in the network. 
Later, Ouyang [37] studied the impact of several redundancy 
strategies on controlling disaster propagation in a network 
and found that an improved random network can better cope 
with disasters, while the strategy based on total degree is the 
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most effective way to control disaster propagation in scale-
free networks. Weng [38] established a universal disaster 
propagation dynamic model and studied the influence of 
three important characteristic parameters: self-repair factor, 
delay time factor, and noise intensity. Xiao [39] established a 
dynamic model of congestion propagation in the rail transit 
network based on the disaster propagation dynamic model. 
The congestion propagation model can reflect the process of 
congestion propagation in the rail transit network, and the 
simulation process reveals the propagation law of congestion 
in the metro network.

In summary, the early research on disaster propagation 
theory fully considered the evolution process of faults over 
time, node self-recovery capability, disaster-fault-attack 
propagation mechanisms, and other influencing factors 
such as internal random noise. Based on disaster propaga-
tion theory, combined with the characteristics of the subway 
network and key hazards, a cascade failure model can be 
established to explore the propagation mechanism of faults 
in the network when it suffers from different forms and lev-
els of attacks. Data can be used to predict the scope and 
degree of different risks.

3  Identification and Quantitative Treatment 
of Key Hazard Sources

3.1  Methods for Identifying Key Hazard Sources

Currently, there is still a problem of unknown high-risk 
sources in the operation process of subway systems. In the 
actual operation process, identification mainly relies on 
experienced experts or staff, which has a high degree of 
subjectivity and lacks scientific and effective data support. 
Therefore, establishing a key hazard identification method 
based on subway dispatch logs is a new exploration, which 
can accurately identify key hazards from a data perspective.

3.1.1  Data Preprocessing

The dispatch logs contain a large amount of information, but 
they typically consist of textual descriptions of events that 
cannot be directly used as objects for data mining. Therefore, 

data preprocessing is required, and a data processing flow as 
shown in Fig. 1 is designed to handle the data.

The first step is to clean the interfering data. Since the 
dispatch logs contain a large number of records that are irrel-
evant to the operation risk events, including normal vehicle 
dispatch and routine maintenance information, which do not 
contain risk source information, Python language is used 
in combination with common hazard sources to filter the 
data, and extract most of the valid data, as shown in the 
pseudocode in Fig. 2. Meanwhile, to ensure the integrity of 
the valid data, other data are manually screened to achieve 
completely cleaning of the interfering data.

Step 2: Word segmentation and stop-word removal. Using 
the Pycharm development platform and the Jieba library for 
word segmentation in Python, a more suitable, accurate 
mode for text analysis was used. A custom professional 
terminology dictionary was loaded, and then it was seg-
mented to improve the accuracy of the segmentation. After 
segmentation, stop words were removed to delete words in 
the log text that are not relevant to the research, such as 
"punctuation", "numbers", "also", "just" and other words, 
based on the Harbin Institute of Technology stop-word list 
and customized stop-word dictionary, taking into account 
the professional characteristics of subway operation. The 
specific processing results are shown in Table 1.

Step 3: Data format conversion. Assuming that after pre-
processing the log file, each inputting data contains n words, 
then two consecutive inputting data can be represented as 
shown in Eqs. (1) and (2):

(1)A1 = (a1, a2, a3, ..., an)

(2)Ai = (an, an+1, an+2, ..., aj)

Start Metro 
operation log

delete interfering data

Custom 
terminology 

lexicon
Data after 

preprocessing

Interfered 
data

word segmentation

End

Custom 
deactivation 

lexicon

Deactivate word 
processing

Fig. 1  Data preprocessing process

import pandas as pd
data = pd.read_excel(r'data.xlsx', 'r')
List = [ ] 
for i in sentence:

if a = (‘Normal scheduling’):
del a 

else
list.append(a) 

if b =(‘Routine maintenance’):
del b 

else
list.append(b) 

……
return list
# i is the iteration variable

Fig. 2  Pseudocode removal of jamming data
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in which Ai represents the ith data entry, i ∈ (1,m) , aj 
represents the embedding of the jth word, j ∈ (1, n) , for the 
same word, using the same aj to represent it. Similarly, all 
words can be represented in the form of aj.

The final storage format for the log data is shown in 
Table 2.

The serial number in Table 2 represents the independent 
code of each log data.

3.1.2  Algorithm for Identifying Key Hazards

The classic Apriori algorithm first generates candidate items 
and their corresponding support through connection, and then 
filters out frequent item sets based on a support threshold. 
This algorithm achieves feasible association rule extraction 
on large datasets, but it requires multiple repeated accesses to 
the transaction database during the calculation process. When 
analyzing large amounts of data, this can lead to excessive 
I/O load, and the calculation process can result in excessively 
large candidate sets, ultimately leading to insufficient com-
puter memory and greatly increased time costs. To overcome 

these shortcomings, Han [40] proposed the frequent pattern 
(FP)-growth algorithm, which integrates the scanning of ele-
ments in the database into an FP-tree and still retains the asso-
ciation information in the item set. This algorithm can com-
plete the analysis with only two passes of the database, but it 
still requires a long time to process large datasets and occupies 
a large amount of computer memory, resulting in poor compu-
tational efficiency. Drawing on the processing ideas of the FP-
growth algorithm, a more efficient association rule algorithm 
was designed by improving its analysis efficiency.

In the calculation process, the two indicators of support 
and confidence are used as the basis for judgment in the 
data processing process. The support is used to calculate 
the probability of the occurrence of data associations, 
while the confidence is used to mine strong association 
rules in the text. The formulas for calculating the two indi-
cators are shown in Eqs. (3) and (4).

(3)Support(X, Y) = P(XY) =
mXY

Mall

Table 1  Jieba word segmentation and removing stop words

Raw data Jieba word segmentation Stop words removed

At 14:33, the driver of train 914, car 0908 on 
the downbound JiaShan Road reported a 
train broadcasting malfunction. Maintenance 
was notified, but due to the driver handling 
an object caught in the door at YiShan Road 
station and an extended station stop, the train 
arrived at the terminal station 5 minutes 
late, causing the following 2 trains to also be 
delayed by 5 minutes.

14/:/33/Jiashan Road/down/914/time/0908/#/
train/driver/report/train/broadcast failure/,/
notice/maintenance/parking/,/due to/in/
Yishan Road/platform/door clamping/driver/
handling/and/stop extension/,/the train/final 
arrival/delay/5/minute/,/and/cause/follow-
up/2/train/delay/5/minute

Jiashan Road/down/driver/report/train/broad-
cast failure/notice/maintenance/attendance/
due to/Yishan Road/platform/door clamp-
ing/driver/handling/and/stop extension/this 
train/final arrival/delay/cause/follow-up/
train/delay/minute/

At 21:15, the driver of train 15096, car 0103 
on the downbound Lianhua Road reported a 
malfunction of the first door of the third car. 
After multiple attempts to open and close the 
door, it was ineffective. The train control dis-
patched the train to the site for door removal, 
and the train resumed normal operation after 
the door was removed. The malfunction-
ing train caused a delay of 2 minutes at the 
station, but arrived at the terminal station on 
time.

21/:/15/Lianhua Road/down/15096/
time/0103/#/car/driver/report/section 3/first/
door/fault/passing/multiple times/opening/
closing/door/operation/after/invalid/dispatch-
ing/order/its/arrival/site/door removal/after/
recovery/normal operation// Fault/train/cause/
this station/late departure/2/minute/,/final 
arrival/late arrival//

Lianhua Road/Down/Train/Driver/Report/
Section 3/First/Door/Fault/Pass/Multiple/
Switch/Door/Operation/After/Invalid/Traf-
fic Control/Order/Site/Door Removal/After/
Resume/Normal Operation/Fault/Train/
Cause/This Station/Late Departure/Minute/
Final Arrival/Not Late/

Table 2  Event description format after preprocessing of operation log

Serial number Operational event description Data storage format

01 Zhaojiabang/up/section 2/the third door/door/fault/cause/the train/final arrival/delay a
1
/a

2
/a

3
/a/a/a

6
/a

7
/a

8
/a

9
/a

10

02 Yishan Road/up/third car/carriage/whole car/door/fault/final arrival/delay/minute a
11

/a
2
/a

12
/a

13
/a

14
/a

5
/a

6
/a

9
/a

10
/a

15

03 Shanxi South Road/up/section 5/second door/door/unable/closed/notice/follow-up/sta-
tion/estimated/delayed/minute

a
16

/a
2
/a

17
/a

18
/a

5
/a

19
/a

20
/a

21
/a

22

/a
23

/a
24

/a
10

/a
25
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where X and Y respectively represent different data ele-
ments, P(XY) represents the probability of X and Y occur-
ring simultaneously, mXY indicates the frequency of X and 
Y occurring at the same time, and Mall represents the total 
amount of data.

