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Abstract In the design, development, and operation of a

rail transport system, all the actors involved use one or

more safety methods to identify hazardous situations, the

causes of hazards, potential accidents, and the severity of

the consequences that would result. The main objective is

to justify and ensure that the design architecture of the

transportation system is safe and presents no particular risk

to users or the environment. As part of this process of

certification, domain experts are responsible for reviewing

the safety of the system, and are being brought in to

imagine new scenarios of potential accidents to ensure the

exhaustiveness of such safety studies. One of the difficul-

ties in this process is to determine abnormal scenarios that

could lead to a particular potential accident. This is the

fundamental point that motivated the present work, whose

objective is to develop tools to assist certification experts in

their crucial task of analyzing and evaluating railway

safety. However, the type of reasoning (inductive, deduc-

tive, by analogy, etc.) used by certification experts as well

as the very nature of the knowledge manipulated in this

certification process (symbolic, subjective, evolutionary,

empirical, etc.) justify that conventional computer solu-

tions cannot be adopted; the use of artificial intelligence

(AI) methods and techniques helps to understand the

problem of safety analysis and certification of high-risk

systems such as guided rail transport systems. To help

experts in this complex process of evaluating safety

studies, we decided to use AI techniques and in particular

machine learning to systematize, streamline, and

strengthen conventional approaches used for safety analy-

sis and certification.
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scenarios � Artificial intelligence � Machine learning �
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1 Introduction

This article describes a contribution for improving the

usual safety analysis methods applied in the certification of

railway transport systems. The methodology is based on

complementary and simultaneous use of knowledge

acquisition and machine learning. We used the ACASYA

software environment to support the safety analysis aid

methodology. ACASYA aims to provide experts with

suggestions of potential failures which have not been

considered by the manufacturer and which may jeopardize

the safety of a new rail transport system. In more formal

terms, the methodology used to assist in such safety anal-

ysis is based on two models: a generic accident scenario

representation model, which is based on a static and a

dynamic description of a scenario, and a model of the

implicit reasoning of the expert, which involves three

major activities, namely the classification, evaluation, and

generation of scenarios.

The first level (CLASCA) relates to finding the class to

which a new scenario which has been suggested by the

manufacturer belongs. The second level (EVALSCA) is

used to compare the list of summarized failures (SFs)

suggested by a manufacturer with a list of stored historical

SFs in order to stimulate the formulation of hazardous
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situations not anticipated by the manufacturer. This eval-

uation task draws the attention of the expert to any failures

which have not been considered by the manufacturer and

which might jeopardize the safety of the transport system.

These two levels are supplemented by a third level

(GENESCA), which makes use of the static and the

dynamic description of the scenario (the Petri model). The

generation of a new scenario is based on injecting an SF,

defined in the previous level as being plausible, into a

specific sequencing of the change in the marking of the

Petri net.

Considering the scale of the problem, the design and

construction of this demonstration model of the ACASYA

system concentrated on the first two levels of processing

(classification and evaluation of scenarios). After present-

ing the objectives of and motivations for this study, the

following paragraphs successively present the approach

adopted for the development of the system of assistance for

the analysis and evaluation of rail safety as well as the

results obtained.

2 Main Methods of Railway Safety Analysis

The notion of ‘‘risk’’ is a combination of the probability of

the occurrence of a potential accident and the severity of

the most severe damage that it could cause. This is usually

expressed on a scale with several levels of risk: ‘‘negligi-

ble,’’ ‘‘unacceptable,’’ ‘‘tolerable,’’ ‘‘acceptable under cer-

tain conditions,’’ and ‘‘acceptable.’’ This ‘‘level of risk’’

can also be measured by the number of probable deaths per

predefined time unit. There is also the notion of ‘‘safety,’’

defined by the European standard CENELEC 50129 [1] as

the absence of any risk with unacceptable level, measured

on a qualitative scale.

In terms of railway safety, there are two major safety

activities (Fig. 1). The first is usually called the develop-

ment or ‘‘construction of safety’’ process, while the second

activity focuses on managing safety (coordination, orga-

nization, etc.). The safety development process can, in turn,

be hierarchically structured into four safety analysis

activities: (1) system-level analysis, (2) automation-level

analysis, (3) hardware-level analysis, and (4) software-

level analysis.

2.1 The Different Levels of Safety Analysis

Each level of safety analysis has one or more safety

methods (Fig. 2):

• At the system level, the main method is the ‘‘prelim-

inary hazard analysis’’ (PHA) method, which aims to

identify potential accidents related to the transport

system and its interfaces in order to evaluate them and

propose solutions to remove, reduce, or control them

[2].

• At the level of automation, a method known as

‘‘functional safety analysis’’ (FSA) is applied. FSA

aims to justify that the design architecture of the system

is safe against potential accidents identified by the PHA

and thereby ensure that all safety provisions are taken

into account to cover potential hazards or accidents.

• At the software level, several methods related to

software safety analysis (SSA) are carried out. SSA is

generally based on the software errors and effects

analysis (SEEA) [3] method as well as on critical code

reads.
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• At the hardware level, several safety methods relating

to hardware safety analysis (HSA) need to be estab-

lished. HSA focuses on safety analysis of electronic

boards and interfaces.

In this approach, two types of analysis are implemented:

inductive and deductive.

2.2 Inductive and Deductive Analyses

• Inductive analysis is based on analysis of failure modes,

their effects, and their criticality (AFMEC). The

AFMEC method is usually completed by the method of

combining summarized failures (MCSF) [4] also called

the significant failures combination search method.

Originating from the field of aeronautics, the MCSF

method was developed jointly by the National Society

of Aeronautical and Space Industries (NSASI) and the

French Air Ministry Certification Authorities for safety

analysis of Concorde and Airbus planes. The AFMEC

method, which usually highlights simple failures, must

be supplemented by studying combinations of failures

that would result in undesirable (or dangerous) events.

