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Abstract The imbalance between the supply and demand

of shared bikes is prominent in many urban rail transit

stations, which urgently requires an efficient vehicle

deployment strategy. In this paper, we propose an inte-

grated model to optimize the deployment of shared bikes

around urban rail transit stations, incorporating a seasonal

autoregressive integrated moving average with long short-

term memory (SARIMA-LSTM) hybrid model that is used

to predict the heterogeneous demand for shared bikes in

space and time. The shared bike deployment strategy was

formulated based on the actual deployment process and

under the principle of cost minimization involving labor

and transportation. The model is applied using the big data

of shared bikes in Xicheng District, Beijing. Results show

that the SARIMA-LSTM hybrid model has great advan-

tages in predicting the demand for shared bikes. The pro-

posed allocation strategy provides a new way to solve the

imbalance challenge between the supply and demand of

shared bikes and contributes to the development of a sus-

tainable transportation system.

Keywords Bike sharing � Demand prediction � Bike-
sharing deployment � Hybrid model � Big data

1 Introduction

Bike sharing has become a popular transport option in

many cities because it is green and convenient and an

essential feeder for other transportation modes such as

buses and metro. In the emerging trend of mobility-as-a-

service (MaaS) system deployment, which involves mul-

timodal transportation, bike sharing may be promoted even

further. As an important transport connector, shared bikes

could increase the attractiveness of urban transit and thus

potentially encourage transit use and contribute to sus-

tainable transportation. Bicycle sharing complements and

enhances public transportation [1]. As manifested in many

cities, shared bikes are often used in combination with

transit, shortening the travel time induced by the access/

egress stages of a complete journey by transit. Especially

for urban rail transportation, bike sharing has become the

leading way to connect the last mile of rail transportation

[2].

Shared bikes are traditionally dock-based because of the

management and payment requirement and have also

recently emerged as dockless. While the latter is consid-

ered more convenient because of the parking convenience,

many problems remain, such as disordered parking,
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abandoned bikes, and illegal space occupation. Rail transit

stations, as hot spots for shared bicycles, make this con-

tradiction unprecedentedly acute. On the one hand, the

excessive influx of shared bicycles is not conducive to the

organization and evacuation of passengers. On the other

hand, insufficient bicycle storage will lead to passengers

being forced to choose other ways to complete their jour-

neys, reducing passenger comfort and leading to a decrease

in traffic accessibility [3]. Both stations and bike-sharing

operators have made efforts to this end. For example,

planners can enhance resilience of urban transport net-

works by fully considering the capacity and the usage of

bike-sharing docks, as well as the coherence of metro

stations and bike-sharing docks, in distributing and rebal-

ancing activities [4]. Some scholars have also proposed the

joint operation of bike sharing and metro mainly to serve

rail stations, and the results show that the total social cost

can be reduced to a great extent [5]. However, the imbal-

ance issue between demand and supply in space and time

underlying the use of shared bikes is still prominent in the

sense that the use rate of shared bikes at a specific location

could be highly time-dependent, e.g., commuters pick up

bikes in the morning peak, and varied in the different built

environment around the station, e.g., central business dis-

tricts (CBD) and residential neighborhoods. Therefore, it

remains critical for shared bike operators and urban man-

agement bureaus to better coordinate the deployment of

shared bikes in different places and at different times of the

day.

Many studies have addressed the issues related to shared

bikes from different perspectives, which provides a theo-

retical basis for the better planning of shared bikes around

urban rail transit stations. Five main aspects were discussed

in the literature, namely, the factors affecting the use of

shared bikes [6], the characteristics of shared bike users

[7], the spatial and temporal distribution of bike use [8, 9],

the demand prediction of shared bikes [10, 11], the allo-

cation of shared bikes [12], and the integration of shared

bikes with transit [13]. These studies offer valuable insights

into shared bikes planning, but there are still various

remaining problems, especially in the demand forecasting

and allocation strategy.

The prediction of demand for shared bikes is essential

for planning bike-sharing deployment, because the optimal

allocation strategy can only be obtained when the predicted

bike-sharing demand is close to the actual deployment

needs. Existing research has developed different models by

focusing on either the demand prediction or allocation

strategy using actual data. There is a lack of integrated

models which combine the demand prediction and bike

allocation. We argue that the separate models may be more

useful for a specific purpose. In contrast, models integrat-

ing the two are more useful to effectively realize the

balance between supply and demand and have more prac-

tical significance.

In this study, therefore, we propose an improved bike-

sharing allocation strategy to optimize the bike allocation

around urban rail transit stations. A hybrid model based on

time series and deep learning prediction theory is proposed,

combining a seasonal autoregressive integrated moving

average (SARIMA) model and a long short-term memory

(LSTM) model to predict the usage of shared bikes around

urban rail transit stations. Based on production and sales

balance theory, a model to optimize bike allocation while

minimizing the total dispatch cost is developed. Using

3-month big data of shared bikes in Beijing, the dynamic

deployment strategy around urban rail transit stations is

obtained by combining the actual dispatch process for

shared bikes to meet the demand for shared bicycles during

peak periods.

