
ORIGINAL RESEARCH PAPERS

Ridership and Human Mobility of Metro System Under
the Typhoon Weather Event: A Case Study in Fuzhou, China

Shixiong Jiang1 • Yuchen Lin1

Received: 11 October 2021 / Revised: 21 November 2021 / Accepted: 14 December 2021 / Published online: 11 February 2022

� The Author(s) 2022

Abstract Extreme weather events, such as typhoon and

hurricane, have characteristics of high uncertainty, large

destructiveness, and extensiveness, which threat the daily

life and cause apparent perturbations to human mobility. In

order to investigate the perturbation on human mobility,

this study collects the metro transaction data before and

during a typhoon weather event in Fuzhou, China, to

conduct analyses. The ridership before and during the

typhoon weather event is innovatively compared at system,

station and origin-destination level. Besides, it is of novelty

to examine the travel time distribution of metro trips in the

normal and perturbed state by comparing three candidate

models with the Akaike information criterion method.

Results validate that the typhoon weather event severely

influences the ridership at system, station, and origin-des-

tination level, with various degrees. There is also signifi-

cant impact on the relative total traveled stations from the

typhoon weather event, especially for leisure trips. More-

over, the travel time of metro trips follows the gamma

distribution in both the normal state and the perturbed state

with different magnitudes. It is found that both the number

of traveled stations and travel time are lower in the typhoon

state when compared to those in the normal state. In gen-

eral, this study can provide some helps to assist the metro

management under extreme weather events.

Keywords Human mobility � Metro ridership � Travel
time � Traveled stations � Typhoon weather

1 Introduction

Natural disasters, such as typhoon and hurricane, can affect

travels of human being seriously. In the urban area, the

densities of building and population are pretty high, and

they are still increasing now. As a result, transportation is

an indispensable part in urban lives and most citizens travel

every day. However, transportation is an activity which is

strictly linked with weather conditions and can be seriously

influenced by natural disasters [1]. Thus, it is important to

explore the human mobility perturbation resulted from the

natural disasters so as to improve the management of urban

transportation under extreme weather events.

There are many researchers exploring the travel

behavior changes resulted from weather conditions. Jain

and Singh [2] investigated the influence of extreme weather

conditions of high temperatures, low temperatures, pre-

cipitation, and thunderstorms on travel choices by travelers

in Delhi. It is found that metro users are likely to change

current patterns during rains or high temperature, and

metro users with longer traveling distances tend to keep

current travel pattern. With a negative binomial regression

model, Ngo [3] suggested that bus ridership is more sen-

sitive to extreme weather events in lower-income areas

than the wealthier ones. Wang et al. [4] utilized Twitter

geo-locations to investigate severe winter storms’ effects

on human mobility, and found that these storms perturb

both displacements and gyration radii of individuals’

mobility. Similarly, with smart card data and meteorolog-

ical records from Shenzhen, China, Zhou et al. [1] build up

the daily and hourly weather-transit ridership relationship
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at the system and station level. It is found that urban sta-

tions are more vulnerable to outdoor weather in regard to

ridership and regular transit users are more resilient to

adverse weather. Furthermore, Zhang et al. [5] quantita-

tively assessed human mobility perturbations during rain-

storm and snowstorm from the perspective of total

displacements of taxi and bus trips. Lin et al. [6] applied

log-linear regression models to determine weather’s impact

on bikeshare trips in Beijing. What’s more, Yang et al. [7]

explored the influences of weather on the non-motorized

transport usage and found that solar access, wind and snow

are influential factors. Generally, non-motorized modes

(walking, cycling) are more sensitive to weather conditions

and the metro system is less vulnerable [8, 9].

Furthermore, some studies applied travel data to explore

travel behavior changes under natural disasters, such as

flooding, typhoon, hurricane, and earthquake. Some trans-

portation data are applied to investigate the changes during

the natural disasters. Abad and Fillone [10] validated that

travel time has a significant difference between normal and

flooding conditions in Metro Manila, Philippines. It is

showed that flood characteristics influence travel behavior

and road-based transit service users tend to change travel

behavior more than rail-based ones. Furthermore, Abad

et al. [11] claimed that adaptations to flooding are made to

commuting behavior depending on passenger’s commute

and employment situation. In addition, Lyu et al. [12]

combined the interval fuzzy analytic hierarchy process and

fuzzy clustering analysis to evaluate the flood risk of metro

systems in subsiding environments. During Typhoon

Koppu, more than 80% of taxis in Hong Kong were not in

operation, and the average customer-search time for drivers

was very short [13]. With taxi ridership during Hurricanes

Irene and Sandy in New York, Bian et al. [14] validated

that the number of taxi trips start to decrease about 24

hours before the landfall of hurricane. Furthermore, the

ridership in hurricane periods has a strong linear associa-

tion with that in normal periods. The hurricane has the

greatest influence on taxi ridership during weekend and at

night, while the least influence on a weekday during the

day. In another study with similar backgrounds, Zhu et al.