Thus, the MCSF method, as extended in the AFMEC

method, inductively determines such combinations of

failures. Generally, it is noted that the effects (or con-

sequences) on the system are identical for one or more

modes of failure. These failure modes are then grouped

into fault sets called ‘‘summary faults’’ (SFs). This

method of safety analysis therefore focuses on

extracting only combinations of security-relevant fail-

ures and can be considered as an extension of the

conventional AFMEC method. As part of our approach

to analyzing and evaluating rail transport safety, we use

this concept of summary failures (SFs).

• Deductive analysis proceeds by searching for scenarios

that run counter to safety and that make it impossible to

comply with the safety criteria derived from functional

safety analysis (FSA). Such analysis usually requires

the use of the cause tree method.

Indeed, all of these methods of safety analysis are based

on two fundamental approaches, of inductive or deductive

type. In the inductive approach, the reasoning goes from

the most particular to the most general, leading to a

detailed study of the effects of a failure on the system and

its environment. In other words, inductive methods start

from elementary events, either to look for consequences

directly or to identify combinations of events that may have

other than minor consequences. PHA, AFMEC, and SEEA

are examples of such inductive methods. In the deductive

process, the reasoning goes from the most general to the

most particular such that, in the face of a failing system, the

causes of the failure are deduced. The main deductive

method is fault tree analysis (FTA). In practice, and when

considering a complex system, safety analysis requires

experts in the field to implement an iterative safety

development process involving both inductive and deduc-

tive methods. In the design, development, and operation of

a rail transport system, all the actors involved (infrastruc-

ture manager, railway companies, manufacturer, certifica-

tion body, national safety authority, investigative technical

body, etc.) use one or more safety methods to identify

hazardous elements and equipment, hazardous situations,

the causes of hazards, potential accidents, and the severity

of the consequences that would result.

Having briefly presented the main methods of safety

analysis involved in the design and development of a rail

transport system, the following paragraphs are devoted to

the design and implementation of a functional safety

analysis (FSA) support tool (Fig. 2) based on artificial

intelligence techniques and in particular on automatic

learning methods. The next paragraph details the motiva-

tions for and objectives of this study.

3 Objectives of and Motivations for the Study

The ACASYA project, which is the subject of this paper,

provides assistance particularly for the functional safety

analysis (FSA) phase. FSA aims to justify that the design

architecture of a system is safe against potential accidents

identified by PHA and thereby ensure that all safety pro-

visions are taken into account to cover potential hazards or

accidents. Such analyses provide (low-level) safety criteria

for the design of the system and the realization of hardware

and software safety equipment. They also impose safety

criteria related to the sizing, operation, and maintenance of

the system. FSA can highlight unsafe scenarios that require

improvement and rectification of the specification andde-

sign phases of the transport system.

The development of this FSA support tool was moti-

vated by various findings revealed by the problem identi-

fication and specification phase, the main ones being:

• The need to rationalize and automate the classical FSA

approach

• The need to improve the quality of accident risk

analysis by archiving, formalizing, and disseminating

the knowhow of the builder and safety experts

• The difficulty of synthesizing and exploiting the

considerable amount of historical knowledge involved

in FSAs carried out for guided rail transport systems

that have already been certified and put into service in

France
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• The desire to judge the comprehensiveness of FSAs

proposed by the manufacturer as part of the review of

the safety studies of a new rail transport system

These reasons guided us towards the development of an

AI-based tool for assisting in the analysis and review of the

completeness and consistency of the new FSA. More pre-

cisely, this tool must:

• Suggest risks that were not taken into account during

the initial analysis.

• Help find the most appropriate solutions or preventive

measures to guard against a particular risk.

• Propose a common risk analysis database for the FSA

for the various actors involved in the development of a

rail transport system. Such a database is indispensable,

especially when the studied system bears a resemblance

to existing systems but experience is lacking. It can be

further enriched and updated by the various stakehold-

ers. The main objective of this database is to store the

experience and knowhow in the analysis of risks and

errors related to FSA.

Considering the complexity of the knowledge of experts

and the difficulty which they have in explaining their

mental processes, there is a danger that the extracted

knowledge will be incorrect, incomplete, or even incon-

sistent. A variety of research in AI is in progress in an

attempt to understand this problem of expertise transfer.

Research is currently taking place in two major, indepen-

dent areas [6]:

• Knowledge acquisition, which aims to define methods

for achieving a better grasp of expertise transfer. These

methods chiefly involve software engineering and

cognitive psychology.

• Machine learning, which involves the use of inductive,

deductive, abductive, or analogical techniques to

provide the knowledge-based system (KBS) with

learning.

To develop a KBS to aid in safety analysis, we com-

bined these two approaches and used them in a comple-

mentary way.

4 Approach Adopted for Evaluation of Railway
Safety

The approach taken to design and implement the tool for

assisting with safety analysis and assessment is based on

two main activities [7]. The first is to extract, formalize,

and archive potential accident scenarios to develop a

standard case library covering the entire safety problem.

These dangerous situations are archived in a database

called the ‘‘historical scenarios knowledge base’’ (HSKB).

The second activity aims to exploit this stored historical

knowledge (HSKB) to develop safety analysis knowhow

that can help experts judge the comprehensiveness of

safety analyses. This second activity is essentially based on

the use of machine-learning techniques and in particular on

inductive learning of production rules. More precisely, the

solutions chosen to design and implement this tool involve

the following four main steps:

• Formalization and structuring of knowledge with a

view to identifying a model for the representation and

acquisition of FSA accident scenarios based on man-

ufacturers’ safety files.

• Collection of knowledge and more precisely risks and

solutions adopted. In this step, we exploit the formalism

elaborated in the previous step to archive typical cases.

• Creation of a knowledge base covering all FSAs for

already certified transport systems.

• Exploitation of the database to help judge the com-

pleteness of an FSA of a new system.

5 Literature Review in Artificial Intelligence

5.1 Introduction to Artificial Intelligence

The ambitious aim of artificial intelligence is to equip

computers with some of the faculties of the human mind,

viz. to learn, recognize, reason, etc. The ability to under-

stand natural language and reason is the keystone of AI.