The remainder of this paper is organized as follows:

Section 2 reviews the related literature on bike-sharing

demand forecasting and deployment planning. Section 3

introduces the methodology employed in this study. Sec-

tion 4 describes a case study of bike sharing in Beijing. The

last section concludes this paper.

2 Literature Review

The purpose of the literature review is twofold: to discuss

the relevant work on demand prediction and the allocation

of shared bikes. These two aspects of research have been

primarily conducted separately in the existing literature.

The purpose of this review is not to offer a systematic

review of the research on shared bikes but rather to present

the content-wise research and the methods related to the

two perspectives.

The bike-sharing demand prediction has been discussed

in different spatial scales, namely the city level, station

clustering level, and single station level. City-level fore-

casting aims to predict coarser-grained bike usage at all

stations throughout the city. Borgnat et al. [14], based on

the data generated by the bike-sharing system in Leon City,

developed a combination model to predict the hourly

demand for shared bikes within a city. The results help

provide an understanding of the travel characteristics of

bike-sharing users. Based on the assumption that geo-

graphically adjacent stations have similar characteristics of

time demand, Chen et al. [15] and Feng et al. [16] classified

stations into different clusters and predicted station-based

demand for the different categories. Lin et al. [17] and

Wang et al. [18] showed that, although the prediction with

station clustering can better capture the local demand than

city-level results, the local differences between different

bike-sharing stations are not addressed.
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In the case of the station-based prediction models,

Sohrabi et al. [19] proposed a two-step prediction method

based on historical traffic and spatiotemporal characteris-

tics to predict the demand at bike-sharing stations

dynamically. Wu et al. [20] found that the current site-level

bike-sharing demand prediction did not fully mine the

information in the ordering data and ignored the potential

relationship between different sites/stations. Machine

learning models were used to predict the time-by-time

demand for shared bikes in different sites.

Among the studies on demand prediction, time-series

regression models have most typically been applied. Kal-

tenbrunner et al. [21] used the classic autoregressive

moving average model (ARMA) to predict the number of

shared bikes. Realizing that the ARMA model requires

stationarity of the time series, Yoon et al. [22] used the

autoregressive integrated moving average (ARIMA) model

to predict the demand of each station for shared bikes, such

that the stationarity problem of the time series in the

number of shared bikes is solved by setting the time cycle.

Apart from the statistical models, recent efforts have also

involved the use of machine learning methods. For exam-

ple, Liu et al. [23] developed a demand prediction model

for shared bikes using an artificial neural network.

In addition, scholars have increasingly begun to com-

bine different types of methods to predict the demand for

shared bicycles. Mehdizadeh et al. [24] used a hybrid

convolutional neural network (CNN)-LSTM model to

predict bicycle demand during the COVID-19 pandemic,

and the results showed higher accuracy than ARIMA. A

model combining LSTM and gated recurrent units (GRU)

was proposed by Boonjubut et al. [25] to predict the

demand for shared bicycles, which can improve the

effectiveness and accuracy of a single recurrent neural

network (RNN) model. Similarly, Ma et al. [26] proposed a

spatial-temporal graph attentional (STGA)-LSTM neural

network framework to predict short-term bike-sharing

demand using a multi-source data set. Most of these models

combine LSTM, improve the prediction accuracy of a

single model to some extent, and provide a new method for

demand prediction of shared bikes. However, for strongly

periodic demand forecasting, there are still inadequate

studies in giving full play to the performance of LSTM.

Based on the predicted demand for shared bikes at dif-

ferent locations, optimal bike deployment has been an

important subject for operators to balance the demand and

supply in space and time. Developing an effective vehicle

deployment planning model has been discussed extensively

by scholars. For instance, Forma et al. [27] proposed a bike

static reset deployment method and designed a three-step

heuristic algorithm to make real-time responses for bike

demand and vacant piles at sites. Angeloudis et al. [28]

redistributed the allocation lines by developing a dynamic

bike-sharing allocation algorithm and demonstrated the

model’s effectiveness through numerical examples. Jost

et al. [29] proposed a dynamic pricing strategy to improve

the imbalance between the supply and demand of shared

bikes based on the idea of self-distribution balance in

public bike spaces. However, results showed that although

the pricing strategy could improve the imbalance issue, it

would reduce travelers’ willingness to use shared bikes.