[15] found that the recovery rate is lower for Sandy than

that for Irene. Besides, it is found that road network has a

higher resilience when compared to the metro network.

During Typhoon Mangkhut, Chen et al. [16] found that

urban flows reduce by 39% during the disruption in

Shenzhen, China. Moreover, fundamental urban functions

experience less disruption and recreational related trips are

more severely affected. With investigation of 5 typhoons in

Shenzhen, Zhou et al. [17] found that typhoon events can

severely impact the distributions and recovery of metro

ridership. Besides, stronger typhoons lead to a larger effect

on resilience, and the continuous precipitation can result in

a longer recovery time.

Besides, it is important to understand the human

mobility, which has wide applications in many fields, such

as urban planning [18, 19], transportation [20–22], and

epidemic prevention [23–25]. Gonzalez et al. [26] analyzed

the trajectory of mobile phones and indicated that human

trajectory has a high temporal and spatial regularity.

Kraemer et al. [22] constructed the global human move-

ment model to validate that human mobility follows a

power law. With the increase in travel distance, the fre-

quency of human movement decreases. Besides, in differ-

ent socio-demographic and environmental contexts, human

movement patterns are different. Through the analysis of

taxi trajectory data, Wang et al. [27] found that the dis-

placement distribution tends to follow the exponential law,

and the travel time can be approximately fitted by a log-

normal distribution. Lin and Yao [28] proposed a model to

explain the power-law distribution mechanism based on

taxi data and verify the significant power-law distribution

of people’s moving behavior distance in the single-car

situation. Based on origin-destination metric and the cor-

responding displacement, Jiang et al. [29] found that a

gamma distribution can fit the displacement of metro trips.

In addition, for air passengers, it is found that the time

interval follows the truncated power law and the travel

distance agrees with the negative binomial distribution

[30].

The Twitter data have been used to explore the human

mobility during the natural disasters. Wang and Taylor [31]

found that human movements follow truncated power-law

distributions during and after Hurricane Sandy. Besides, it

is indicated that the center of mass and the radius of

gyration of each individual’s movements during perturba-

tion states and steady states are highly correlated. A similar

study confirmed that the radius, distance, and entropy of

individuals decreased significantly after Sandy [32]. They

also found that individuals in higher transportation diver-

sity locations generally maintained a higher distance and

radius one week after Sandy. During Hurricanes Matthew

and Harvey, Ahmouda et al. [33] validated that displace-

ments become shorter and areas of activity become smaller

during hurricanes. Furthermore, Wang and Taylor [34, 35]

explored human movements in different natural disasters.

They found that human movements are significantly per-

turbed by typhoons with different magnitudes in different

cases and follow power-law distribution. Wang and Taylor

[36] indicated that the average sentiment levels decrease

with the earthquake intensity increase, and similar levels of

sentiment are likely to cluster in space. Overall, the

impacts of natural disasters on ridership and human

mobility are summarized in Table 1.
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Besides, when the investigation is conducted at the

station level, it is helpful to cluster stations into certain

types as the number of stations is large. Lv et al. [37]

applied K-means clustering method to divide the metro

stations into 3 types according to the passenger flows.

Similarly, the K-means clustering method was applied to

discern distinct metro station groups, which is further used

to employ the geographically weighted regression model to

examine the spatial variation of the built environment’s

impact on different types of metro stations [38]. Moreover,

employing clustering method to detect different distinct

ridership patterns of metro and taxi, Kim [39] identified

influence factors on human mobility for each pattern

depending on the modes of transportation in Seoul.

Besides, Hyland et al. [40] first clustered public bike sta-

tions based on their trips using K-means clustering tech-

niques. They highlighted that determinants of public bike

station usage vary across station-clusters.

To summarize, recent researchers have paid attention to

natural disasters’ influence on traffic, such as traffic flow,

taxi trip and public transit ridership. The number of taxi

trips is widely used to explore the ridership changes during

natural disasters. Besides, the metro ridership is also

investigated at the system level. However, it lacks inves-

tigating the metro ridership changes during natural disas-

ters at different levels, consisting of system, station, and

origin-destination (OD) level. Besides, many researchers

utilized the Twitter data and found that human movements

are significantly perturbed by natural disasters with dif-

ferent magnitudes in different cases and follow power-law

distribution. However, there are few studies about the

human mobility in the metro system under natural disas-

ters. Thus, we collected the transaction data before and

during the typhoon weather event to explore the ridership

changes, the relative total traveled stations changes and the

differences of human mobility in different states, which can

give some suggestions for further operation of metro sys-

tem in response to extreme weather events.