P(X|Y) represents the probability of X occurring under 
the condition of Y occurrence, P(Y)  represents the prob-
ability of occurrence of element Y.

The first step of the algorithm is to build the FP-tree. 
First, the entire dataset is scanned to accumulate and count 
the frequency of all items. Then, the data that do not meet 
the support threshold according to the set support are filtered 
out, and the remaining are sorted data from high to low to 
generate a table of frequent item set events. In this study, 
the setting of the support threshold needs to be determined 
based on the actual data and research direction. The support 
count can be temporarily set to 2 for the purpose of illustra-
tion. Therefore, as shown in Table 3, the re-sorted data such 
as a16 , a17 , a18 can be removed.

After determining the frequent item set events, a header 
table must be built to store the occurrence frequency of all 
item sets. In this condition, the pointer points to the first 
node of the corresponding item in the tree. In Python pro-
grams, the "dictionary" is used to store the header table, and 
the final constructed result is shown in Fig. 3.

After constructing the FP-tree, frequent patterns need to 
be mined from the tree. However, when generating condi-
tional pattern bases in the FP-growth algorithm, multiple 
traversals of common paths are required. When constructing 
a large FP-tree, the algorithm will occupy a large amount 
of computer memory and significantly prolong computa-
tion time [39, 40]. To improve algorithm efficiency and 
reduce situations where the algorithm complexity is too high 
when computing large amounts of data, the ascending FP 
(AFP)-tree algorithm was proposed as an improvement to 
the FP-growth algorithm. The AFP-tree algorithm utilizes 
the preorder traversal concept to read the FP-tree, such that 
obtaining all conditional pattern bases for frequent one-item 
sets only requires scanning the FP-tree once. The basic steps 
for generating conditional pattern bases using the AFP-tree 
algorithm are as follows:

(4)Confidence(X ⇐ Y) = P(X|Y ) =
P(XY)

P(Y)

(1) Build a common path (CP) with the initial value set to 
null. Scan node a5 , and the CP stores the prefix path of 
a5 . Since CP is currently empty, the conditional pattern 
base of a5 is also empty.

(2) Add a5 to CP, then scan node a10 . At this point, SP 
stores the prefix path of a10 . Therefore, a5 is a condi-
tional pattern base of a10 , with a support count of 4, 
denoted as a5:4.

(3) After storing a10 in CP, update the content of CP as 
a5a10 . Then, scan a2 . At this time, CP stores the prefix 
path of a2 , so a5 and a10 are the conditional pattern 
bases of a2 with a support count of 3, denoted as a5,a10
:3.

(4) Store a2 in CP and update CP to a5a10a2 . Then scan a6 , 
and following the same process as in steps (2) and (3), 
we can obtain the prefix path for a6 . Continuing the 
scan, we obtain the prefix path for a8 as a5,a10,a2,a6,a9
,a4,a7:1. At this point, we realize that a8 is a terminal 
node, so return to the most recent branching node and 
traverse the unexplored branch node a9 . At the same 
time, update CP to a5a10a2a6.

Table 3  Frequent item set 
event element table

Number Elements of the initial event description Elements after filter-
ing and reordering

01 a
1
/a

2
/a

3
/a

4
/a

5
/a

6
/a

7
/a

8
/a

9
/a

10
a
5
a
10
a
2
a
6
a
9
a
4
a
7
a
8

02 a
11

/a
2
/a

12
/a

13
/a

14
/a

5
/a

6
/a

9
/a

10
/a

15
a
5
a
10
a
2
a
6
a
9
a
12
a
15

03 a
16

/a
2
/a

17
/a

18
/a

5
/a

19
/a

20
/a

21
/a

22
/a

23
/a

24
/a

10
/a

25
a
5
a
10
a
2

04 a
26

/a
27

/a
12

/a
4
/a

5
/a

6
/a

7
/a

8
/a

9
/a

10
/a

15
a
5
a
10
a
6
a
9
a
4
a
7
a
8
a
12
a
15

NULL

item

a5

a10

a2

a6

a9

a4

a7

a8

a12

a15

4

4

3

3

3

2

2

2

2

2

a5:4

a10:4

a2:3

a7:1

a6:1

a15:1

a12:1

a8:1

a4:1

a9:2 a4:1

a9:1a6:2

a7:1

a8:1

a15:1

a12:1

Support

Fig. 3  Construction of FP-tree
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(5) Continue scanning the other child node a12 of x9 , 
obtaining a conditional pattern base of a5,a10,a2,a6,a9 :1 
for a12 , and updating CP content to a5a10a2a6a9a12 . 
Then scan a15 , obtaining a conditional pattern base of 
a5,a10,a2,a6,a9,a12 :1 for a15.

(6) Continuing the scan, it is found that a15 is a leaf node, 
and then returns to the unscanned branch node a10 . By 
repeating this process, all remaining subnodes in the 
tree are scanned and all conditional pattern bases are 
obtained, as shown in Table 4.

The AFP-tree algorithm scans the tree using the idea 
of preorder traversal; only one scan of all nodes in the 
FP-tree is needed to obtain the conditional pattern bases 
of all frequent one-item sets in the data. The complexity 
of the algorithm, including time and space complexity, is 
the same as the number of nodes in the tree, which is O(n), 
where n is the total number of nodes in the FP-tree.

Furthermore, real-time pruning is used to sort the fre-
quent item sets in descending order of their support and 
only keep those that meet the support threshold, deleting 
the items that do not meet the threshold. This results in 
a non-redundant conditional FP-tree as shown in Fig. 4.

From the mining result in Fig. 4, we can obtain a fre-
quent pattern: (a5, a10, a2, a6, a9, ∶ 2) , which indicates a 
strong association between "door", "delay", "up", "fault", 
and "terminal". Furthermore, we can derive ( a5,a10 :4), 
indicating an even stronger association between "door" 

and "delay". Because of the limited sample size in this 
example, it is not possible to fully describe all the asso-
ciation rules that may exist in the log data. However, with 
a sufficiently large sample size, more frequent item sets 
can be discovered, and the complete rules can be derived 
through text mining, allowing us to identify the key risk 
factors that cause operation risks in the subway system.

3.2  Weighted Identification of Key Risk Sources

3.2.1  Sequential Relationship Weighting Analysis

The subjective weighting method is commonly used in 
sequence relationship weighting analysis, which includes 
the analytic hierarchy process (AHP) and sequence rela-
tionship analysis. AHP, as the most widely used subjective 
weighting method for considering weight issues, increases 
the complexity of expert judgment on pairwise factors when 
judging multiple-factor indicators, which can easily cause 
logical confusion and increase the difficulty of consistency 
judgment and accuracy. Therefore, AHP is not suitable for 
the research content of this problem. Sequence relationship 
analysis effectively avoids the logical problems and huge 
workload caused by the large number of factors, mainly by 
comparing each key hazard source with the others through 
the experience and cognition of relevant domain experts, 
ranking the relative importance of each key hazard source, 
and determining their subjective weight. The idea of using 
expert experience to rank relative importance is consistent 
with the idea of identifying key hazard sources by mining 
and determining them, and the data from the previous analy-
sis can be used to fill in the part that requires expert judg-
ment, further reducing the impact of subjective factors on 
the weighting analysis results. Therefore, the sequence rela-
tionship analysis method is adopted for subjective weighting 
of key hazard sources.

The main steps of the sequence relationship analysis 
method are as follows:

(1) Determining the importance of indicators and establish 
their sequence relationships.

Invite relevant experts to rank the relative importance 
of key hazard sources, if the relative importance of haz-
ard source Hi is higher than that of hazard source Hj , it is 
denoted as Hi > Hj.