Jiménez et al. [30] combined the real-time changes in

shared bike demand by optimizing the deployment paths. A

station-based hybrid deployment model was proposed to

effectively reduce the deployment cost. The optimal allo-

cation path based on the minimum cost has been a major

focus in many studies. Furthermore, Raviv et al. [31]

focused on the stochastic and dynamic changes in public

bike demand to propose an optimization model based on

the static bike relocation problem. The model uses a time-

dependent objective function to optimize vehicle paths,

which can effectively assist path and inventory decisions.

Reviewing the literature on the allocation strategy of

shared bikes shows that most of the existing allocation

schemes are based on simple manual allocation, and the

allocation schemes do not cater to the hotspot usage areas

of shared bicycles from a station perspective. In other

words, they did not consider the demand for shared bikes

from stations at different times, resulting in more signifi-

cant problems in the management and operation of shared

bikes in the surrounding rail transit stations. On the other

hand, the existing prediction models have been developed

independently, and their contribution to the optimal allo-

cation of shared bikes has not been examined. Given this

shortcoming, we propose an optimal shared bike allocation

model incorporating the demand heterogeneity of shared

bikes. More specifically, we propose a hybrid model to

predict the demand for shared bikes by giving full play to

the advantages of SARIMA and LSTM models and a

deployment model to meet station-wide bike-sharing

demand under the premise of cost minimization.

3 Methodology

3.1 Bike-Sharing Demand Forecasting Model

The bike-sharing order data has an obvious time pattern,

and its generation and ending have clear time points, so the

time-by-time order data derived from the statistics belong

to the classical time-series data. Classical models in time-

series research include ARMA, ARIMA, and SARIMA.

These regression-based models can effectively deal with

the linear part of time-series data but are not sensitive to

the nonlinear characteristics.
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In order to overcome the disadvantage of linear models

in prediction with nonlinear features, recent studies have

increasingly applied machine learning methods that are

considered to effectively deal with the nonlinear associa-

tion in the data, including traditional neural networks, deep

learning, models such as recurrent neural network and

LSTM, to enhance the model predictability. However,

these machine learning methods depend highly on data and

model selection. The results obtained also lack a certain

degree of interpretability. Thus, recent activities regarding

the synergy between theory-driven and data-driven meth-

ods have emerged [32].

In this study, we contend that the time-dependencies in

the time-series data can be best captured using the time-

series data-based models, while the residual (random

component) in the linear model may be best captured with

a highly nonlinear structure in deep learning. In other

words, we propose a model that integrates SARIMA and

LSTM models, a SARIMA-LSTM hybrid model, such that

the ridership of shared bikes can be predicted using

advanced machine learning models while simultaneously

maintaining the statistical features of the time-series data.

In the following sections, we will first present the predic-

tion models such as the SARIMA and LSTM models and

focus on the hybrid version of the two models. Because the

prediction model generates input data to optimize bike

deployment, we also present the optimization model and

explain how the two models are integrated.

3.1.1 SARIMA Model

SARIMA is an autoregressive model for seasonal sequen-

ces developed based on the ARIMA model. By decom-

posing the time series into a regular time series and

seasonal cycles, the model can eliminate the interference of

periodic changes and improve its prediction accuracy. The

model is generally denoted as SARIMA(p; d; qÞðP;D;QÞs
and the expression is shown in Eq. (1).

/p Kð ÞuP Kð Þð1� KÞdð1� KsÞDYt ¼ hq Kð ÞxQ Kð Þet ð1Þ

where Yt is the time series; K represents the lag operator,

which serves to regress the sequence by one or more

cycles; s represents cycles, such as seasonal cycles s ¼ 4,

monthly cycles s ¼ 12, and so on; et is the white noise

sequence conforming to normal distribution; d and D

represent the number of nonseasonal and seasonal differ-

ences, respectively; /p Kð Þ and uP Kð Þ are functions

describing the relationship between adjacent moments of

time series Yt, as shown in Eqs. (2) and (3), which p and P

mean the order of the nonseasonal and seasonal autore-

gressive terms, respectively.

/pðKÞ ¼ 1� a1K � a2K
2 � � � � � apK

p ð2Þ

uPðKÞ ¼ 1� b1K
s � b2K

2s � � � � � bPK
Ps ð3Þ

where hq Kð Þ and xQ Kð Þ are relational functions describing
the seasonal period of time series Yt. The expressions are

shown in Eqs. (4) and (5), where q and Q represent the

nonseasonal and seasonal moving average term orders,

respectively.

hqðKÞ ¼ 1þ v1K þ v2K
2 þ � � � þ vqK

q ð4Þ

xQðKÞ ¼ 1þ k1K þ k2K
2s þ � � � þ kQK

Qs ð5Þ

The process of implementing a SARIMA model is

depicted in Fig. 1. Firstly, the time-series data are analyzed

by time-series plot to determine the nonstationary series.

Then the nonstationary series is differenced and seasonally

differenced to obtain the minimum values of d and D. Next,

the model’ parameters are estimated and determined, and

the residuals of the model are tested. Finally, numerical

predictions are made by the eligible

SARIMA(p; d; qÞðP;D;QÞs.