Excitement about AI and machine learning is now ubiq-

uitous, with a hundred new conferences appearing all over

the world during 2019 [3], including AI and the Future of

Work in San Francisco, the Global Symposium on AI in

China, the Summit on In-Depth Financial Learning in

London, AI and Big Data again in London, the AI Con-

ference in New York, the International Conference on

Machine Learning in California, the Summit on AI in Hong

Kong, the Summit on Deep Learning in Montreal, Canada,

etc.

The first results of research carried out in this field

concerned expert systems or KBS, which have emerged as

decision-support tools capable of replicating some of the

intellectual tasks usually performed by human experts. The

capacity to exploit and especially capitalize on and sustain

such experience gives KBS the power of information and

decision to guide nonspecialist users. Since the 1970s, KBS

have made a remarkable entry into industry; they are no

longer considered rare objects from research laboratories.

However, they very rarely achieve the performance of the

human expert, and are often poorly adapted to the real

needs of end-users. This is due to the difficulty of
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extracting the necessary expertise from one or more experts

in the field and representing this knowledge without dis-

tortion to construct a cognitive model of the expert. In

addition, the manual filing of the KBS knowledge base

(KB) is a crucial phase. Indeed, capturing knowledge to

store it in the KB of an expert system is a complex and

time-consuming task and often requires great material and

human resources. Several research works have evoked this

problem of collecting and formalizing the knowledge

manipulated by the problem-solving expert. Experts may

have great difficulty in explicitly describing the steps they

use in reasoning to make decisions, which may require a

long process of reflection to enable the unconscious part of

the approach to be explained. However, the success of a

KBS project depends on this difficult and sometimes

painful task. Like many authors, we consider this task as

the bottleneck in KBS development. Indeed, given the

complexity of the knowledge of the expert and the diffi-

culty of the latter in explaining their mental processes, the

knowledge extracted may often be inaccurate, incomplete,

or even incoherent. Various research studies in AI have

thus been carried out to address this problem of expertise

transfer, divided into two major independent research

activities [8–15].

In knowledge acquisition (KA), the design of a knowl-

edge base requires the extraction, analysis, structuring, and

formalization of the knowhow of a domain that is accessed

through one or more qualified experts. Therefore, the

transfer of this expertise raises the following delicate

questions: Who really holds the expertise? How can it be

accessed? How can it be extracted? How can it be for-

malized without distortion? Which representation should

be chosen? How can the collected knowledge be validated

and maintained? Various research studies have been con-

ducted to improve the understanding of these problems

inherent to knowledge acquisition and KBS design.

Methods, techniques, and tools for knowledge acquisition

are now accessible to the cognitive engineer (knowledge

engineer) and to the expert, offering a methodological

framework for KBS development. Possible techniques for

knowledge extraction have been studied and presented by

many authors [8–10].

Machine learning (ML) [12, 13] is an important branch

of research in the field of AI. The birth of this discipline

dates back to the 1960s, and the most spectacular result

was obtained at that time by the American A. Samuel, who

designed a program to play checkers that memorized many

moves and constantly improved its strategy, eventually

reaching champion level. The principle of learning was

born: to learn is to perfect one’s knowledge and improve

one’s performance by taking advantage of past failures. In

the 1970s, a new approach to learning emerged: AI, which

aims for explicability in the knowledge base formed. Thus,

apprenticeship, which at first was only an interesting idea,

has now become an indispensable discipline for the pro-

gress of several industrial systems, being regarded as a

promising solution to assist knowledge acquisition. Work

in this area [11] has attempted to answer certain issues,

such as how such a mass of knowledge can be expressed

clearly, managed, added to, and modified. Machine learn-

ing is defined by a dual objective: a scientific objective

(understanding and mechanically producing phenomena of

temporal change and the adaptation of reasoning) and a

practical objective (automatic acquisition of knowledge

bases from examples). Learning may be defined as per-

formance improvement through experience, being inti-

mately connected to generalization [12, 13]; learning

consists of making the transition from a succession of

experienced situations to knowledge which can be reuti-

lized in similar situations. Three types of problems are

raised for each of the main learning techniques [11]. The

first of these is grouping (termed ‘‘classification’’ in data

analysis), i.e., given a certain mass of knowledge, how is it

possible to discover links between the different items in

order to group them into meaningful and simpler sub-

groups? The second problem (discrimination) is that of

learning classification procedures: given a set of examples

of concepts, how is it possible to find a method which

provides effective recognition of each concept? The third

problem is that of generalization: how is it possible, on the

basis of concrete examples of a situation, to find a formula

which is sufficiently general to describe the situation in

question, and how is it possible to explain the descriptive

ability of this formula? ML has attracted increasing interest

in recent years, as evidenced by the impressive number of

publications and conferences on this subject. ML’s efforts

to address clustering, discrimination, and generalization of

objects have resulted in a wide variety of methods, tech-

niques, algorithms, and systems. Nevertheless, this abun-

dant literature makes it difficult to comprehend the field,

given the ambiguity of its vocabulary and the absence of

rigorous reference definitions.

In addition to KBS based on knowledge acquisition

(KA) and machine learning (ML) as mentioned above,

artificial intelligence implements several other methods

and techniques, such as neural networks (NN) also called

deep learning, genetic algorithms (GAs), pattern recogni-

tion, which is often associated with image processing,

fuzzy systems based on the fuzzy set theory proposed by

Lotfi Zadeh in 1965, big data analytics (BDA), and case-

based reasoning (CBR). For those involved or interested in

the latest AI technologies, the annual Applied Artificial

Intelligence Conference is a beneficial event, focusing on

the latest trends in and future impact of AI (Artificial

Intelligence) applications and commercialization in many

sectors, including transportation, logistics, health, energy,
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financial technologies, the future of work (FoW), the

Internet of Things (IoT), and cybersecurity.