Sort each hazard source in order of relative importance as 
Ha > Hb > ... > Hm > Hn(a, b,m = 1, 2, ..., n)(2) C a l -
culating the relative importance of adjacent hazardous 
sources.

Table 4  Finding frequent patterns through conditional pattern bases
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Fig. 4  Conditional FP-tree
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Once the relative importance of each key hazard source 
is determined through expert judgement, the relative impor-
tance of each adjacent hazard source needs to be determined. 
The relative importance Rk between hazard source Hk and 
its adjacent source Hk−1 can be expressed as Eq. (5), and the 
values for relative importance Rk are given in Table 5 [43].

If the product of the relative importance values Πn
k=1

Rk > 
1.8, the cumulative importance degree judged is greater than 
the extreme importance degree, indicating an abnormality 
in the subjective judgment. It is necessary to correct Rk by 
the correction coefficient μ according to Eqs. (6) and (7), 
and the values for relative importance of hazard sources are 
shown in Table 5.

(3) Calculating subjective weight values

According to the relative importance degree of risk fac-
tors, the weight of key hazard sources is calculated as Eqs. 
(8) and (9).

(5)Rk =
Hk

Hk−1

, k = n, n − 1, ..., 3, 2

(6)� =

(
1.8

Πn
k=1

Rk

) 1

n−1

(7)R�
k
= � ⋅ Rk

(8)𝜔�
n
=

⎧⎪⎨⎪⎩

(1 +
n∑
i=1

n∏
k=i

Rk)
−1,

n∏
k=i

Rk ≤ 1.8

(1 +
n∑
i=1

n∏
k=i

R�
k
)−1,

n∏
k=i

Rk > 1.8

⎫⎪⎬⎪⎭

(9)��
k−1

= Rk�
�
k

(k = n, n − 1,… , 2)

Calculate the weight of �′
k
 , and obtain the weight set as 

��
k
= (��

1
,��

2
, ...,��

n
) in the end.

3.2.2  Objective Weighting Analysis

Currently, the mainstream objective weighting methods 
in academic research include the entropy method, critic 
method, and principal component analysis [44]. These 
methods are based on the characteristics of the indicator 
values themselves to weight them, and have demonstrated 
good normative properties but still require experts for 
evaluation and scoring before weighting.

Therefore, combined with the characteristics of key 
hazard sources, the entropy method was selected for 
objective weighting. Since the confidence value is calcu-
lated based on the association rules in the data, its idea 
is consistent with the judgment of key hazard sources by 
experts when scoring. The difference is that the confidence 
value is calculated objectively through data analysis, while 
expert scoring is obtained based on the expert’s subjective 
wishes. Therefore, replacing the original expert scoring 
values with confidence values can make the weighting 
results more objective. Since subway transportation pas-
senger flow is affected to a certain extent by seasons, the 
original data are divided into four categories according 
to seasons. The entropy method is used to determine the 
objective weighting values, and the specific calculation 
steps are as follows:

Step1: Determine the initial values of each hazard 
source indicator and construct the initial data matrix.
Step2: Standardize the initial data; suppose there are 
k key risk sources given as A1,A2,A3, ...,Ak , and Ak is 
calculated as Eq. (10):

Standardize the data of each key hazard source, and the 
standardization process Ykl is shown in Eq. (11):

Step3: Calculate the information entropy of each key 
hazard source. According to the definition of informa-
tion entropy in information theory, the information 
entropy El of a set of data can be determined by Eq. 
(12).

where the calculation of pkl is as shown in Eq. (13):

(10)Ak =
{
ak1, ak2, ak3, ak4

}

(11)Ykl =
akl −min(ak)

max(ak) −min(ak)

(12)El = −
1

ln k

n∑
k=1

pkl ln pkl

Table 5  Values for relative importance of hazard sources

Order 
number

Importance Explanation of Hi compares with Hj

a 1.0 Equally important
b 1.1 Slightly more important
c 1.2 More important
d 1.3 Between important and significantly important
e 1.4 Significantly more important
f 1.5 Moderately more important
g 1.6 Strongly more important
h 1.7 Between strongly important and extremely 

important
i 1.8 Extremely important
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if pkl = 0 , then lim
pkl→0

pkl ln pkl = 0

Step 4: Determine the weights of each hazard source. 
According to the formula for calculating information 
entropy, the information entropy of each hazard source 
can be calculated as E1,E2,E3, ...,EK . The weights of 
each key hazard source are calculated through the infor-
mation entropy as shown in Eq. (14):

3.2.3  Composite Weighting Method

In the process of weighting the key hazards, since the posi-
tion and role of each hazard in causing the hazardous event 
are different, the accuracy of the calculation results of the 
constructed model is determined by the weights of different 
hazards. In order to better reflect the impact of key hazards 
on the operation of the subway network and to avoid subjec-
tive arbitrariness of the results to the maximum extent, the 
subjective weights and objective weights calculated above 
are combined using the multiplication and addition method 
to calculate the comprehensive weight, as shown in Eq. (15):

4  Construction of a Network Failure Propagation 
Model Based on Key Hazard Sources

Complex networks can effectively analyze the propagation 
mechanism and process of hazard sources in networks, and 
are currently widely used for analysis and traffic flow alloca-
tion in metro networks.

4.1  Construction of a Complex Network Based 
on Subway Network Topology Structure

The subway undertakes a large number of urban passenger 
transport tasks. Similar to urban road traffic networks and rail-
way networks, the subway network also has some common 
characteristics, including (1) a large number of nodes with 
close connections between nodes, (2) the connection struc-
ture in the network reflecting obvious self-organizing rules, 
and (3) various forms of local area networks, such as radial 
and grid-shaped. At the same time, the subway network has 

(13)pkl = Ykl∕

n∑
k=1

Ykl

(14)w
��

l
=

1 − Ek

k −
∑

Ek

(k = 1, 2, ..., n)

(15)wl =
w�
l
× w

��

l∑n

l=1
w�
l
× w

��

l

its own characteristics, which significantly affect the failure 
chain in the network: (1) The hierarchical structure—the sub-
way transportation network generally includes three hierarchi-
cal structures: infrastructure, trains, and passenger flow. (2) 
Dynamic imbalance of passenger flow—the dynamic imbal-
ance of passenger flow in the subway transportation network 
is mainly reflected in the obvious time and spatial imbalances 
of traffic demand, such as suburban and bustling commercial 
areas, and peak and off-peak periods. (3) Nonlinear correla-
tion—there is a nonlinear correlation and influence between 
infrastructure, trains, and passenger flow in metro operation 
network. Combined with the theory of disaster propagation, 
the occurrence and development of risk events in a complex 
network will be transmitted and amplified by the mutual cou-
pling existing in the network topology structure, which leads 
to periodic fluctuations in the stability of the entire network.

The subway topology network consists of stations and 
connecting lines. The Space-L and Space-P methods are the 
two most commonly used methods for constructing com-
plex networks. After a comprehensive comparison of the 
two methods, the Space-L method is better able to express 
the actual topological structure of the subway network in 
geographical space. Therefore, the Space-L method is 
adopted to construct the metro topological structure. Due to 
the significant impact of passenger transfers and train rever-
sals on the topology network, these nodes must be handled 
separately. The number of transfers and transfer time have a 
significant impact on the selection of passenger travel paths. 
Therefore, transfer stations are converted into two nodes of 
different lines and connected, and the passenger transfer time 
is used as the weight to assign the connection edge. At this 
time, the transfer station has the same name but a different 
number in the network, as shown in S1 and S2 in Fig. 5. 
When a station has a serious failure that causes the train 
to be unable to stop or operate at that station, a turnaround 
station can be set up to reduce the impact of a station fail-
ure on the entire network. At the same time, the topological 
structure of the subway network needs to be updated when 
a station failure occurs, as shown in Fig. 6.