3.1.2 LSTM Model

LSTM is used to solve the long-term dependency and

gradient problems, and its basic unit is shown in Fig. 2.

According to Fig. 2, LSTM mainly consists of three

gates: input gate, forget gate and output gate. The process

of LSTM is to pass the input sequence fx1; x2; :::; xtg
through an encoder-decoder and finally output the pre-

dicted sequence fy1; y2; :::; ytg.xt, Ct and Ht means the

Fig. 1 The implementation process of the SARIMA model
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input value, the regenerative cell state value and the output

cell hidden state value at time t, respectively.

First, the forget gate is passed, and the forget gate

operation expression is shown in Eq. (6), where Ht�1 is the

hidden state value of the cell at the previous moment and xt
is the input value at this moment, and r function is used to

output a weight ft between 0 and 1, which is taken as the

probability value of the node state at the time before the

neural unit forgets.

ft ¼ r Wf Ht�1; xt½ � þ bf
� �

ð6Þ

In the input gate, the state information of the candidate

cell ~Ct can be generated from the tanh tanh function, and r
function generates a weight it to determine the size of the

state information of the candidate cell.

~Ct ¼ tanhðWc Ht�1; xt½ � þ bcÞ ð7Þ
it ¼ r Wi Ht�1; xt½ � þ bið Þ ð8Þ

Combining with the cell state at the previous moment

Ct�1, the regenerative cell state at this moment Ct is shown

in Eq. (9).

Ct ¼ ft � Ct�1 þ it � ~Ct ð9Þ

Finally, the value of the output gate zt can be calculated

from Eq. (10), and the current hidden state Ht can be cal-

culated by combining the current state Ct with Eq. (11). By

processing Ht through the decoder, the predicted sequence

fy1; y2; :::; ytg is obtained.

zt ¼ r Wz Ht�1; xt½ � þ bzð Þ ð10Þ
Ht ¼ zt � tanhðCtÞ ð11Þ

In the above equations, Wf, Wc, Wi, Wz are the weight

matrixes, bf, bc, bi, bz are bias vectors. These are exactly the

eight sets of parameters that machine learning is designed

to learn to obtain better predictions.

3.1.3 SARIMA-LSTM Hybrid Model

The SARIMA-LSTM hybrid model combines the time-

series prediction model and the neural network prediction

model to predict the time-series volume of shared

bikes, Ytf g t ¼ 1; 2; 3; :::; nð Þ . According to the character-

istics of different models, Ytf g can be divided into linear

structure Ltf g and nonlinear structure etf g, which are

expressed in Eq. (12).

Yt ¼ Lt þ et ð12Þ

Because the hybrid model involves parameter estimation

of SARIMA and the training of LSTM, a joint model

estimation process is needed. The structure diagram of the

hybrid model is shown in Fig. 3, and the three core steps

are described below.

(1) Extract linear features of the data.

The data set was divided into a training set and a test

set, which were built with a SARIMA model using

SPSS. Then the linear fitting value L̂t of shared bike

time-series data and linear value L̂tþ1; L̂tþ2; :::; L̂tþn

of future period n are obtained by the SARIMA

prediction.

(2) Analyze the nonlinear characteristics of data.

After SARIMA modeling and prediction, the residual

sequence reflecting the nonlinear structure of the data can

be obtained, as shown in Eq. (13).

et ¼ Yt � L̂t ð13Þ

Then, the Keras deep learning library in Python and the

TensorFlow package are used to build the LSTM network

model. The residual sequence is used as the input value for

training. After the parameters are stabilized, the model is

Fig. 2 LSTM standard cell

structure diagram
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used to predict the nonlinear value êtþ1; êtþ1; :::; êtþn in

future period n.

(3) The predicted value of future period n is obtained by

using the hybrid model prediction.

Ŷtþi ¼ L̂tþi þ êtþi i ¼ 1; 2; :::; nð Þ ð14Þ

3.1.4 Evaluation Metrics

To assess the predictive performance of the models, mean

absolute error (MAE), root mean square error (RMSE), and

mean absolute percentage error (MAPE) are adopted. MAE

and RMSE reflect the absolute error in the predicted and

actual values, while MAPE reflects the relative percentage

error. Smaller values of MAE and RMSE indicate a smaller

fitting deviation of the model, thus better accuracy in

prediction. In MAPE cases, a value lower than 10% has

been considered empirically to be satisfactory. The for-

mulas of the three indicators are shown below:

MAE ¼ 1

n

Xn

t¼1
ŷt � ytj j ð15Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

t¼1
ŷt � ytð Þ2

r

ð16Þ

MAPE ¼ 1

n

Xn

t¼1

ŷt � yt
yt

� 100

����

���� ð17Þ

where ŷt represents the predicted value of the model, yt
represents the actual value, and n represents the number of

samples.