Table 1 Literature review about the impact of natural disasters on human mobility.

Study Data Region Event Indicator Finding

[13] GPS data

of taxi

Hong

Kong

Typhoon

Koppu

Taxi not in operation,

waiting time

About 80% of taxis were not in operation during the typhoon,

and the average customer-search time for drivers was very

short

[14] Taxi data New

York

Hurricanes

Irene and

Sandy

Taxi ridership The hurricane has the greatest influence on the number of taxi

trips during weekend and at night, and the least impact on a

weekday during the day

[15] Taxi and

metro

trips

New

York

Hurricanes

Irene and

Sandy

Daily taxi trips, daily metro

ridership

The recovery rate is lower for Sandy than that for Irene. A

higher resilience of road network when compared to the

metro network

[16] Location

data

Shenzhen Typhoon

Mangkhut

Urban human flow Urban flows reduced by 39% during the disruption.

Fundamental urban functions experienced less disruption

and recreational related trips are more severely affected

[17] AFC data Shenzhen 5 typhoons Metro ridership Typhoon events can severely influence the distributions and

recovery of metro ridership

[31] Twitter New

York

Hurricane

Sandy

Shifting distance of the

center of mass

The radius of gyration

During and after Hurricane Sandy, the human movements

followed truncated power-law distributions. Human

movements attained significant perturbations during

hurricane

[32] Twitter New

York

Hurricane

Sandy

Travel distance, the radius

of gyration, and mobility

entropy

The distance, radius and entropy of individuals decreased

significantly after Sandy. Individuals in higher

transportation diversity locations generally maintained a

higher distance and radius one week after Sandy

[33] Twitter The U.S. Hurricanes

Matthew,

Harvey

Trip distance, radius of

gyration, and mean

square displacement

Displacements become shorter and areas of activity become

smaller during hurricanes. The displacement follows the

power-law models

[34] Twitter Over the

world

15 Constructive

cases

Displacement, the radius of

gyration

In most cases, the power-law can explain human mobility in

most cases. The resilience has its limits and fails in more

powerful natural disasters

[35] Twitter 8 Areas 5 Typhoons Displacement

The radius of gyration

Human movements are significantly perturbed by typhoons

with different magnitudes in different cases, and follow

power-law distribution
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2 Data Description

This study is conducted in Fuzhou, which is the capital of

Fujian province, China. The total land area of Fuzhou is

11,968 square kilometers, with 1786 square kilometers of

urban area and 357 square kilometers of built-up area. In

2017, there were 7.7 million people in Fuzhou. Fuzhou has

a typical subtropical monsoon climate with abundant sun-

shine and rainfall, with an average annual precipitation of

900–2100 mm. In 2017, the average annual rainfall in

Fuzhou was 1508.2 mm. Affected by typhoons, the rainfall

in Fuzhou reached 49.2 mm on July 30, 2017, and 102.7

mm on July 31, 2017. In addition, Fuzhou is a coastal city

which is more likely to be affected by typhoons. Thus, it is

meaningful to analyze the impacts of typhoon weather

events on the metro system to improve the transit service.

On January 6, 2017, Line 1 in Fuzhou Metro was offi-

cially put into operation. Line 1 has a total length of 24.618

km, with 21 stations, passing through the main urban area

of Fuzhou. In 2017, the average daily ridership of Fuzhou

Metro was about 135,000. The station number and name in

Line 1 of Fuzhou Metro are presented in Table 2.

Typhoon 9 (Typhoon Nesat) and Typhoon 10 (Tropical

Storm Haitang) passed through on July 30 and 31, 2017,

respectively. Based on the precipitation records, the hourly

rainfall in the city during the typhoon weather events is

presented in Fig. 1. Besides, July 30 and July 31 are

Sunday and Monday, respectively. On July 30, the pre-

cipitation mainly happened during 4:00–11:00. While on

July 31, the precipitation last from 8:00 to 23:00, with two

breaks.

As shown in Table 3, the transaction records include

card ID, enter station, enter time, exit station, exit time. In

this study, we focus on the changes of metro ridership and

human mobility resulted from the typhoon weather events.