In Fig.  6, when the normal station S4 malfunctions, 
normal station S5 cannot operate normally due to the lack 
of a turning point, while other stations on the line can 
still operate normally. When the turning point station S3 

Transfer sections

Fig. 5  Handling of transfer stations in topological network
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malfunctions, normal stations S2, S4, and S5 also cannot 
operate normally. In the operation of the subway system, 
the actual conditions of different stations and line sections 
are different, and it is necessary to weight each part of the 
subway network to construct a weighted network as shown 
in Eq. (16).

 where Si is a set of nodes,Eij represents the edge that con-
nects node si and node sj . W is the set of weights of the nodes 
and edges, Wsi

(t) is the weights of nodes, Wsi
(t) is the trans-

ferring weight of exchange station 
−
si,Weij

(t) is the weight of 
each node, and t is time. The degree of node si can be 
expressed as Di =

∑
xi_j,xi_j is the connection between node 

si and node sj . If node si can be connected with sj,xi_j = 1 ; or 
xi_j = 0.

The weight W  needs to be determined based on the char-
acteristics of different parts within the subway network, 
Weij

(t) is determined by the train running time on the line 
between corresponding stations i and j , including the run-
ning time and stopping time of the train, which are fixed 
times that can be determined by the train timetable. Wsi

(t) is 
determined by the time it takes for passengers to enter and 
exit station si.Wsi

(t) is mainly determined by the passenger 
transfer time at the transfer station si . In the event of station 
failures, there may be a large number of stranded passengers. 
Therefore, the passenger transfer time can be calculated tak-
ing into account the efficiency of escalators inside the sta-
tion, as shown in Eq. (17).

(16)

Nw = {Si,Eij,W}

⎧⎪⎨⎪⎩

Si i ∈ [1, n]

Eij i, j ∈ [1, n] i ≠ j

W = {Wsi
(t),Wsi

(t),Weij
(t)}

T ′
i
 represents the time that passengers spend entering the 

station, and T ′′

i
 represents the time that passengers spend 

exiting the station. �i[Ki(t)∕Ot]
�i represents the travel delay 

time caused by station malfunctions for passengers.
Ki(t) represents the passenger flow at station si at time 

t, and Ot represents the maximum capacity of the train. �i 
and �i are two congestion delay parameters, Si∕Vi is the 
transfer time, Si is the transferring distance, Vi represents 
the average speed of passengers transferring. Fa represents 
the departure interval of the trains. 1

2
Fa represents the aver-

age waiting time of passengers.[Ei(t)∕2ni�i − Si∕4niVi] 
represents the transfer congestion delay time, Ei(t) is the 
maximum queuing capacity, ni represents the number of 
various escalators in the station, �i is the output rate of 
automatic and pedestrian escalators, and Teij represents the 
train’s running time on a certain section of the line.

Overall, when calculating the weight of passenger travel 
paths, the time cost of each effective path is used as the 
weight to construct the calculation model, as shown in 
Eq. (18):

To calculate the shortest travel path, the occurrence 
of faults can cause the failure of certain stations and the 
spread of faults in the network can change the topology 
of the entire subway network. Therefore, the travel cost 
of a certain route may also change over time. In addition, 
the failure of a node does not mean that every affected 
node cannot operate normally, so the calculation of the 
shortest path should consider the influence of passenger 
flow changes on weight calculation. By calculating the 
cost of the shortest travel time, the shortest path for an 
OD can be obtained. After determining the faulty station 
and the type of fault, each cycle of the cascading fault 
calculation involves updating the network topology, calcu-
lating the shortest path, changing passenger flow, chang-
ing weights, and changing node status. The flow chart is 
shown in Fig. 7.

The Dijkstra algorithm is chosen to determine and pro-
cess the OD considering congestion changes and cascad-
ing failures. This algorithm starts from the origin node 
and gradually expands outward to find the shortest path, 
with the destination node as the expansion endpoint. The 
network’s node set is divided into two parts: S is the set 
of nodes where the shortest path has been found, and U 

(17)
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(t),Wsi

(t),Weij
(t)}

⎧
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Wsi
(t) = T �

i
+ T

��

i
+ �i[Ki(t)∕Ot]

�i ,∀i

W−
s
i

(t) = Si∕Vi + 1∕2Fa + [Ei(t)∕2ni�i − Si∕4nivi]

Weij
(t) = Teij

(18)Wod =

n∑
i=1

weij
(t) + wsi

(t) + wsi
(t)
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Fig. 6  Common station and turn-back station processing under fault 
condition
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is the set of remaining nodes where the shortest path has 
not yet been found. When a new shortest path is found, 
the nodes on the path should be added to the set S until 
all nodes in U are added to S. The calculation process is 
shown in Fig. 8.

4.2  Construction of a Network Chain Fault 
Propagation Model

The network fault chain propagation model for a metro sys-
tem is established based on the theory of disaster propaga-
tion. The following three assumptions are made when apply-
ing this theory:

(1) Two node states exist in the subway network: a normal 
state and a fault state caused by internal events. The nor-

Fig. 7  Flowchart of shortest 
path calculation. Determine the 

faulty station and 
the type of fault

Update network 
topology structure

Determining the 
travel cost of nodes 

and edges

Calculate the 
shortest path for 

each OD

Passenger flow 
changes

Checking for new 
faulty nodes no

yes

Start

End

Fig. 8  Schematic diagram of 
the Dijkstra algorithm for calcu-
lating the shortest path
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mal state refers to the normal operation of a node, and the 
fault state refers to the state when a normal node becomes 
a faulty node due to an internal risk event, or when the 
state of a nearby node changes due to the propagation of 
faults in other stations. When a fault node appears, the 
carrying capacity of that node may be reduced or even 
lost completely.
(2) The occurrence of chain faults is not only affected by 
internal factors of the nodes, but also by random external 
environmental interference.
(3) The station states will discretely change over time and 
have a certain self-recovery capability, that is, the stations 
themselves have a certain robustness.

According to the theory of disaster propagation [32], the 
attribute value of node Si is defined as xi(t), i ∈ {1, 2, 3, ..., n} . 
The time evolution dynamics of attribute value xi(t) under 
the combined effects of the self-recovery mechanism, disas-
ter propagation mechanism, and other factors should satisfy 
Eq. (19):

The left-hand side of the equation represents the trend 
of the node attribute value under the combined effects of 
the three mechanisms. The right-hand side of the equation 
represents the sum of the three mechanisms, the detailed 
explanation is provided below:

(1) Node attribute value.

The attribute value xi(t) qualitatively describes the state 
of node Si in the network,xi(t) ∈ [0, 1],∀i[0, 1],∀i . When 
xi(t) = 0 , the node is in a normal and stable state, when 
0 < xi(t) < 1 , the node is in an unstable and volatile state. 
The larger the value of xi(t) , the more unstable the node 
is. When xi(t) = 1 , the node experiences a fault. Therefore, 
when studying network chain faults, the weighted key hazard 
source attribute value in Eq. (15) is used to represent the 
initial attribute value of the node. �i(t) is used to describe 
the initial attribute value of the node, as shown in Eq. (20):

The sigmoid function [32] is used to define xi(t) in equa-
tion, as shown in Eq. (21):

(19)dxi(t)

dt
= −

xi(t)

�i(t)
+ Θi[xi(t)]

{∑
i≠j

Mij(t)xj[t − Tij(t)]

f [Oi(t)]

}
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�i(t)
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(21)xi(t) =
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0,�i(t) ≤ �i

1

1 + � exp
�
−
[�i(t)−�i]�

1−�i

� , otherwise

in which� = 15,� = 5 [43], �i is the threshold value for a 
station to withstand the fault state.

(2) The self-recovery mechanism of nodes

−xi(t)∕�i(t) represents the self-recovery mechanism of 
node Si , which shows the self-recovery mechanism of the 
nodes. The self-recovery factor �i(t) describes the node’s 
ability to resist disasters and maintain stability, while 1∕�i(t) 
can be viewed as the node’s self-recovery capacity and 
speed. As �i(t) increases, −xi(t)∕�i(t) increases, −�Tij(t)∕�i(t) 
increases, and dxi(t)∕dt increases. This indicates a positive 
correlation between �i(t) and node failures, that is, the larger 
the self-recovery factor �i(t) , the less likely the node is to 
fail. When the node is unstable, it can gradually recover 
to a stable state through the self-recovery mechanism. The 
self-recovery capability is related to the stability of station 
facilities and equipment, optimization of passenger flow 
organization mode, and reasonable allocation of emergency 
rescue resources.