3.2 Bike-Sharing Allocation Strategy

By physically moving the bikes from one location to

another, the demand in target areas can be matched, while

the over-allocation in original areas can be released. Before

redeployment begins, a redeployment plan will be devel-

oped to achieve a better balance. The plan usually includes

transportation volumes and routes, with transportation

costs being the essential basis for its development.

3.2.1 Bike-Sharing Allocation Process

The deployment of bike sharing is a system project.

Preparing a deployment plan based on order data also

requires the full cooperation of deployment command

points, deployment locations, and deployment experts. In

order to standardize the operational process of deployment,

we summarize the management methods of different

companies deploying shared bikes and propose the fol-

lowing deployment strategies.

(1) After the morning peak, the enterprise allocation

center calculates the inflow and outflow of shared

bikes at various rail transit stations and deployment

sites based on the order data uploaded to the system.

(2) According to the combined prediction model, input

the inflow and outflow of shared bikes in the

morning peak hours, predict the inflow and outflow

of shared bikes in the peak hours and evening peak

hours of all stations, and determine the export and

import volume of the target area around the urban

rail transit station and the upper limit of the number

of shared bikes that can be accommodated and

supplemented by the allocation station.

(3) Aiming at the company’s minimum deployment

cost, establish a shared bike deployment model

based on the transportation problem of production

and sales balance, and solve a specific shared bike

allocation plan.

The allocation center sends the allocation plan to the

specialists around each site. The allocation specialists

complete the allocation of shared bikes in the allocation

skylight according to the allocation instructions and report

them in time.

3.2.2 Deployment Areas

Analysis of the allocation strategy shows that the division

of bike-sharing allocation areas is the basis for allocating

work. In other words, we need to know which station needs

to move bikes out and which one needs to replenish before

we can optimize.

Fig. 3 Structure of hybrid prediction model.
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As there are no fixed stations for bike sharing, users can

rely on intelligent location devices such as onboard GPS to

park and pick up their bikes anytime. That poses a chal-

lenge for deployment. The shared bike drop-off area is

divided into different deployment units to simplify the

deployment of shared bikes. In the actual scheduling pro-

cess, the deployment center often determines the areas to

be assigned based on historical experience, big data,

analysis and dispatcher’s instructions—in other words,

without long transport distances for cost savings in the

deployment. According to the analysis of shared bike data,

77.4% of shared bikes are manually assigned a straight-line

distance of 3 km or less. Therefore, the straight-line dis-

tance between stations within the setup dispatch unit does

not exceed 3 km.

Based on the deployment units, the deployment sites of

shared bicycles can be further divided. The areas around

the urban rail transit station were considered, in general, a

hot spot for the use of shared bikes; another study showed

that shared bikes going to or leaving a station were dis-

tributed within 2 km of the station [33].

To disperse or supplement shared bicycles around sta-

tions, it is necessary to set up additional deployment sites.

We filtered the latitude and longitude at the starting and

ending points of bike-sharing orders within 2 km of all

stations. We used a k-means clustering algorithm to iden-

tify hot spots of bike-sharing usage. A 500-meter radius of

the cluster center was used as the deployment site for the

shared bikes.

3.2.3 Amount of Demand for Deployment

Here, we analyzed the number of shared bikes used around

stations (Fig. 4).

Figure 4 shows that there are two distinct peaks in the

volume of bike-sharing usage around rail stations. After

calculation, the number of bicycles used during the peak

period accounts for 40% of the whole day. Combined with

the actual operation strategies of the operating companies,

dynamic deployment with a high degree of refinement

would result in excessive operating costs. Therefore, this

paper still adopts the deployment scheme based on the

skylight time and determines the skylight time as from 9:00

to 17:00.

The allocation demand in each area is calculated

according to the flow difference, which refers to the dif-

ference between the inflow and outflow of regional shared

bikes in the same period. The deployment requirement for

each place can be calculated by Eq. (18).

DDk ¼
X

t

ðFlow int � Flow outtÞ ð18Þ

The inflow and outflow of shared bikes are predicted

according to the SARIMA-LSTM combination model.

Then, we calculated the allocation demand in the stations

and the allocation site areas, respectively. For the urban rail

transit stations, when DDk [ 0, the shared bikes flow into

this station, and the shared bikes need to be transferred out

to the surrounding allocation stations, which is called the

export urban rail station; when DDk\0, the shared bikes

flow out of this station, and the shared bikes need to be

Fig. 4 Usage of shared bicycles

around urban rail transit stations
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transferred into this station from the surrounding allocation

stations, which is called the import urban rail station.