Thus, all transaction data on Sundays and Mondays of July

2017 were selected for making comparison. Besides, the

abnormal transaction records which enter and exit in the

same station are removed. Finally, the total ridership of

normal Mondays was 536,712, and that of normal Sundays

was 459,774. The metro ridership on July 30 was 68,779

and that on July 31 was 100,829 during typhoon weather

events.

In addition, to measure the human mobility distribution,

it is required to calculate the travel time of each trip [41].

With the transaction data of metro trips, the travel time of

each trip can be calculated according to Eq. 1.

Dt ¼ td � to ð1Þ

where Dt is the travel time, to denotes the enter time in the

origin station, and td denotes the exit time in the destination

station.

Besides, the number of traveled stations is an important

indicator, which is closely related to the total travel time

and fare. Thus, this study also takes the number of traveled

stations into consideration. The number of traveled stations

for each trip can be calculated from the transaction data.

Thus, the number of traveled stations is measured

according to Eq. 2.

Ds ¼ sd � soj j ð2Þ

where Ds is the number of traveled stations, so means the

origin station ID, and sd denotes the destination station ID.

3 Methodology

3.1 Assessment of Metro Ridership

This study utilized the relative ridership to measure the

perturbation resulted from the typhoon weather event [17].

This indicator can represent the difference between the

disturbed and normal ridership. Rather than the absolute

difference in ridership, which is affected by population,

city size, and the scale of metro systems, the relative rid-

ership can avoid their influences and can be applied for

inter-city comparison. The relative ridership is computable,

meaningful, and comparable. It was measured at three

Table 2 Station number and name in Line 1 of Fuzhou Metro.

Number Name

1 Xiangfeng Station

2 Xiushan Station

3 Luohanshan Station

4 Fuzhou Railway Station

5 Doumen Station

6 Shudou Station

7 Pingshan Station

8 Dongjiekou Station

9 Nanmendou Station

10 Chating Station

11 Dadao Station

12 Shangteng Station

13 Sanchajie Station

14 Baihuting Station

15 Huluzhen Station

16 Huangshan Station

17 Paixia Station

18 Chengmen Station

19 Sanjiaocheng Station

20 Lulei Station

21 Fuzhou South Railway Station
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levels, including the system level, station level and origin-

destination level. In addition, the stations are classified by

K-means clustering method according to the hourly

ridership.

The relative ridership (see Eq. 3) is measured with the

ridership on the normal days and that on the typhoon days.

RRt ¼
rt typ

rt nor

ð3Þ

where RRt is the relative ridership between ridership in

typhoon days and that in normal days in time period t,

rt nor means the ridership in time period t of normal days,

and rt typ denotes the ridership in time period t of typhoon

days.

3.2 Assessment of Total Traveled Stations

The number of traveled stations is a useful metric to

measure human mobility in the metro system [5]. It can not

only reflect the ridership, but also show the traveled sta-

tions of each trip. With the traveled stations for each trip

(see Eq. 2), the number of total traveled stations can be

calculated based on Eq. 4.

TTS ¼
XI

i

Dsi ð4Þ

where TTS denotes the number of total traveled stations,

Dsi is the number of traveled stations for trip i, I is the

number of metro trips.

The TTS for different situations can be computed from

the corresponding transaction dataset. Furthermore, to

reflect the deviation of TTS in typhoon weather event, this

study adopts the average TTS of normal days as the

baseline. With transaction data of the normal days in July

2017, TTS can be calculated as Eq. 5.

TTSt ¼
1

D

XD

d¼1

TTStd ð5Þ

where TTSt is the average TTS of time period t, D is the

number of normal days.

Based on TTSt of the typhoon weather event and the

baseline TTSt, the relative total traveled stations (RTTS) is

computed as Eq. 6.

Fig. 1 The hourly precipitation during the typhoon weather events.

Table 3 Examples of

transaction data in the metro

system.

Card ID Enter station Enter time Exit station Exit time

37225438293185000 3 20170730 06:34:16 4 20170730 06:38:30

36108441729507300 4 20170730 06:43:02 5 20170730 06:50:34

36108441726518500 1 20170730 21:59:42 8 20170730 22:19:40

36108441856489200 3 20170730 20:33:04 8 20170730 20:45:36

36108441594251000 4 20170730 19:22:21 9 20170730 19:36:10

36099538926270200 11 20170730 19:09:45 21 20170730 19:37:42

36 Urban Rail Transit (2022) 8(1):32–44
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RTTSt¼
TTSt

TTSt
ð6Þ

RTTS is a normalized metric which can measure the

deviation of actual travels resulted from the typhoon

weather event, compared with that in the normal state.