(3) Mechanism of fault propagation between nodes.

Equation (19) shows the fault propagation mechanism, 
representing the trend and capability of the fault spreading 
from one node to other nodes.

Buzna [43] pointed out that Θi[xi(t)] is nonlinear and is a 
smooth monotonic increasing function that is very similar 
to the sigmoid function commonly used in neural networks. 
Therefore, a sigmoid function is used to represent Θi[xi(t)] , 
as shown in Eq. (22):

Here, � is the gain parameter, and �i is the threshold value 
for the tolerable fault state of the station. When xi(t) = 0 , 
then Θi[xi(t)] = 0 , and when xi(t) > 0 , the node’s fault state 
value exceeds the station’s tolerable fault state threshold, 
and the unstable effect of the node is transmitted to adjacent 
stations through trains and lines. The relationship between 
xi(t),Θi[xi(t)] and � is usually that the larger � is, the faster 
the curve of Θi[xi(t)] changes, and the greater the sensitiv-
ity to the changes;� is the gain parameter.Mij(t) represents 
the degree of influence and connectivity strength between 
node Si and node Sj at time t, determined by the coupling 
relationship between nodes. This includes factors such 
as train departure intervals, topological characteristics 

(22)Θi

[
xi(t)

]
=

1 − exp
[
−�xi(t)

]

1 + exp
{
−�

[
xi(t) − �i

]}



77Urban Rail Transit (2024) 10:65–88 

1 3

of inter-station lines, intensity of information exchange 
between stations, and so on.

We usually assume that Mij(t) = 1 [43]; when Mij(t) 
increases, dxi(t)∕dt increases, which indicates the positive 
correlation between Mij(t) and node failures.

Tij(t) is the time delay factor between node Si and node Sj 
at time t, which can be considered the transmission time 
between station Si and station Sj , and weij

(t) is measured by 
the time-weight value of the shortest path on edge eij. f [Oi(t)] 
is the degree function of station Si , and the outdegree value 
Oi(t) represents the direct impact of station Si on other adja-
cent stations at time t. When Oi(t) increases, then f [Oi(t)] 
increases, dxi(t)∕dt reduces, which indicates a negative cor-
relation Oi(t) between and node failures. f [Oi(t)] can be 
expressed as Eq. (23), where a = 1, b = 10 [43]:

(4) Other parameters

�i(t) represents random noise disturbance within the sta-
tion, typically following a uniform or normal distribution. 
This assumes that it follows a uniform distribution, that is 
�i(t) ∼ U(0,Δu),Δu = 0.001.

5  Case Study

5.1  Identification and Weighting of Key Hazards

5.1.1  Identification of Key Hazards

The metro operation dispatch log is a text description of the 
actions, movements, and event status of station personnel 
when certain situations occur during the subway operation 
process, which is recorded in real-time by station dispatch 
personnel. It includes descriptions related to both normal 
and hazardous events. The log does not require a unified 
format and covers various aspects of operation data, includ-
ing power supply, signal, vehicle, passenger transportation, 
dispatch, and objective environment under various operating 

(23)f
[
Oi(t)

]
=

aOi(t)

1 + bOi(t)

conditions. The original data used for text mining is the sub-
way operation dispatch log of a certain subway company’s 
operating line from 2018 to 2020. The control center of the 
line records the operation log, which includes the station 
name, date of occurrence, detailed time, event description, 
vehicle number, vehicle type, reporting time, reporting per-
sonnel, detailed repair time, event cause, cause subdivision, 
vehicle delay time, number of late departures, number of late 
arrivals, and vehicle operation adjustments. The "content" 
field, which is a core field for objectively recording event 
content is included. Due to the limited length of the article 
and the confidentiality of the data, only selected contents 
from the original data are included.

The experimental platform is an Intel® Core™ 
i5-10210U CPU, 2.11 GHz, with 16 GB of RAM, running 
on a 64-bit Windows 10 operating system. Data process-
ing was carried out in Pycharm software using Python 
statements.

Mining of hazards based on the improved Apriori 
algorithm

(1) Data preprocessing

Firstly, the interference data in the original data of the 
subway operation log were cleaned up, and 38,465 pieces 
of data related to operational risk events were obtained from 
102,834 pieces of original data. The results of removing 
interference data are shown in Table 6.

The Jieba library is used to segment and deactivate the 
data after de-interference, and word vector embedding is 
performed on the obtained data to obtain the preprocessed 
data as shown in Table 7.

(2) Data analysis

The preprocessed operation log data are input into the 
AFP-tree algorithm, and the Pycharm operation tool is used 
for data analysis. The final transaction frequency pattern is 
obtained. Because the final transaction frequency pattern is 
large, only some patterns are selected for display, as shown 
in Table 8.

The confidence of each association rule was calculated by 
the AFP-tree algorithm. To address this deficiency, a visualiza-
tion method was introduced using R language and the RStudio 

Table 6  Results after data 
cleaning

Original data Data frequency Proportion (%)

Normal scheduling records 33,784 32.85
Routine inspection and maintenance 24,032 23.37
Data related to operational risk events caused 38,465 37.41
Other interfering data 6553 6.37
Total 102,834 100.00
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platform for data analysis. Initially, a low support of 0.02 and a 
confidence of 0.1 were set, resulting in 12,257 association rules 
as shown in Fig. 9a. Most of the association rules had rela-
tive support ranging from 0.02 to 0.15 and confidence ranging 
from 0.6 to 0.1. Some association rules were outside this range 
and were indicated by lighter colors, suggesting that they had 
insufficient lift and may be ineffective rules or have insuffi-
cient association. Based on this analysis, the parameters were 
readjusted to further filter effective association rules, resulting 
in 216 association rules as shown in Fig. 9b, with a minimum 

support of 0.1 and a confidence threshold of 0.8. These 216 
association rules were then screened to remove invalid rules 
with lift less than 1 and rules that did not contain hazardous 
sources, resulting in 79 valid association rules and 27 key haz-
ardous sources extracted from them.

Filtering the 216 association rules by removing ineffec-
tive rules with a lift less than 1 and those that do not con-
tain hazardous sources resulted in 79 effective association 
rules, from which 27 key hazard sources were identified. The 
higher the confidence level, the greater the probability that 

Table 7  Data description after pretreatment

ID Description of operational events

00001 Century Avenue a1/up a2/driver report a3/down a4/emergency handle a5/pulled down a7/driver a8/cut off a9/after a10/bullet train a11/
station a12/late departure a13/4 minutes a14/traffic control command a15/its a16/Tangqiao a17/and a18/Nanpu Bridge a19/up a20/
passenger a21/through a22

00002 Yanggao Road a23/turn-back line a24/driver report a3/train a25/master controller key a26/unable to open a27/dispatching order a15/its 
a16/original a28/exit a29/operation a30/arrangement a31/Yanggao Road a23/standby a32/alternative a33/

00003 Yanggao Road a23/car storage line a34/car a35/TCMS fault a36/requirement a37/car a38/stop a39/handle a40/train dispatching a41/
arrange a31/car a35/car storage line a34/standby a42/Yanggao Road a23/standby a32/alternate a33/notify a43/driver a8/station a44

……. ……
38464 Guilin Road a98/downlink a4/train a35/driver report a3/train a25/HMI screen a301/display a79/TCMS invalid a260/broadcast a107/use 

a99/manual broadcast a108/notice a43/maintenance a50/parking a51
38465 Small South Gate a55/Down a4/Train a35/Driver report a3/Train a25/Automatic a125/Manual broadcast a108/Occurrence of a81/Fault 

a36/Dispatching order a15/Its a16/Operation a30/Notification a43/Station a44/Broadcast a107/Notification a43/Maintenance a50/
Attendance a51

Table 8  Final transaction frequency pattern

Item Frequent mode

Driver ……
Downstream (Driver, Downbound: 25014)
Trains (Driver, Downbound, trains: 21618)
Upstream (Driver, Upbound: 160458)
Delay (Driver, Downbound, trains, adjustment, delay: 2391) (Driver, downstream, dispatching, adjust-

ment, delay: 1587)
…… ……
ATC fault (Driver, Upbound, dispatching command, display, train, depot return, ATC fault: 3458)
Door fault (Driver, Upbound, Trains, Passengers, Re-started, Carriage, Delayed departure, Faulty door: 

3762)
(Driver, Downbound, Trains, Carriage, 

Delayed departure, Passengers, Faulty 
door: 2973)

Departure lately (Driver, Downbound, Trains, adjustment, operation, train dispatching, fault, late departure of 
train: 2653) (peak, cause, large number of people, late departure of train: 1347)

Clip (Attendant, platform screen doors, display, stop, check, clip: 2482) (driver, infrared alarm, switch, 
notice, bullet train, clip: 1961)

Catenary (Driver, confirmed, impact, high-speed switch, operation, foreign object, overhead contact wire: 
1265)

Platform screen doors (Duty Officer, Unable to Open, Malfunction, Passenger, Train, Handling, Notification, Carriage, 
Screen Door Shielding: 4673)

False alarm of fire (Driver, display, three poles, passengers, gate, fall down, enter the station, cause, reset, false alarm 
of fire alarm: 968)
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the hazardous source will lead to a risk event, which requires 
focused prevention and control. The confidence levels of 
each hazardous source are shown in Table 9.