5.2 Examples of Applications of Artificial

Intelligence in Railway Transport

In recent years, researchers and experts in the field of land

and air transport have become increasingly interested in the

application of artificial intelligence techniques to solve

certain decision assistance problems, such as diagnosis of

transport equipment, management of maintenance opera-

tions, analysis of driver behavior, prediction of deteriora-

tion of transport infrastructure, planning and forecasting of

traffic demand, control of traffic signals, control of air

traffic, etc.; For example, machine learning has been used

for rail maintenance forecasting [16], (fuzzy knowledge-

based) expert systems for rail traffic control [17], deep

learning for detection of lateral railroad defects [18], and

neural networks for detection of defects on the surface of

rails [19]. Meanwhile, big data analytics (BDA) has been

used in particular to identify trends, discover relationships,

implement predictive analysis, and give meaning to ima-

ges, data flows, and various other types of information. In

railway transport applications, BDA can make a beneficial

contribution in view of the large amounts of data generated

in the transport system by sensors installed on tracks or

wagons, or signaling equipment, monitoring and inspection

equipment, communication systems, train monitoring sys-

tems, etc. BDA can examine the collected dataset to obtain

useful information to explain, for example, the potential

causes of degradation during operation, failure of certain

track components, and possibly safety equipment. BDA

thus presents the main characteristics required by rail

transport experts to monitor the overall condition of the

infrastructure, optimize and plan maintenance operations,

manage the risks of accidents and potential incidents, and

consequently improve the safety of the transport system.

As an example, one can mention the work on exploiting

data relating to operation, maintenance, and railway safety

[20], decision-making on rail maintenance [21], engineer-

ing and management of railway applications [22],

improvement of call reporting systems [23], implementa-

tion of a predictive approach to the safety and maintenance

of personnel [24], and the work of Siemens on the use of

big data to build the Internet of Trains [25].

5.3 Contributions with Respect to the State

of the Art

As stated above, safety experts and certification bodies face

several obstacles to improving the safety level of rail

transport systems, in particular the difficulty in synthesiz-

ing and exploiting the considerable historical knowledge of

functional safety analysis (FSA) and the desire to judge the

completeness of an FSA proposed by the manufacturer

during the development of a new rail transport system. This

need to rationalize the traditional FSA approach to improve

the quality of accident risk analyses and finally assist

experts in judging the completeness of an FSA and the

adequacy of the protective measures considered directed us

towards the development of a tool allowing the suggestion

of potential accidents and/or the most appropriate protec-

tive or preventative measures for a particular risk. To

achieve these objectives, the chosen approach is based on

several aspects of artificial intelligence and in particular on

the use of the following techniques:

• Knowledge acquisition to gather knowledge on railway

safety and in particular the scenarios of potential

accidents.

• Learning by classification of concepts to group accident

scenarios into homogeneous classes, e.g., relating to

train collisions or derailment problems. In addition,

learning by classification to help certification experts in

the search phase of accident scenarios or potential

incidents likely to jeopardize safety studies proposed by

the manufacturer of the rail transport system.

• Rule-based machine learning (RBML) to automatically

identify, from a base of historical scenarios (experience

feedback), relevant safety rules, which are often

difficult to extract manually from safety experts.

• A knowledge-based system (KBS) to which production

rules, previously deduced by machine learning, are

transferred to construct the knowledge base for the FSA

assessment support tool.

Thus, our rail safety assessment approach is a hybrid

method built around a classification algorithm, a rule-based

automatic learning system (RBML), and a system based on

the knowledge (KBS). Despite the undeniable interest in

artificial intelligence approaches as presented in the pre-

vious paragraph, there is no comprehensive approach to

meet all of our research objectives and needs for analysis

and railway safety assessment.

The choice of a learning system adapted to an industrial

application is generally based on the identification of the

needs, the characteristics of the available knowledge, as

well as the definition of the expected performance of the

learning system. For the safety problem and the certifica-

tion of rail transport systems, the knowledge acquisition

phase identified some 80 accident scenarios relating to the

risk of collision. This set of scenarios was grouped by the

security expert into nine classes of scenario, such as the

redundancy switching class and the initialization class.

These scenario classes are archived in the HSKB. This

database of learning examples is not completely
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representative of the field of railway safety and is tainted

with ‘‘noisy’’ data.

The objective of this study is to apply machine learning

on this basis to reproduce the activities of classification,

evaluation, and generation of potential accident scenarios

involved in the evolutionary, intuitive, and creative

approach of the expert. In fact, in the presence of a new

example of a scenario proposed by the manufacturer, the

certification expert endeavors to classify it into an existing

accident family while ensuring that this potential scenario

takes into account all the breakdowns or possible failures.

To identify the activity of finding failures likely to cause a

situation of insecurity (or a hazardous situation contrary to

security), the learning mechanism must produce a base of

rules of the form: ‘‘if symptoms then failures’’,

exploitable by the inference engine of an expert system.

Having briefly recalled the essential characteristics of

the field and introducing our approach for the development

of a tool to assist in the analysis and evaluation of func-

tional safety, we now justify the choice of systems and

learning algorithms selected with reference to all the

properties required by the tool to assist with analysis of rail

safety and to the current proposal as perceived through the

literature review. The properties imposed on the rail safety

analysis tool are as follows:

• Similarity-based learning (SBL), characterized by the

availability of a large number of examples supplying

the learning system but a lack of knowledge on the field

(or weak knowledge). Given the acquired safety

knowledge, which is essentially accident scenarios,

the choice of the SBL is justified.

• Symbolic-digital data processing. This approach com-

bines the efficiency of digital processing that allows

operation in the presence of noisy and incomplete

security data, and the explicability of symbolic pro-

cessing necessary for the user to understand the

knowledge produced.

• Classification learning and empirical regularity learn-

ing. Two learning strategies are required to achieve the

two activities involved in the certification process:

classification of accident scenarios, and detection of

empirical regularities to build knowledge bases

exploitable by an expert system.