3.3 K-Means Clustering Method

K-means clustering is an unsupervised learning method

which can identify groups of objects that are similar to each

other to attain distinct groups [39]. For the simplicity and

power in high-dimensional space, K-means clustering has

been applied in many fields [42–44]. K-means algorithm

aims to divide n objects (xi; i ¼ 1; . . .; n) into k different

clusters (C ¼ fc1; . . .; ckg) according to the similarities of

attributes [38]. The purpose of K-means is to minimize the

distance of the objects within the same cluster and, in the

meantime, maximize the distance between the clusters. The

objective function of K-means clustering is as follows:

FðCÞ ¼
Xk

j¼1

X

xi2ck
dðxi; lkÞ ð7Þ

where xi represents the value of object i, lk is the centroid
of ck, and dðxi; lkÞ denotes a distance metric. In this study,

the hourly entering ridership and the hourly exiting rider-

ship are the adopted attributes for metro stations.

3.4 Assessment of Human Mobility

This study aims to utilize the travel time to explore human

mobility in metro system and the impacts resulted from

typhoon weather event. According to the previous study

[29], model selection can determine the most proper model

for experimental data from multiple models. This study

utilizes the Akaike information criterion (AIC) to select the

most proper model, which takes the optimal balance

between the complexity and the description of the model

[41]. It has the advantage of avoiding over-fitting. Besides,

it can compare various models in the meantime and provide

the most fitting model. In detail, the process of model

selection is as follows: first, the parameters are estimated

by the maximal likelihood estimation (MLE) for different

models; second, each model’s AIC score is calculated

according to AICi ¼ �2logLi þ 2Ki (where Li is the like-

lihood of the model i, and Ki denotes the number of

parameters in the model i) ; Finally, the Akaike weight is

calculated as Wi ¼ e�Di=2
.PN

j¼1 e
�Dj=2 (where

Di ¼ AICi � AICmin, AICmin ¼ min AICi, and N is the

number of the candidate models). Furthermore, the model

with the largest Akaike weight is selected.

According to previous studies [29, 45], three candidate

models, which are frequently used for human mobility in

public transit, are compared in the study, consisting of

Gamma, Weibull and lognormal distributions. The gamma

distribution can be formatted as Eq. 8.

PðxÞ ¼ 1

hkCðkÞ
xk�1e�x=h ð8Þ

where k[ 0 and h[ 0 are the shape parameter and scale

parameter, respectively. Besides, CðÞ is the gamma

function.

The Weibull distribution can be formatted as

Equation 9.

PðxÞ ¼ a

b

x

b

� �a�1

e�ðx=bÞa ð9Þ

where a[ 0 and b[ 0 are the shape parameter and scale

parameter, respectively.

The lognormal distribution can be formatted as Eq. 10.

PðxÞ ¼ 1

xr
ffiffiffiffiffiffi
2p

p exp �ðln x� lÞ2

2r2

 !
ð10Þ

where l and r are the mean and standard deviation of

natural logarithm of the variable.

4 Results and Analysis

4.1 System Level Ridership

The daily ridership of Fuzhou Metro in different situations

is calculated and presented in Table 4. On normal days, the

ridership is higher on Monday than that on Sunday. As to

the typhoon Sunday, the ridership is 0.60 as that on the

normal Sunday. While on Monday, the extreme weather

event leads to a reduction by 25% in metro ridership. It can

be found that metro ridership is more seriously affected on

Sunday. This is consistent with the fact that more travels on

Mondays are commuting ones which are fixed demands

and cannot be avoided. However, trips on Sundays are

more likely to be leisure ones

Table 4 The average daily ridership of Fuzhou metro system.

Day Average daily

ridership of normal

day

Average daily

ridership of typhoon

day

Relative

ridership

Sunday 116,187 69,559 0.60

Monday 135,424 101,619 0.75
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In detail, the hourly riderships in normal weather

and typhoon weather of Sunday are presented in Fig. 2,

and those of Monday are presented in Fig. 3. Besides, the

hourly relative ridership caused by the typhoon weather

event is depicted in Fig. 4. According to Fig. 2, the hourly

ridership on Sunday has apparent peaks during the morning

and evening peak hours on the normal weather days.

However, suffered from the typhoon weather event, the

peak in the morning peak hours disappears, which is con-

sistent with the heavy rain in the morning. In addition, the

peak in the evening moves from 18:00 to 17:00. Similarly,

the hourly ridership on Monday is plotted in Fig. 3. There

are significant morning and evening peaks on both the

normal weather and typhoon days. In general, the hourly

ridership is less influenced on Monday.