The 27 identified hazardous sources are mainly concen-
trated in the areas of rolling stock, signaling, and external 
factors, and should be subjected to focused control measures. 
Specifically, high-confidence and high-risk facilities and com-
ponents should be controlled. Meanwhile, attention should be 
paid to the existence of objective hazards and the dynamics of 
trains and passengers at stations during operation.

5.1.2  Weighting of Key Hazard Sources

To ensure readability and due to space limitations, this sec-
tion focuses on the eight key risk sources with the high-
est confidence levels identified in Sect. 5.1.1 and conducts 
a weight analysis for these sources as well as subsequent 
analysis on the propagation of chain failures in later sec-
tions. The specific process for assigning weights to key risk 
sources is described below.

a) b)
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Fig. 9  Comparison of association rules before and after adding sequential constraints

Table 9  Confidence value of key hazard sources

Hazard Mass passenger flow Door fault Screen door clamp Broadcast failure VOBC (vehi-
cle on-board 
computer) 
crashes

EB (emergency 
braking)

Confidence value 0.9535 0.9365 0.9322 0.9300 0.9288 0.9274
Hazard Air- conditioner 

failure
Wireless communi-

cation failure
Communication 

failure
Screen failure Mode loss Wheel diameter loss

Confidence value 0.9207 0.9199 0.9031 0.9003 0.8989 0.8944
Hazard Location loss WSP (wheel speed 

sensor)
Brake failure Auxiliary inverter ATS (auto-

matic train 
supervision) 
failure

Display

Confidence value 0.8944 0.8932 0.8876 0.8622 0.8599 0.8597
Hazard TOD (transit-

oriented develop-
ment) failure

Red band MAU (movement 
authority unit) lost

Signal failure Catenary fault Passengers

Confidence value 0.8501 0.8356 0.8233 0.8233 0.8196 0.8166
Hazard ATP (automatic 

train protection) 
failure

Braking (others) DT (data transmis-
sion) failure

Confidence value 0.8103 0.8076 0.8041
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(1) Subjective weighting

The subjective weighting section adopts the previously 
mentioned ordinal relationship method. The first step of 
the ordinal relationship method generally involves expert 
ranking of multiple factors’ relative importance, followed 
by assigning relative importance values to adjacent factors. 
The confidence values of each hazard source can be obtained 
in the data mining process. Therefore, in the expert scor-
ing process, the confidence values were combined with the 
estimated cost losses when each hazard source occurred, and 
the relative importance ranking of each hazard source was 
ultimately determined and weighted.

The estimated relative cost losses (C) when each hazard 
source occurs are determined by experts and are set between 
0 and 1. C is multiplied by the confidence value to obtain the 
relative importance value of each hazard source, as shown 
in Table 10.

The relative importance ranking of the eight key hazards 
can be determined from Table 10 as follows:

Crowding > ATP failure > Door malfunction > Brake 
malfunction > Display malfunction > Passenger > ATS fail-
ure > Shield door clamp/person

The data from Table 10 are used in Eqs. (5)–(9) and nor-
malized to obtain the results of subjective weighting for the 
key hazards, as shown in Table 11.

That is, the subjective weight Wl is:

Wl = (0.2018, 0.1670, 0.1541, 0.1270, 0.1143, 0.0960, 0.0809, 0.0589)

Table 10  Relative importance value of hazard sources

Mass passenger Door fault Brake failure Abnormal passen-
ger behavior

Display failure Automatic train 
protection (ATP) 
failure

Automatic train 
supervision (ATS) 
failure

Screen door clamp

0.8582 0.6556 0.5402 0.4083 0.4862 0.7101 0.3440 0.2507

Table 11  Weighting results of key hazard sources

Mass passenger flow Automatic train protec-
tion (ATP) fault

Door fault Brake fault Display fault Passengers Automatic train super-
vision (ATS) fault

Screen door clamp

0.2018 0.1670 0.1541 0.1270 0.1143 0.0960 0.0809 0.0589

Table 12  The original matrix Hazard source First quarter Second quarter Third quarter Fourth quarter

Mass passenger flow 0.9226 0.9647 0.9588 0.9356
Automatic train protection (ATP) fault 0.9466 0.9341 0.9301 0.9213
Door fault 0.8576 0.9013 0.8822 0.8757
Brake fault 0.8136 0.8272 0.8167 0.8097
Display fault 0.9035 0.87335 0.9206 0.9100
Passengers 0.8193 0.8003 0.8265 0.8113
Automatic train supervision (ATS) fault 0.8509 0.8499 0.8521 0.8323
Screen door clamp 0.9301 0.9045 0.9521 0.9377

Table 13  Standardization of 
key hazard source scores

Season x1 x2 x3 x4 x5 x6 x7 x8

1 0.0000 1.0000 0.0000 0.2229 0.6381 0.7252 0.9394 0.5378
2 1.0000 0.5059 1.0000 1.0000 0.0000 0.0000 0.8889 0.0000
3 0.8599 0.3478 0.5629 0.4000 1.0000 1.0000 1.0000 1.0000
4 0.3088 0.0000 0.4142 0.0000 0.7757 0.4198 0.0000 0.6975
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(2) Objective weighting

(1) Build the original matrix

The quarterly original matrix for each hazard source is 
constructed in Table 12:

(2) Calculate the standardized score table for eight key 
hazard sources in four quarters, as shown in Table 13

(3) Calculate the individual P value of each hazard source 
from Eq. (13), as shown in Table 14. Further, obtain the 
information entropy of each key hazard source from Eq. 
(12), as shown in Table 15:

(4) Finally, calculate the objective weight of the required 
key hazard sources according to Eq. (14), as shown in 
Table 16:

The objective weight Wl:

(3) Combinatorial weighting

Combining subjective and objective weighting methods 
and substituting them into Eq. (15), the combined weight is 
obtained as follows:

w
��

l
= (0.1349, 0.1348, 0.1248, 0.1647, 0.1067, 0.1207, 0.1012, 0.1122)

wl =
W

�

l
×W

��

l

n∑
l=1

W
�

l
×W

��

l

= (0.21, 0.18, 0.15, 0.16, 0.09, 0.09, 0.06, 0.05)

5.2  Transmission of Subway Network Cascading 
Failures

5.2.1  Analysis of Complex Topological Network 
Characteristics of the Shanghai Metro

The network propagation model of key hazard sources con-
structed in Sect. 4 was applied to analyze the complex net-
work characteristics of the Shanghai subway and to build a 
complex network model of the subway. A network crawler 
was used to extract the line and station coordinate data of the 
Shanghai subway network from Baidu Maps, and the results 
were saved as .shp files. ArcMap software in ArcGIS was 
used to visualize and display the data, as shown in Fig. 10.