• Incremental production of conjunctive descriptions of

object classes and rule generation. The classification

activity requires nonmonotonic incremental learning of

conjunctive descriptions of accident scenario classes.

The scenario evaluation activity requires the generation

of production rules to assist in recognition of failures

and dangers.

• Rules structuring. The learning system must generate,

rather than isolated rules with a single inference step, a

system of structured rules that enables deductive

reasoning, essentially taking into account the orienta-

tion of the rules, viz. from symptoms to causes

(failures).

• Nonmonotonic learning. Incrementality is an indis-

pensable property when dealing with the evolving

nature of knowledge in the field of railway safety. It

must be nonmonotonic to ensure the possible question-

ing of previously learned knowledge. To guarantee

such nonmonotony of knowledge, it is necessary to

integrate means that allow its stabilization and thus the

convergence of the system.

• Expert–system interactivity. Inductive learning is inher-

ently uncertain and produces plausible knowledge that

the domain expert must validate. The intervention of

this latter should not be limited, as in most learning

systems, to the provision of learning examples, but

should also focus on control of the learned knowledge.

The system, meanwhile, must argue its reasoning and

decisions. This ‘‘interactive’’ or ‘‘supervised’’ learning

promotes the acquisition of new knowledge. Such

interaction of the domain expert at each stage of the

learning process requires the development of a user-

friendly human–machine interface.

All of these properties are indispensable for the new and

complex industrial application of rail transport certifica-

tion. It can be seen that none of the studied learning sys-

tems alone satisfies all these properties. However, if we

break down our problem by distinguishing the classifica-

tion activity from the evaluation of the accident scenarios,

one could consider using the CHARADE [12] system for

the generation of production rules, although we are forced

to develop a new classification system for accident

scenarios.

5.3.1 Rationale for Choosing the CHARADE Rule

Learning System

CHARADE [12] allows not only the generation of a

structured rule system that can be exploited by the infer-

ence engine of an expert system, but also completion of the

description of the examples provided by the expert to take

into account possibly noisy data, such as example accident

scenarios. This makes it possible to learn certain logical

rules and uncertain rules simultaneously, modulated by a

likelihood coefficient. Finally, its major originality lies in

its flexibility and its translation of the desired KBS func-

tionalities thanks to the constraints that it implements. All

of these benefits come at the cost of learning, which cannot

be incremental. However, at the level of the development

of evaluation rules for accident scenarios, the structuring of

the rules has priority over incrementality.
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5.3.2 Need to Develop a New Classification Learning

System: CLASCA

Analysis of existing works with regard to the properties

expected for the classification activity reveals shortcom-

ings. The learning system that comes closest to the clas-

sification solution is the ID3 [26] algorithm and its

derivatives. Nevertheless, these learning systems require

that the examples to be classified are all available from the

start of the learning phase. In practice, and particularly in

the field of railway safety, it is difficult to obtain an

exhaustive list of examples unless considerable time is

spent in the data acquisition phase with the experts. This is

all the more true in this evolutionary domain. In addition,

the internal learning mechanisms of the majority of clas-

sification systems are not accessible to the domain expert.

Designing a learning mechanism with a prominent place

for the expert to judge, semantically, the quality of the

knowledge produced is an interesting advance. Indeed, an

apprenticeship supervised by an expert is in itself an

approach likely to bring out knowledge that, initially, was

not necessarily obvious or even consciously present in the

expert’s mind. In view of these remarks, we propose to

start the learning phase with a lot of examples preclassified

by the expert and not representative of the field, without

obliging the expert to list all the examples but by involving

them throughout the learning process to improve the

knowledge acquired. As a result, the semantics of knowl-

edge are taken into account. Then, the system is evolved

with each new example scenario provided by the expert to

incrementally form conjunctive descriptions of potential

scenario classes that are comprehensible by the expert and

compatible with the CHARADE system. This approach,

which lies somewhere between nonincremental learning

systems requiring the presence of all the examples to be

classified and those incrementally dealing with the exam-

ples one by one, is the subject of the CLASCA system that

is conceived and detailed below.

The preceding paragraphs presented the field of safety

and certification of rail transport, the limits of the usual

means of acquiring knowledge, as well as the need to use

machine learning to better understand the process of

transferring certification expertise. The rest of this article

proposes the different stages of design and realization of

the ACASYA system of assistance for the analysis and

evaluation of functional safety. This is essentially based on

the joint use of the CHARADE and CLASCA modules

previously identified.

6 General Description of the Safety Assessment
Methodology

This article describes a contribution to improving the usual

safety analysis methods applied in the certification of

railway transport systems. The methodology is based on

the complementary and simultaneous use of knowledge

acquisition and machine learning. We use the ACASYA

software environment to support the safety analysis

assisting methodology. As shown in Fig. 3, ACASYA

consists of four main modules. The formalization module

deals with the acquisition and representation of a scenario

and is part of the knowledge acquisition phase. The three

other modules (CLASCA, EVALSCA, and GENESCA)

deal with the problems associated with scenario classifi-

cation, evaluation, and generation.

7 Acquisition of Safety Knowledge

The knowledge acquisition phase emerges as a critical step

in identifying issues related to the safety and certification

of rail transportation systems. It allows identification of the

main aspects as well as the human and technical environ-

ment and finally to frame the project in the following two

regards: (1) a feasibility study of a system to support the

analysis of functional security and (2) to focus primarily on

the risk of ‘‘collision.’’ The extraction and formalization of

all accident or incident scenarios is a significant task. In

fact, the safety of rail transport requires all the risks of

potential accidents (collision, derailment, electrocution,

etc.) to be taken into account, to which many scenarios can

be associated. We deliberately limit this feasibility study to

one risk, viz. ‘‘collision.’’ Nevertheless, the architecture of

the realized system is open and could therefore accom-

modate other risks.