As for the hourly relative ridership shown in Fig. 4, the

relative ridership is extremely low during 8:00–11:00 on

Sunday. This is consistent with the amount of hourly pre-

cipitation for the day, in which the rain is heavy in the

morning. In the afternoon (13:00–17:00), the relative rid-

ership is larger. While in the evening, there is also a lower

relative ridership. For Monday, the relative ridership is

large in the morning peak hours, with a value of 0.9 at 8:00.

During 9:00–18:00, the relative ridership is stable, with a

value about 0.75. Besides, there is a smaller relative rid-

ership in the evening.

4.2 Station Level Ridership

The system level ridership is a macroscopic indicator.

Furthermore, we aim to analyze the station level ridership.

With the hourly ridership of each station, this study applies

K-means clustering method to cluster stations into 4 types

for further analysis. The classification results are shown in

Table 5.

The stations are classified into four types, and Type 1

owns 11 stations. The ridership patterns of four types are

presented in Fig. 5. Stations of Type 1 are located in res-

idential areas, with the obvious morning peak of entering

passengers and evening peak of exiting passengers on

Monday. Stations of Type 2 are located in the office areas

with an obvious morning peak of exiting passengers and an

evening peak of entering passengers on Monday. Stations

of Type 3 are located in the areas of mixed land use. There

are peaks for both entering and exiting passengers in the

morning and evening in the stations of Type 3. Stations of

Type 4 are located in transportation hubs, with fluctuating

entering and exiting passengers.

The average station level ridership is calculated

according to station types and the results are presented in

Table 6 for further analysis. According to Table 6, Type 1

has the largest ridership on Monday, followed by Type 2.

Besides, Type 3 and Type 4 have a similar ridership on the

normal Monday. On the normal Sunday, Types 1, 2, and 3

have significant decreases in ridership when compared with

that on the normal Monday. On the contrary, the ridership

of Type 4 is larger than that of the normal Monday.

As to the impacts of the typhoon weather event, Type 1

is most severely affected, with a relative ridership of 0.73,

and Type 3 is the least influenced one on Monday (0.79).

On Sunday, Type 3 has the lowest relative ridership (0.59)

and Type 4 has the biggest one (0.63). On typhoon days,

residents will reduce unnecessary travel, which leads to a

significant decline in ridership. It can be found that the

average ridership of normal days is various for different

station types, together with various values of relative rid-

ership resulted from the typhoon weather event.

4.3 OD Level Ridership

Furthermore, we investigate the daily ridership of each

station pair. The OD level ridership is defined as the daily

metro ridership for each OD pair. The OD level ridership

on the normal Sunday and Monday is presented in Fig. 6

and Fig. 7, respectively. The average OD level ridership on

Sunday is 263. On Monday, the average OD level ridership

is higher, with a value of 307. For most OD pairs, the

ridership is quite low. For Sunday, there are several OD

pairs with higher ridership, such as OD(4,8), OD(4,10),

OD(8,4), OD(21,10) and OD(21,13). For Monday,

OD(4,8), OD(4,10), OD(8,4), OD(10,4) and OD(21,10)

have higher ridership. Although the OD level ridership is

lower on Sunday than that on Monday, the highest OD

level ridership of Sunday is more than 2500, which is

higher than the highest OD ridership (1827) of Monday.

Overall, some OD pairs show higher values, while most

OD pairs are low in ridership.

As the OD with small ridership is unstable and fluctuates

greatly, we select OD pairs with more than 100 passengers

on normal days to analyze the changes resulted from the

typhoon weather event. Besides, the relative value between

the ridership in typhoon weather event and that of normal

days is set as 1 in this study for OD pairs with ridership less

than 100.

Table 5 Station types by K-means clustering method.

Types Stations

Type 1(in residential areas) 1, 2, 3, 12, 13, 14,

15, 16, 18, 19, 20

Type 2 (in office areas) 5, 7, 10, 11, 17

Type 3 (in the areas of mixed land use) 6, 8, 9

Type 4 (in transportation hubs) 4, 21
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On Sunday, there are 153 OD pairs with less than 100

passengers on normal days, which are set as 1 in Fig. 8 and

take 34.7% of all OD pairs. For the remaining OD pairs,

most relative values are less than 1, which indicates that the

ridership on the typhoon day is less than that in normal

days for OD pairs. On the contrary, the ridership of

OD(4,21) and OD(14,16) in typhoon weather event has

increased, compared to the ridership on the normal Sunday.