Based on the key hazard identification method in Sec. 
4, a network fault propagation model was constructed, and 
the complex network characteristics of the Shanghai Metro 
were analyzed to build a complex network model. A network 
crawler was used to crawl the line and station coordinate data 
of the Shanghai Metro network from Baidu Maps, and the 

Table 14  Single P value of 
each hazard source

Season x1 x2 x3 x4 x5 x6 x7 x8

1 0.0000 0.5394 0.0000 0.1373 0.2644 0.3381 0.3321 0.2406
2 0.4611 0.2729 0.5058 0.6162 0.0000 0.0000 0.3143 0.0000
3 0.3965 0.1876 0.2847 0.2465 0.4143 0.4662 0.3536 0.4474
4 0.1424 0.0000 0.2095 0.0000 0.3214 0.1957 0.0000 0.3120

Table 15  Information entropy 
of key hazard sources

x1 x2 x3 x4 x5 x6 x7 x8

Information Entropy 0.7223 0.7223 0.7429 0.6609 0.7802 0.7514 0.7916 0.7690

Table 16  Objective weights of 
key hazard sources

w1 w2 w3 w4 w5 w6 w7 w8

weight 0.1349 0.1348 0.1248 0.1647 0.1067 0.1207 0.1012 0.1122

Fig. 10  ArcMap mapping of the Shanghai Metro network
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results were saved as a .shp file. ArcMap software in ArcGis 
was used to visualize the results, as shown in Fig. 10.

Using the spatial join function in ArcMap, the connec-
tion relationships in the geographic coordinates were trans-
formed into an adjacency matrix and stored in tabular form, 
resulting in a 508×508 adjacency matrix of the Shanghai 
Metro network. Under the Space-L method, the degree of a 
subway station was used to represent the number of adjacent 
stations around that station. For example, at Xujiahui Sta-
tion, you can transfer to Line 1 to reach Shanghai Stadium 
and Hengshan Road Station, transfer to Line 11 to reach 
Jiaotong University and Shanghai Swimming Center Station, 
and transfer to Line 9 to reach Yishan Road and Zhaojiabang 
Road Station. There are six adjacent subway stations around 
Xujiahui Station. Therefore, the degree value of Xujiahui 
Station is 6. The degree values of 508 stations were cal-
culated using the station adjacency matrix. Tables 5, 6, 7, 
8, 9, 10, 11 and 12 summarize the degree values of some 
representative stations, most of which have high transfer 
convenience (such as the large transfer hub People’s Square 
Station and Century Avenue Station). The average degree 
of the entire Shanghai Metro network was calculated to be 
2.38, indicating that there are about two to three stations that 
can be directly reached around each station, and the con-
venience of traveling by subway is relatively high. To bet-
ter quantify the probability distribution of degree values of 
Shanghai Metro stations, the distribution of station degrees 

was drawn using Python software, as shown in Fig. 11. The 
probability of stations with a degree value of 2 is as high as 
71% (Table 17).

Using Python, the node degree distribution of the subway 
network was calculated and the cumulative degree distribu-
tion graph was plotted, as shown in Fig. 12. The horizontal 
axis represents the logarithm of the node degree value, while 
the vertical axis represents the logarithm of the probabil-
ity of having a degree value greater than the corresponding 
node degree value. From Fig. 12, it can be seen that the 
sample stations exhibit a slow decay in double logarithmic 
coordinates, showing a small-scale, scale-free regime. The 
cumulative degree distribution graph of the subway stations 
in Shanghai basically conforms to the power law character-
istic. Therefore, in L space, the degree distribution of the 
Shanghai subway network can be roughly described by a 
power law distribution, indicating that the Shanghai subway 
network belongs to a scale-free network.

5.2.2  Analysis of Chain Failure Propagation 
in the Shanghai Metro Network

The OD matrix was constructed using the automatic ticket-
ing system of the Shanghai Metro on a certain day. The train 
timetable, maximum passenger capacity, transfer distance, 
average walking speed of passengers, train departure inter-
val, maximum queuing capacity, number of escalators and 
stairs, and escalator and stair output rates for each station 
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Fig. 11  Probability statistics of Shanghai Metro station degrees

Table 17  Example of partial 
station degrees

Station no. Station Degree Station no. Station Degree

1 Century Avenue 8 8 Jing’an Temple 6
2 Longyang Road 8 9 Caoyang Road 6
3 Xujiahui 6 10 Oriental Sports Center 5
4 People’s Square 6 11 Changshu Road 5
5 Nanjing West Road 6 12 Shanghai South Railway Station 5
6 Hanzhong Road 6 13 Yishan Road 5
7 Shanxi South Road 6 14 Shanghai Railway Station 4

Fig. 12  Cumulative degree distribution in double logarithmic coor-
dinates
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are based on statistics from the Shanghai Metro operating 
company. Based on the basic data, a weighted network of 
the Shanghai Metro was constructed. Then, based on the 
theory of disaster propagation, the size of the failed nodes 
caused by cascading failures was simulated. The influ-
ence of the initial node attribute value xi(t) on disaster 
propagation was analyzed, with emphasis on the weight-
ing of critical hazards. Other parameters were set as fol-
lows: Δt=2 min, and the total simulation time was 60 min, 
Mij(t) = 1, �i = 0.9, � = 0.15, � = 5, a=1, b=10, α=10和 
β=0.01 [43].

The basic assumptions are as follows:

(1)  Two node failure modes are set, including fixed node 
failure (representing a pre-defined station as a failure 
node) and random node failure.

(2) Two types of failure states are set: failure caused by 
attacks, in which case the initial node attribute value is 
, meaning the node is completely failed; failure caused 
by critical hazards, in which case the initial node attrib-
ute value is determined by the results of Sect. 5.1.2, 
representing node failure.

(3)  Station failures are divided into two categories: general 
station failures and transfer station failures.

(4)  The self-recovery coefficient has different values   set, 
and.

The specific simulation calculation unit steps are as 
follows:

Step 1: Initialization. Determine the initial state of the 
network, network topology, initial OD matrix, travel path, 
travel time of each travel path, and passenger volume and 
capacity of each station. Set t=0 to determine the cycle 
interval time Δ  t0.
Step 2: Update the network topology. Determine the sta-
tion failures and station types (regular, transfer, or termi-
nal) and, based on Figs. 10 and 11, determine the deletion 
or retention of nodes and edges in the network, and then 
update the entire network based on the results.
Step 3: Update the degree function of the stations based 
on the updated network topology.
Step 4: Update the travel path data. Based on Eqs. (17) 
and (18), calculate the time cost of each path.
Step 5: Compute the shortest path. Calculate the shortest 
path based on the calculation steps and Dijkstra’s algo-
rithm in Figs. 7 and 8.
Step 6: Update passenger flow at each station. In each 
cycle interval , the passenger traffic volume of each sta-
tion can be calculated based on OD data and the shortest 
path in the network within Δt period.

Step 7: Update the self-recovery capability of each sta-
tion, calculate the of the node based on the attribute value 
Eqs. (20) and (21) and the self-recovery factor .
Step 8: Update the fault propagation mechanism. Calcu-
late the propagation mechanism of disasters in the net-
work based on Eqs. (22) and (23).
Step 9: Update the attribute values of the station. After 
each cycle interval, update the attribute values according 
to Eq. (23) and count the number of malfunctioning sta-
tions. After each cycle interval Δt, the evolution dynam-
ics of the attribute values over time should satisfy Eq. 
(19) under the combined action of self-recovery mecha-
nism and fault propagation mechanism.
Step 10: Determine whether the computation is finished. 
The criteria for judgment are as follows: (1) The set sim-
ulation time has ended, and the loop ends. (2) The set 
simulation time has not ended, but more than half of the 
nodes in the network have malfunctioned, causing the net-
work to be unable to operate normally, and the cycle ends.

The specific calculation process is shown in Fig. 13:
Therefore, by obtaining and comparing simulation results 

under different combinations of conditions, and due to the 
large number of iterations, there are many result graphs, and 
the length is too long. Only the effect graphs are shown, as 
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Fig. 13  Flow chart of disaster propagation simulation
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shown in Fig. 14. The left side shows a screenshot of the 
simulation process with random faulty nodes, and the right 
side shows a screenshot of the simulation process with speci-
fied faulty nodes.

For convenient comparison and observation, all final sim-
ulation results are summarized and presented in the form of 
line graphs, as shown in Figs. 15, 16, 17, and 18, in which 
R is random, F is fixed, A is attack, G is general station, T is 
transfer station, and H is hazard source.