Fig. 3 Functional organization of the ACASYA system
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As shown in Fig. 4, the main causes of rail risk are

generally related to train circulation, poor condition of

rolling stock, poor condition of infrastructure, incorrect

system design, or human factors. Each cause of a railway

accident, can be, in turn, broken down into several sub-

causes; For example, the risks associated with train

movements can lead to the risk of collision or train

derailment. We deliberately limited this feasibility study of

the safety assessment support tool to the risk of ‘‘colli-

sion.’’ Knowledge on the ‘‘collision’’ risk is structured into

a hierarchy (Fig. 5). We distinguish three collision classes:

collision with operating trains, collision with fixed obsta-

cles, and collision with other vehicles.

To date, the knowledge acquisition phase has resulted in

the development of a historical scenarios knowledge base

(HSKB) that includes 80 scenarios of accidents or incidents

related to collision risk. Figure 6 shows an excerpt from the

list of accident scenarios, such as the problem of redun-

dancy switching, penetration on a busy Canton, improper

initialization, mating failure of elements, inversion of order

of elements, failure to record after a needle, and crossing a

breakpoint in manual driving. All 80 scenarios were sub-

sequently grouped by safety experts into several classes or

families of scenarios (Fig. 7) such as the class of ‘‘redun-

dancy switching,’’ the class of ‘‘initialization sequence,’’

the class of ‘‘location of trains,’’ or the class of ‘‘emergency

braking management.’’

This HSKB, which forms the basis of the learning

examples, is exploited by the CLASCA learning algorithm

to determine the membership class of a new scenario

proposed by the transport system manufacturer. This

HSKB database is also exploited by the CHARADE

learning algorithm to produce rules necessary for learning

the summary fault (SF) recognition functions. This work is

presented below.

8 Modeling of Accident Scenarios

An accident scenario describes a combination of circum-

stances which can lead to an undesirable, perhaps even

hazardous, situation. It is characterized by a context and a

set of events and parameters. Examination of the concept

of scenario revealed two fundamental aspects. The first is

‘‘static’’ and characterizes the context, whereas the second

is ‘‘dynamic’’ and reveals the possibilities of change within

this context, while stressing the process which leads to an

unsafe situation. The static description of a scenario is used

by the first automatic learning module, namely CLASCA,

which is dedicated to the classification of accident sce-

narios. On the other hand, the dynamic description (mod-

eled by a Petri net) is implemented in the framework of the

Railway risks

Train circulation

Collision

Derailment

Etc.Poor condition of 
the rolling stock

Poor condition of 
the infrastructure

Wrong system 
design

Human factors

Fig. 4 The main causes of railway risks

 

Risk of collision

Collision with 
operating trains

Frontal collision 
(Nose to nose)

Side collision (in an 
intersection)

Collision by catch-up 
(Rear collision)

Collision with fixed 
obstacles

Collision with a stop 
block (buffer)

Collision against 
obstacle on the track

Collision with level 
crossing

Collision with a 
vehicle parked in the 
bottom of the drawer

Collision by jig 
engagement following 

a train derailment

Collision with other 
circulations

Collision with 
intervention vehicle

Collision with works 
vehicle

Collision following 
derailment

Fig. 5 Classification of different types of ‘‘collision’’ risk
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third, GENESCA module dedicated to the generation of

new accident scenarios. The study presented herein focuses

solely on the static description. The formalism used for the

static description of a potential accident scenario is that of

a ‘‘descriptive form,’’ in which several essential descriptive

parameters are described in terms of attribute–value pairs.

The attributes correspond to the eight characteristic

parameters of a scenario (Fig. 8; Table 1), and each

Extracted from the list 
of accident scenarios

Redundancy Switching

Penetration on a busy canton

Improper Initialization

Loss of an element due to redundancy switching

Element Loss Due to Anti-Collision Transmitter Failure.

Canton traversable in both directions.

Loss of element during docking phase

Mating failure of elements.

Moving mute element in initialization phase

Inversion of order of elements

Deleting an element too early

Crossing a Breakpoint in Manual Driving

Premature registration of an element on a section

Unexpected Switching of Input / Output Mode

Failure to record after a needle

Follow-up error due to impossibility of deletion

Transmission Failure Between Two Adjacent APs

Fig. 6 A sample of scenarios acquired from domain experts

Classification of 
accident scenarios

Redundancy 
switching

Scenarios 1, 8, 29 
and 30

Initialization 
sequence

Scenarios 4, 5, 6, 
21, 22, 23, 34

Location of trains Scenarios 3, 7, 
17, 19, 25, 38

Emergency 
braking 

management
Scenarios 9, 10, 

20, 24

Berthing trains Scenarios 13, 14, 
15, 32, 33, 35, 40

Manage the 
direction of train 

movement
Scenarios 2, 12, 

16, 18

Input / Output 
Control

Scenarios 11, 31, 
36, 37, 39

Followed the 
order of trains

Scenarios 26, 41, 
42

Manual driving Scenarios 27, 28, 
43

Fig. 7 Grouping of scenarios into nine classes by the safety expert

Accident 
scenario

Type of 
Block  
(TB) 

Hazards 
(Risks)

(H)

Hazard 
Related 

Functions 
(HRF)

Geographic 
al Zones 

(GZ)

Elements 
Involved 

(EI)

Incident 
Functions 

(IF)

Summarized 
Failures  

(SF)

Adopted 
Solutions 

(AS)

Fig. 8 Parameters describing an accident scenario
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attribute is associated with a list of possible values

(Table 2). This ‘‘descriptive form’’ was subsequently used

as the basic form for the acquisition of the 80 scenarios. In

summary, the static description of a scenario leads to the

definition of a first descriptive language for the example

scenarios. This is a classical representation by attribute–

value couples. This expression language is close to the

language of the expert and has the advantage of being

compatible with the structuring of historical safety data.

The scenarios which have been collected so far in the

historical knowledge base relate to the collision problem

and have been constructed on the basis of the safety dos-

siers of French rail transport systems [VAL, POMA 2000,

MAGGALY, and TVM430 (Nord TGV)] and the kno-

whow of experts. More precisely, the level of detail which

is required in the system description to formalize the sce-

narios is essentially related to the general specifications of

the system, the functional specifications, and the functional

safety analysis.