On Monday, there are 142 OD pairs with less than 100

passengers on the normal Monday, which are set as 1 in

Fig. 9, taking 32.2% of all OD pairs. After removing these

OD pairs, most OD pairs decreased in different magnitudes

on the typhoon day. There are only several OD pairs,

including OD(5,6), OD(6,5), OD(9,10), and OD(10,9), with

higher ridership when compared to those of normal

Mondays. The changes of ridership between Station 3 and

Station 14 in the urban area of Fuzhou are not significant,

mostly between 0.7 and 1. The residential areas and

working places in this section are relatively dense, and the

commuting by metro is rigid demand for these residents.

4.4 Relative Total Traveled Stations

The RTTS curves based on metro trips for the typhoon

weather event on Sunday and Monday are presented in

Fig. 10. On July 30, the rainstorm began at 3:00, which was

earlier than the opening time of the metro system. Thus, the

typhoon weather event had significant influences on human

mobility in the metro system when it began to operate in

the morning. During the typhoon weather event, the RTTS

reached its bottom (0.35) around 9:00 on July 30.

According to Fig. 1, the rainstorm ended at 11:00. The

RTTS saw an apparent increase and stay around 0.75

during 13:00–17:00. In the evening, the RTTS was about

0.50 although there was almost no precipitation. Besides,

the average number of traveled stations is 6.68 on the

normal Sunday, and it decreases to 6.55 on the typhoon

Sunday.

Fig. 2 The hourly ridership of metro system in normal weather and

typoon weather on Sundays.

Fig. 3 The hourly ridership of metro system in normal weather and

typoon weather on Mondays.

Fig. 4 The hourly relative ridership of metro system resulted from

the typhoon weather events.

Table 6 The average daily ridership of different station types.

Type 1 Type 2 Type 3 Type 4

Normal Monday 91,089 69,056 44,188 42,584

Typhoon Monday 66,573 53,034 34,945 32,098

Relative ridership 0.73 0.77 0.79 0.75

Normal Sunday 76,867 51,439 30,644 50,492

Typhoon Sunday 46,794 30,742 18,130 31,587

Relative ridership 0.61 0.60 0.59 0.63
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On July 31, the RTTS curve showed a different pattern

compared with that of July 30. At 8:00, the RTTS

approached 0.89, which is resulted from the stable com-

muting trips. Besides, some passengers may switch from

car and bus to metro as it is less impacted by the extreme

weather events. During 10:00–18:00, the RTTS was

stable with a value around 0.72. In addition, the RTTS

reached its lowest value of July 31 at 20:00. As a whole,

Fig. 5 The ridership pattern of four station types.

Fig. 6 The average daily OD ridership of normal Sunday.
Fig. 7 The average daily OD ridership of normal Monday.
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the average number of traveled stations is 6.22 on the

normal Monday, and it decreases to 6.14 on the typhoon

Monday.

According to RTTS in Fig. 10, there is a significant

perturbation of human mobility in the typhoon weather

event. The results showed that the human mobility was less

impacted on Monday. It is indicated that commuting pas-

sengers have higher resilience to the typhoon weather

event.

Fig. 8 The relative ridership between the typhoon day and the normal

day in each OD pair on Sunday.

Fig. 9 The relative ridership between the typhoon day and the normal

day in each OD pair on Monday.

Fig. 10 The relative total traveled stations of metro trips during the

typhoon weather events.

Fig. 11 The travel time distribution and gamma fitting on Sunday.

The blue line indicates the gamma distribution of the normal Sunday

(k = 5.0499, h = 4.1388), and the red line denotes the gamma

distribution of the typhoon Sunday (k = 4.6544, h = 4.4390).

Fig. 12 The travel time distribution and the gamma fitting on

Monday. The blue line indicates the gamma distribution of the normal

Sunday (k = 5.2042, h = 3.8770), and the red line denotes the gamma

distribution of the typhoon Sunday (k = 4.9677, h = 4.0020).
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4.5 Human Mobility in Travel Time

Travel time distribution can describe human mobility in the

metro system in detail. Thus, this study fits the travel time

distribution of Fuzhou Metro before and during the

typhoon weather event. The travel time of each metro trip

is computed from the transaction data. The distribution of

travel time on Sunday is presented in Fig. 11. As a whole,

the travel time of trips averages at 21.13 min on the normal

Sunday. In addition, the probability increases firstly and

reaches the peak when the travel time is about 18 min.

Then, the probability decreases with the increase in travel

time. On the typhoon Sunday, the peak of the probability

curve moves from 18 min to 17 min. Besides, the travel

time of trips averages at 20.66 min on the typhoon Sunday.

According to the actual data, the probability of the typhoon

Sunday is higher in the first range. In the middle range, the

normal Sunday has higher probability.