For the deployment sites, when DDk [ 0, the continuous

inflow of shared bikes in this station can provide a certain

number of shared bikes for outflow urban rail transit sta-

tions with insufficient shared bikes nearby, which are

supplementary deployment sites; when DDk\0, the shared

bikes in this site continue to flow out, so there is a certain

capacity for shared bikes, which can accommodate the

excess shared bikes of nearby inflow urban rail transit

stations, which are the accommodation deployment sites.

3.2.4 Bike-Sharing Allocation Model

By physically moving the bikes from one location to

another, the demand in target areas can be matched while

the over-allocation in original areas can be released. Before

redeployment begins, a redeployment plan will be devel-

oped to achieve a better balance. The plan usually includes

transportation volumes and routes, with transportation

costs being the essential basis for its development. The

allocation task is to allocate the shared bikes to be trans-

ferred from all export urban rail stations to import urban

rail stations and accommodation deployment sites. At the

same time, the shared bikes required by all import urban

rail stations can be transferred in from export urban rail

stations and supplementary deployment sites. The critical

point is that we need to minimize the costs incurred in

shipping. Therefore, based on the balanced transportation

model, we allocate shared bikes with the minimized cost as

the objective function, as shown in Eq. (19).

min
Xm

i¼1

Xn

j¼1

cijþ
Xm

i¼1

XN

j¼1

cij þ
XM

i¼1

Xn

j¼1

cij

 !

s:t:

Xn

j¼1

xij ¼ ai; i ¼ 1; 2; 3; :::;m ð1Þ

Xn

j¼1

xij � pi; i ¼ 1; 2; 3; :::;M ð2Þ

Xm

i¼1

xij ¼ bj; j ¼ 1; 2; 3; :::; n ð3Þ

Xm

i¼1

xij � qj; j ¼ 1; 2; 3; :::;N ð4Þ

xij ¼ 0; i ¼ 1; 2; 3; :::;M; j ¼ 1; 2; 3; :::;N ð5Þ

xij � 0; i; j are not all deployment stations ð6Þ

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

ð19Þ

The definitions of the parameters in the formula are

shown in Table 1.

The effect of constraints � and ´ is to transport the

excess bikes to the stations that need resupply. Constraint

conditions ` and ˆ mean that the number of shared bikes

allocated at the supplementary and accommodation allo-

cation stations should not exceed its upper limit. The last

two constraints mean that the allocation of shared bikes

cannot occur between the allocation stations.

The costs incurred for deployment in this paper consist

of labor and transportation costs, which are calculated in

Eqs. (20, 21, 22 and 23). The definitions of the parameters

in the formula are shown in Table 2.

cij ¼ cH;ij þ cT ;ij ð20Þ

cH;ij ¼ xij � Lij � v ð21Þ

v ¼ monthly salary

distance � number of bikes
ð22Þ

cT ;ij ¼ 2
xij
n
s � Lij ð23Þ

The model can be solved by the table on the operating

method. We implemented such an optimization algorithm

via MATLAB, in which the initial feasible solution uses

the Vogel method, and the optimal solution is determined

by closed-loop adjustment.

4 Empirical Results

In this section, we introduce the empirical analysis con-

ducted based on the data in Beijing, the capital of China.

First, we describe the data and fields being analyzed. Then

the effectiveness of the hybrid model is verified based on

the data. Taking the Xicheng District of Beijing as the

basic dispatching unit, the allocation process for shared

bikes around urban rail transit stations within the dis-

patching unit is elaborated in detail, and the deployment

scheme for shared bikes around urban rail transit stations in

the Xicheng District is formulated to verify the applica-

bility of the proposed model.

4.1 Data and Research Area

The Xicheng District is located in the west of the central

city area. Some stations have a higher number of shared

bikes than other areas during morning and evening peak

hours, which is more likely to have the imbalance problem

between supply and demand of shared bikes. The k-means

was used to filter the possible deployment sites in the

Xicheng District. According to the silhouette coefficient

and within-groups sum-of-squares errors (SSE), the clus-

tering results show the best performance when k = 932. The

results show that there are 22 known urban rail transit
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stations and 28 qualified allocation sites were selected for

deployment.

The primary data set used in this study is the payment

transaction records of Mobike in Beijing from April to June

2018. Mobike is one of the first bike-sharing enterprises to

enter the Chinese market and has recorded a huge number

of rental trips over the years. Through vehicle smart locks

and GPS positioning devices embedded in the bikes,

location data are recorded as well as the registration data of

users, including user ID, bike ID, and latitude and longi-

tude information of start and end locations. Mobike gen-

erates about 900,000 orders daily, and some of the order

data contain abnormal data due to various disturbing situ-

ations, such as smart lock failure, unstable GPS signal, and

human error. These data will interfere with the accuracy of

model results. Thus, before the analysis, a data cleaning

process is implemented to screen out standard order data.