9 Detailed Description of Safety Assessment
Methodology

As illustrated in Fig. 9, the railway safety analysis and

assessment methodology is organized into the 11 steps,

detailed below. The first eight steps are carried out by the

scenario classification module (CLASCA) and the last

three in the scenario evaluation module (EVALSCA):

1. Acquisition of the scenarios to be treated

2. Construction of the historical scenarios knowledge

base (HSKB)

3. Predesign: parameters and learning constraints

4. Learning: introduction of description of classes of

scenarios

5. Classification of a new example of a scenario

6. Validation of knowledge learned by the system

7. Study of convergence of the learning system

8. Update of the HSKB database

9. Learning the summarized failures (SF) recognition

functions: evaluation of the rule base produced by

CHARADE

10. Deduction of SFs to be considered in the manufac-

turer’s scenario

11. Validation by the safety expert

9.1 Description of the CLASCA Classification

Learning System

The first level of analysis relates to finding the class to

which a new scenario which has been suggested by the

manufacturer belongs. The aim of this is to provide the

expert with historical scenarios which are partially or

completely similar to the new scenario. This mode of

reasoning is analogous to that which experts use when they

attempt to find similarities between situations which have

been described by the manufacturer and certain experi-

enced or envisaged situations involving equipment which

Table 1 Definition of the descriptive parameters of an accident scenario

Parameter Definition

Type of block In guided rail transport systems, there are two types of block: fixed blocks and moving blocks

Hazard Hazard measures the level of risk. It is characterized by two factors: the severity of consequences and the probability of

occurrence. In the present context, the term ‘‘hazard’’ is used to describe a situation which may give rise to a physical

injury or the destruction of one or more pieces of equipment of the transport system. Several potential hazards have

been identified, e.g., collision, derailment, and electrocution

Hazard-related

functions

These are protective functions which are intended to remove the hazard or make it acceptable to the user. A specific

hazard may involve several subfunctions of the system, of either a protective or purely functional nature; For example,

redundancy switching, pushing, and train localization functions are relate to the collision hazard

Geographical zones The five main geographic zones are as follows: terminus, station, line, train entry zone, and section limit

Elements involved It was possible to make a list of those involved in all the accident scenarios, for example, the trains, the operator at the

control center (CC), and the train driver

Incident functions These are functions which are related to the operation of the system and which can promote the occurrence of a scenario

which affects the safety of the system. These functions may play the role of a catalyst. Four basic incident functions

have been identified: route management, traffic control, transmission, and operating instructions (consistency of

instructions and operator vigilance)

Summarized failures

(SF)

An SF is a generic failure produced by the combination of a set of basic failures which has the same effect on the

performance of the system. Each scenario brings into play one or more SFs. A list has been compiled of the SFs

involved in all the scenarios which have been collected so far

Adopted solutions The manufacturer suggests several solutions for each safety-threatening scenario, one of which is implemented. A list of

adopted solutions (ASs) for the scenarios which have been collected so far has been drawn up
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Table 2 List of descriptive

parameters of an accident

scenario

Attribute Possible values

Type of block (TB) Fixed blocks

Moving blocks

Hazards (risks) (H) Collision

Derailment

Electrocution

Fire or explosion

Passenger pinch, cut on any object

Passenger struck during closing of doors

Poorly controlled emergency evacuation

Hazard-related functions (HRFs) Management of automatic driving

Train localization

Control input/output

Tracking trains

Speed set point

Management of train stops

Authorization CI/HT

Redundancy switching

Initialization

Manual driving

Alarm management

Route protection

Traction/braking

Evacuation

Incidental functions (IFs) Route management

Traffic control

Communication (transmission)

Instructions (consistency, vigilance)

Elements involved (EIs) Number of trains

Mobile operator

Operator at the control center (CC)

Automatic driver (AD) with redundancy

Automatic driver (AD) without redundancy

Geographical zones (GZs) Terminus

Station

Line

Train entry zone

Section limit

Summarized failures (SFs) Element and target in opposite direction

Train reversing into an occupied block

Collision avoidance transmitter failure

Masking of an alarm by initialization

Unexpected route switching by AP

Invisible element on the driving zone

Location fault

Authorization of both directions of travel for the same train

Change of meaning of the target

Element and target in the opposite direction

Unexpected I/O mode switching

Penetration on a section by recoil

Incorrect operation of door opening
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has already been certified and approved. The classification

of a new scenario includes the following two major phases

(Fig. 10):

• A characterization (or generalization) stage for con-

structing a description of each class of scenarios. This

stage operates by detecting similarities within a set of

historical scenarios in the HSKB which have been

preclassified by the expert in the domain.

• A deduction (or classification) stage to determine the

class to which a new scenario belongs by evaluating a

similarity criterion. The descriptors of the new scenario

(static description) are compared with the descriptions

of the classes which were generated previously.

This initial level of processing not only provides assis-

tance to the expert by suggesting scenarios which are

Table 2 continued Attribute Possible values

Incorrect start of the train

Untimely reactivation of an electric section

Incorrect points movement

Adopted solutions (ASs) Prohibit change of route if the approach area is occupied

Increase the length of the Canton

The upstream Canton must be released only if the downstream is occupied

One-way authorization at a time

Take into account the distance of recoil

Prohibit switching of I/O mode while a mode is in progress

Empty the section of any element before initializing

Take into account the position of the train when switching I/O mode

Prohibit switching of I/O mode while a mode is in progress

Impose a reduced speed for formations of more than two elements

Immobilize the train until the evacuation alarm is acknowledged

Control of the absence of needle movement by the AP

In MC, respect the minimum spacing from the preceding train

Scenarios classification
"CLASCA"

Acquisition of the scenarios 
to be treated

Constitution of the 
Historical Scenarios 

Knowledge Base (HSKB)