The travel time distributions of Monday are provided in

Fig. 12. Overall, there are similar characteristics as those in

Fig. 11. On the normal Monday, the probability increases

firstly and reaches the peak when the travel time is about 16

min. Then, the probability decreases with the increase in

travel time. On the typhoon Monday, the peak of the

probability curve moves from 16 to 15 min. The travel time

of metro trips averages at 20.24 min on the normal Monday

and at 19.88 min on the typhoon Monday.

According to the data, this study fits the travel time with

three candidate models, including Gamma, Weibull, and

lognormal distributions. Besides, we applied AIC method

to compare the three models and select the most fitting one.

The results of model selection are provided in Table 7.

According to the Akaike weight of three candidate models

in Table 7, the gamma distribution fits the four datasets

better than other models, with different values in parame-

ters. On both Sunday and Monday, the typhoon days have a

smaller shape parameter (k) and a larger scale parameter

(h) than the normal days. Besides, in the normal and per-

turbed state, Monday has a larger shape parameter (k) and a

smaller scale parameter (h) when compared to Sunday.

Lastly, the fitted gamma distributions are presented in

Figs. 11 and 12.

5 Conclusions and Future Work

This paper conducted a case study which aimed to examine

the ridership and human mobility perturbation in the metro

system during the typhoon weather event. The findings

indicate that the metro system attains an apparent impact in

ridership due to the typhoon weather event, with larger

decrease for Sunday and smaller decrease for Monday. On

the typhoon Sunday, the ridership decreases most in the

morning when the rainstorm is heavy. A similar decrease

can be seen in the evening of Monday with the typhoon

weather event.

This study employed the K-means clustering method to

classify metro stations into 4 types with different travel

patterns. The results confirm that the four types of stations

are influenced with different degrees with their character-

istics. For OD level ridership, most OD pairs see significant

ridership decreases with the impacts of the typhoon

weather event. However, several OD pairs attain increase

in ridership. This can be attributed to the fact that many

passengers may switch from other modes to metro, as it is

less affected by typhoon than other modes. For the RTTS,

it is lower for the leisure trips, such as trips on Sunday and

trips in the evening of Monday. The average number of

traveled stations is larger on Sunday when compared to that

on Monday. Besides, the average number of traveled sta-

tions is smaller in the typhoon state than that in the normal

state on Sunday and Monday.

Table 7 Results of model

selection for travel time of

metro trips in Fuzhou.

Model Item Normal Sunday Normal Monday Typhoon Sunday Typhoon Monday

Gamma MLE for k 5.0499 5.2042 4.6544 4.9677

MLE for h 4.1388 3.8770 4.4390 4.0020

R2
gam

0.9972 0.9967 0.9936 0.9967

Wgam 1 1 1 1

Weibull MLE for a 23.6269 22.8061 23.3906 22.4856

MLE for b 2.3826 2.3832 2.2748 2.3451

R2
wbl

0.9750 0.9962 0.9945 0.9683

Wwbl 0 0 0 0

Lognormal MLE for l 2.9375 2.9054 2.9170 2.8857

MLE for r 0.4668 0.4569 0.4855 0.4691

R2
logn

0.9926 0.9961 0.9947 0.9944

Wlogn 0 0 0 0
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As to the human mobility in terms of travel time, the

travel time is lower in the typhoon event than that in the

normal state. We compare three candidate models,

including Gamma, Weibull, and lognormal distribution,

with the Akaike information criterion to select the more

fitting one. The gamma distribution is the most fitting one

for travel time of metro trips in the four situations with

different values of parameters. On both Sunday and Mon-

day, the typhoon days have a smaller shape parameter

(k) and a larger scale parameter (h) than the normal days.

Besides, in the normal and perturbed state, Monday has a

larger shape parameter (k) and a smaller scale parameter

(h) when compared to Sunday. It can be concluded that

travel time distributions are significantly perturbed by

typhoons, and follow gamma distribution.

The findings from this study have practical implications

for metro management under extreme weather events. With

a deeper understanding of perturbation to ridership at dif-

ferent levels and human mobility of different states in the

metro system, it is helpful for decision-makers to take

proper strategies to mitigate the impacts and damages from

typhoon.

Besides, there are some limitations in this study. This

paper only takes one case into consideration; thus, it is

difficult to measure the first typhoon’s impacts on the

second day. It is better to consider the impact of extreme

weather events in Fuzhou in the long-term and compare the

impacts of different cities to conclude more general find-

ings. Although this study analyzes metro ridership of two

days which are Sunday(weekend) and Monday (weekday)

respectively, and passengers have different travel patterns

naturally. Finally, another potential issue is to measure the

potential effects of excessively severe flood on stations and

the access modes and the contribute to the changes of travel

behaviors.
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