Abnormal data in this study are identified based on the

following five criteria:

1) Records having empty values in crucial fields such as

order time, latitude, and longitude

2) Abnormal data repeatedly uploaded to the system in

the same order

3) Abnormal data where the end time is earlier than the

start time and multiple bikes are parked at the same

location

4) Data on starting or ending locations (longitude and

latitude) outside the administrative geographical

scope of Beijing

5) Abnormal data with usage time less than 2 minutes or

longer than 3 hours and driving distance less than

150 m or more than 10 km

In addition to Mobike data, we use the data for Beijing

rail transit stations, road networks, and administrative

areas. These data are downloaded from OpenStreetMap.

We use ArcGIS software to calculate the inflow and out-

flow of shared bikes around the Xicheng District. More-

over, we also call the Baidu Maps API to generate the

shortest path data, which is used for the cost calculation of

the optimization model.

4.2 Prediction Results of the Hybrid Model

To verify the effectiveness of the hybrid model, we take the

surroundings of Fuchengmen station as an example and use

SARIMA, LSTM, and SARIMA-LSTM models for pre-

diction. There were 35 valid data sets on orders for shared

bikes around the Fuchengmen subway station. The time

interval for the analysis of each data set was from 6:00 to

21:00 with a granularity of 1 hour. In this paper, the first 34

sets of data were used as the training set for the prediction

model, and the last set of data was predicted.

Table 1 Model parameters and

definitions
Parameters Definition

cij The deployment cost from station i to j

xij the volume of bikes transported from i to j, and xij is an integer

m The number of export urban rail station

M The number of supplementary deployment sites

n The number of import urban rail station

N The number of accommodation deployment sites

ai The number of bikes that need to be called out for the ith exit urban rail station

bi Demand quantity for bicycles of the jth import urban rail station

pi The number of bikes that need to be called out for the ith supplementary deployment sites

qi Demand quantity for bicycles of the jth accommodation deployment sites

Table 2 Parameters and definitions of deployment costs

Parameters Definition

cH;ij The allocated labor cost, which is calculated based on interviews with staff

Lij The shortest road network distance from location i to location j, which is obtained by Baidu Maps API

v The labor cost per km of shared bikes allocation, in this paper v ¼ 1 according to our interview results

cT ;ij The allocated transportation cost, which is mainly influenced by the fuel consumption and maintenance cost of the transport vehicle

n The maximum number of shared bikes that can be accommodated by each transport vehicle, in this paper, n ¼ 60

s The driving cost per kilometer of the transport vehicle, we supposed s ¼ 2yuan/km according to our interview results
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The training set data were first analyzed using the

SARIMA model. Based on the results of the data processed

by SARIMA modeling, when the model performance was

optimal and the error was minimal, the parameter of

SARIMAðp; d; qÞ ðP;D;QÞs ¼
SARIMA ð1; 0; 2Þ ð0; 1; 1Þ 16 was used for prediction.

An LSTM model was then used to perform the same

prediction work. The LSTM network model framework in

this paper was built using the Keras deep learning library in

Python and the TensorFlow package. When using the

LSTM model, a set of hyperparameters (as listed in

Table 1) needs to be determined because different settings

affect the prediction results. To avoid difficult convergence

of the model or excessive computational work, the number

of hidden layers lstm size was set to 1. because of the

small amount of data, time step ¼ 15, batch size ¼ 2, and

epochs ¼ 100 were set to ensure accuracy. MAE was used

as the loss, which can better characterize the distribution of

standard data. The model used Adaptive Moment Estima-

tion (Adam) as the optimizer during the training process

because it has a tremendous advantage over the optimizer

in terms of learning speed and convergence speed

(Table 3).

Finally, we ran the SARIMA-LSTM hybrid model with

the same parameters as the separate predictions. The pre-

diction results of the three models are summarized in

Fig. 5, and the effect evaluation is shown in Table 4. The

‘original’ in Fig. 5 meant the actual sequence data of this

day. It can be seen from Fig. 5 that the SARIMA-LSTM

model, which is a combination of two different models, not

only accurately captured the linear features in the data but

also better grasped the remaining trend of the data and had

a high fit with the actual data. The hybrid model was able

to maximize the closeness to the actual data for most of the

time, especially during the peak hours, and it could also be

observed that the LSTM also performed relatively well. In

other periods, the LSTM showed significant deviations

from the actual results compared to the other models. In

contrast, the hybrid model effectively took advantage of

the two separate models, and the predictions did not

deviate much.

Table 4 shows that the hybrid model had smaller MAE,

RMSE, and MAPE than the other models. It is worth

mentioning that the MAPE of the hybrid model was less

than 10%. The results demonstrated that the model with a

hybrid of SARIMA and LSTM is more accurate than when

used separately in predicting bike-sharing time-series data.