In Fig. 15, for fixed node failure, the initial faulty node 
is preset as People’s Square Station in all combinations. 

People’s Square Station is an interchange station for Shang-
hai Metro Lines 1, 2, and 8, and plays an important role in 
the transportation network of Shanghai Metro. After analyz-
ing Fig. 15, we can draw the following conclusions:

(1) With the increase of simulation time, the scale of chain 
failures of stations under different combinations con-
tinues to increase, and remains stable after reaching a 
certain fixed range. Within 20 min, the Shanghai Metro 
will lose its normal operational function.

Fig. 14  Fault node simulation process

Fig. 15  Scale of failure sta-
tions under different simulation 
scenarios (a)
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Fig. 16  Scale of failure sta-
tions under different simulation 
scenarios (b)

Fig. 17  Scale of failure sta-
tions under different simulation 
scenarios (c)

Fig. 18  Scale of failure sta-
tions under different simulation 
scenarios (d)
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(2) The number of failed stations under fixed station fail-
ure is higher than that under random station failure, 
indicating that the network topology has stronger 
robustness under random failure. However, when one 
or more nodes in the network are intentionally failed, 
these nodes are easy to fail, and the entire network 
may be affected due to disaster propagation mecha-
nisms.

(3) The number of failed stations under initial inter-
change station failure is higher than that under initial 
ordinary station failure, the cascading failure speed is 
faster, and the failure propagation range is wider. This 
means that in the subway transportation network, 
interchange stations have a substantial influence on 
the scope and intensity of failure propagation. In 
terms of transportation operation organization, it is 
necessary to pay special attention to the land use, bus 
connections, passenger flow organization, and other 
aspects of large-scale interchange stations in the net-
work.

(4) The largest scale of failed stations is under fixed attack 
on interchange stations (with 43 failed stations), which 
means that the initial failure caused by a fixed inter-
change station being attacked by terrorism has the 
greatest impact on the normal operation of the Shang-
hai Metro network. The smallest scale of failed stations 
is under random attack on ordinary stations (with 31 
stations), which means that the initial failure caused by 
a random ordinary station being intentionally attacked 
has the smallest impact on the normal operation of the 
Shanghai Metro network.

Figure 16 shows the fault scale of Shanghai subway 
stations with fixed transfer stations under different initial 
station attribute values for different hazards, while Fig. 17 
shows the fault scale of Shanghai subway stations with 
random transfer stations under different initial station 
attribute values for different hazards. Observing Figs. 16 
and 17, the following conclusions can be drawn:

(1) In Fig. 16, the higher the weight value of the criti-
cal hazard, the larger the fault scale and the wider the 
impact. This indicates that the higher the initial station 
attribute value, the easier the fault caused by critical 
hazards is spread in the Shanghai subway network, 
typically reaching the maximum impact within 20 min. 
Among them, critical hazard 1 has the widest impact 
range, involving 37 stations, while critical hazard 8 has 
the smallest impact range but still affects 25 operating 
stations.

(2) Figure 17 is similar to Fig. 16, but the overall fault 
scale is smaller than that in Fig. 16. This indicates that 
under the same hazard causing station faults, the ran-
dom occurrence of transfer station faults is generally 
smaller than the specified station fault scale, which 
also indicates that the Shanghai subway network has 
stronger robustness under random settings.

(3) Comparing Figs. 16 and 17, it can be found that critical 
hazards with higher weight values usually have a more 
extensive impact on the Shanghai subway network dur-
ing the simulation process, and usually spread rapidly 
during two time periods of 2–4 min and 14–18 min, 
with a significant increase in the fault scale growth 
rate. Therefore, it is particularly important to be able to 
handle relevant problems timely and effectively when 
subway operation safety incidents occur to prevent the 
escalation of the situation.

In Fig. 18, the influence of different self-recovery fac-
tors on the impact of Shanghai Metro transfer stations in 
the event of attacks or failures caused by critical hazards is 
fully considered. The following conclusions can be drawn 
from the figure:

(1) Under the same conditions of initial fault points, 
as the self-recovery factor 1∕�i(t) decreases and the 
self-recovery factor �i(t) increases, the node fault size 
increases. When the self-recovery ability of a node 
weakens, the time for the node to recover to a normal 
state increase. Therefore, during the same period, the 
larger the value of the node’s self-recovery factor, the 
more difficult it is for the node’s unstable state to repair 
itself, and the disaster propagation mechanism gradu-
ally takes the dominant position, resulting in larger 
node fault sizes.
(2) There is no obvious functional relationship between 
the fault size and the self-recovery coefficient. When 
the self-recovery factor is within a certain range, the 
number of fault stations increases rapidly. For example, 
for fixed transfer stations under attack, when �i(t) ∈ [34, 
40] and �i(t) ∈ [14,18], the fault size of multiple simula-
tion combinations increases rapidly.
(3) The self-recovery factor is positively correlated with 
the cascade failure size. Therefore, when a network expe-
rience cascading failure, emergency resources can be con-
figured, the stability of station facilities and equipment 
can be strengthened, the optimization of passenger flow 
organization can be carried out, the self-recovery ability 
can be enhanced, and the self-recovery factor of nodes 
can be reduced to control cascading failures and reduce 
the fault size in the network.
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6  Conclusions and Further Studies

Based on the association rule theory and text mining meth-
ods, this paper proposed the AFP-tree algorithm to mine the 
operation log data of the Shanghai Metro, identified the key 
hazards that cause operational risks, conducted a weighted 
analysis of the key hazards, and determined the proportion 
of each specific hazard in the subway network operation pro-
cess. Furthermore, disaster propagation theory was intro-
duced to investigate the propagation time and impact range 
of each key hazard in the subway network fault propaga-
tion process by constructing a subway network chain fault 
propagation model with the key hazards as the changing 
indicators. The specific research conclusions are as follows:

(1) By using the AFP-tree algorithm to analyze the opera-
tion text data of the Shanghai Metro, 27 key hazards in 
the Shanghai Metro operation process, including high 
passenger flow, door malfunction, and shielding door 
clips, were identified. The importance of the 27 key 
hazards was sorted according to the confidence level, 
and the algorithm was proven to be effective in identi-
fying transportation hazards and has practical guiding 
significance for enterprise operation safety.

(2) Among the key hazards, the eight hazards with the 
highest confidence level were selected, and the sub-
jective and objective weights were calculated by the 
sequence relationship method and entropy method, 
respectively. The eight key hazards, including high pas-
senger flow, automatic train protection (ATP) malfunc-
tion, brake malfunction, door malfunction, display mal-
function, passenger, automatic train supervision (ATS) 
malfunction, and shielding door clips, were weighted 
through combination weighting, laying a foundation 
for exploring the impact of key hazards on the entire 
Shanghai Metro network.

(3) A subway network chain fault propagation model was 
constructed, and the impact of eight key hazard fault 
propagation of the Shanghai Metro was analyzed in 
detail. The results showed that when the fixed transfer 
station was attacked, the fault scale caused by high pas-
senger flow was the largest, with 36 affected stations. 
When the random transfer station was attacked, the 
hazard events caused by shielding door clips affected 
the smallest number of stations, with 21 affected sta-
tions. The number of fault stations under different con-
ditions reached the maximum value of 16–20 min, and 
the specific hazards had different impacts on the sub-
way network. Through example analysis, it was found 
that under different self-recovery factors, the number 
of fault stations showed a significant increasing trend 
when the self-recovery factor was 14–18, indicating 

a positive correlation between the fault scale and the 
self-recovery factor.

While the case study establishes the applicability and 
validity of the methodology presented in this paper, and 
yields research conclusions with practical value, certain 
limitations exist in terms of both the number and spatial 
scope of the collected data cases. Future research endeav-
ors should delve into more comprehensive studies on safety 
risk factors affecting subway operation, considering the 
unique circumstances of each city to align with the actual 
requirements of operational management. Additionally, the 
exploration of hazard mining within the subway network 
focuses on evaluating the likelihood of concurrent hazard 
occurrences and associated risk events. Subsequent efforts 
will include integrating a dimension analysis of risk loss to 
further enhance the precision of weight allocation for haz-
ards in the analysis of failure propagation.
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