Table 3 The main parameters in the LSTM model

Name of the parameter Meaning

Lstm_size Number of hidden layers

Time_step Number of blocks of the expanded LSTM

Batch_size Number of rows in each batch feeding into the LSTM

Epochs Number of iterations to train the model

Optimizers Method for adjusting the weight of each node

Loss Method for calculating the difference between the output of a neural network and the sample markers

Fig. 5 Comparison of prediction results of different models
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4.3 Bike-Sharing Allocation

With the forecast data, an effective and dynamic deploy-

ment plan can be developed in advance to meet the demand

of residents for bike-sharing usage. Because of the low

demand for shared bikes at some sites, when the demand at

a site is less than half the maximum capacity of a dis-

patched bike, i.e., 30 bikes, it is considered that the site will

not participate in the deployment. After the statistical

screening, the Xicheng District participated in the

deployment of 17 urban rail transit stations, including 11

exit stations with 1817 bikes and six import stations with a

total of 738 bikes. These stations and the demand for

shared bikes are plotted using GIS, as shown in Fig. 6.

There are 21 participating deployment sites, including nine

supplemental sites for up to 1512 supplemental bikes and

12 accommodating sites for up to 1474 bikes. We show

these sites in Fig. 7.

Then the planning was done according to the bike-

sharing allocation model. With a total of 3329 bikes to be

shipped out and total demand of 2212 bikes, it is necessary

to add a virtual allocation center as the 13th accommoda-

tion allocation station to accommodate an extra 1117 bikes.

Based on the above consideration, the unknown quantities

in Eq. (18) were determined where

m ¼ 11;N ¼ 12;M ¼ 9; n ¼ 6. The optimal deployment

scheme was obtained after 20 iterations of running the

algorithm in MATLAB. The iterative process is shown in

Fig. 8, and using this option yields a minimum total cost of

8353.6 yuan.

Table 4 Effect evaluation of different prediction models

Models Evaluation indexes

MAE RMSE MAPE (%)

SARIMA 63.085 101.136 22.486

LSTM 58.480 99.772 10.642

SARIMA-LSTM 43.513 54.467 9.765

Fig. 6 Participating deployment sites of urban rail transit stations and deployment volume
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A more visible representation of the deployment plan is

shown in Figs. 9 and 10. In particular, Fig. 9 shows which

stations need to transport the excess bikes to deployment

sites. Figure 10 shows which stations need to replenish bikes

from nearby deployment sites. The amount of transportation

was marked. Finally, the allocation process was executed

according to the method proposed in Sect. 3.2.

Furthermore, a sensitivity analysis is conducted for the

labor cost. The result indicates that the current solution is still

optimal when v 2 0:8; 1:0½ �. This result can provide a mean-

ingful reference for managers in pricing and programming.

5 Conclusion

As a sustainable transportation mode with the apparent

features of green, flexible, and easy access, bike sharing

can be used to connect urban rail transit, which contributes

to solving not only the first and last mile problems but also

transportation decarbonization as a whole. However, the

imbalance between the supply and demand of shared bikes

in space and time has remained prominent in many cities,

resulting in various social problems. For both planners and

the convenience of users, an efficient vehicle deployment

strategy based on accurate demand prediction is seen as

essential to ensure the sustainable benefits of shared bikes

in urban transportation systems.

In line with this concern, in this paper, we proposed a

hybrid model which focuses on the dynamic deployment of

bike sharing around urban rail transit stations based on a

machine learning-enabled time-series prediction model.

The purpose is to achieve the best deployment plan which

Fig. 7 Participating deployment sites and deployment volume

Fig. 8 The variation in cost with the number of iterations
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Fig. 9 Deployment schematic diagram of export stations

Fig. 10 Deployment schematic diagram of import stations
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minimizes the total cost by balancing the supply and pre-

dicted demand at different stations. The proposed hybrid

model incorporates the advantages of both SARIMA and

LSTM to predict the use of shared bikes.

Using the actual data for the Xicheng District of Beijing,

we compared the predicted values of a single model and the

hybrid model. Results show that the hybrid model has

higher prediction efficiency. This enriches the method for

demand prediction of shared bikes. Apart from that, the

bike-sharing deployment model around urban rail transit

stations was developed to minimize transportation costs

based on forecasting data. The resulting bike deployment

plan would advise on the bike-sharing imbalance around

urban rail transit stations.

This study was conducted by setting the hot spot within

500 m of a station. However, as a flexible transportation

mode, the bike-sharing system has many types of hot spots

in the city. Therefore, the hot areas for using different types

of shared bikes may also be combined to conduct further

research on different travel structures and the global

deployment optimization of shared bikes. In addition, as

this paper focuses on meeting the demand for peak bike-

sharing usage, the temporal granularity of the prediction

and the establishment of the allocation model were sim-

plified based on the actual deployment of the operating

companies. Further research can be conducted to cover

dynamic requirements on a time-by-time basis.
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