Pre-design

Learning: Induction of description of classes of 
scenarios

Classification of a new example of a scenario

Validation of knowledge learned by the system

Study of convergence of the learning system

Updating of HSKB

Scenarios assessment
"EVALSCA"

Learning the Summarized 
Failures (SF) recognition 
functions (CHARADE)

Deduction of SFs who are 
to be considered in the 
manufacturer's scenario

Validation by the safety 
Expert

Fig. 9 Safety analysis and assessment methodology

Current knowledge learnt
(descriptions of scenario classes)

Historical scenario

Acceptability
conditions

for a scenario

Classification 
parameters

Learning 
parameters

Parameters
adjustment

Predesign
Learning

(induction)
Classification

(deduction)

New scenario

A classification
Enrichment

Scenarios
input

Validation
and expert

decision

Accident
scenario

for classification 

of the base

Base of historical
scenarios

Fig. 10 General architecture of CLASCA module
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similar to the scenario which is to be dealt with, but also

reduces the space required for evaluating and generating

new scenarios by focusing on a single class of scenarios Ck.

CLASCA is a learning system based on research into

classification procedures. It is inductive, incremental, and

dedicated to the classification of accident scenarios.

Learning in CLASCA is on the one hand nonmonotonic to

take into account the noisy and incomplete data relating to

the scenarios and on the other hand supervised to allow the

expert to correct and complete the initial knowledge and/or

that produced by the system. CLASCA incrementally

develops conjunctive descriptions of historical scenario

classes in order to characterize a set of insecure situations

and identify a new scenario submitted for evaluation to

experts. The classification operation is carried out in the

seven consecutive steps detailed below.

9.1.1 Acquisition of the Scenarios to be Treated

This first step concerns the capture of three types of sce-

narios: (1) a new scenario (to verify its admissibility before

processing), (2) a historical scenario (a preclassified sce-

nario experienced by the experts, archived and with known

class), and (3) a scenario to be classified (a new scenario to

be classified, whose consistency the expert seeks to eval-

uate). The scenarios analyzed to date are related to the risk

of ‘‘collision.’’ They come not only from the experience

and knowhow of railway safety experts, but also from

experience feedback obtained from guided rail transport

systems such as the VAL system, the POMA system, the

MAGGALY system, and the TVM430 system TGV-North.

9.1.2 Construction of the Historical Scenarios Knowledge

Base (HSKB)

This first stage involves the collection of safety analysis

knowledge with respect to guided rail transport systems.

This knowledge is as follows:

• The HSKB, which currently includes about 80 histor-

ical scenarios related to a collision risk. These scenarios

have been formalized on the basis of a static descrip-

tion, then grouped into classes by the expert.

• An accident scenario description language, which

consists of a set of descriptors (or parameters which

describe a scenario).

• Accident scenarios, described using this language.

These may be historical and preclassified by the expert

in order to add to the HSKB, or new and suggested by

the manufacturer. In the second case, the experts will

attempt to evaluate the consistency of the scenarios.

• Learning parameters (induction, classification, and

convergence parameters).

Very schematically, guided rail transport systems are

considered as being an assembly of basic bricks, thus a new

system possesses certain bricks which are shared by sys-

tems which are already known. In the context of this study,

the basic bricks which have currently been identified have

been grouped together, and the ACASYA tool finds and

then exploits shared bricks in order to deduce the class to

which a new scenario belongs or evaluate its completeness.

9.1.3 Predesign

This step makes it possible to set the different values of the

parameters and learning constraints required by the system.

During this phase, the user defines in particular the learning

parameters (induction, classification, and convergence

parameters) and the admissibility constraints of a scenario,

which define the conditions necessary for a scenario to be

acceptable by the system. All of these parameters mainly

affect the relevance and quality of the classification

knowledge learned, as well as the speed of convergence of

the system.

9.1.4 Description of Classes of Scenarios

This stage involves generalizing the classes which have

been predefined by the experts in order to generate a

comprehensive description for each class which both

characterizes the division conducted by the expert and

enables identification of the class to which the new

example belongs. Each description which is learnt is

characterized by a combination of three elements: (\At-

tribute[ \Value[ \Frequency[). The frequency of

appearance is computed for each descriptor (at-

tribute/value) in order to limit the loss of information

(formula no. 1). The description of a class is further enri-

ched by taking into account the associated summarized

failures (SF) which are involved. These SFs will subse-

quently be exploited in order to develop the base of

learning examples. The objective is to determine the fre-

quency of occurrence s in a selected example class Ck of

attribute A of rank n.

snm Ckð Þ denotes the probability that attribute An takes the

value Vn
m in example eKp and corresponds to the occurrence

frequency of the value in class Ck:

snmðCkÞ ¼
PCardCk

p¼1 Dn
m ekp

� �

CardCk

: ð1Þ

9.1.5 Classification of a New Example of a Scenario

In this stage, a new example of a scenario is assigned to an

existing class Ck. To achieve this, it is necessary to define a
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classification criterion which measures the degree of

resemblance between the new example and each of the

preexisting classes. This similarity criterion is based on

statistical calculations and takes account of the semantics

of the domain of application. The classification phase of a

new example accident scenario requires the definition of a

classification parameter called the ‘‘adequacy rate’’ (Tad),

which measures the degree of resemblance between the

new example Ei and each of the classes Ck of preexisting

scenarios. Tad is expressed as

Tad 1ðEi;CkÞ ¼
P

m;nð Þ=snmðCkÞsd D
n
mðEiÞ � snmðCkÞ

P
m;nð Þ=snmðCkÞsd s

n
mðCkÞ

: ð2Þ

This adequacy rate (Tad) based on statistical calculations is

purely digital. We propose to refine it to take account of the

semantics of the domain of application. The idea consists

in extracting the list of descriptors relevant to characterize

each class of examples from the set of descriptors identified

with the experts. The descriptors acquired and specific to

each class are called ‘‘key descriptors’’; For example, for

the class ‘‘initialization sequence,’’ three key descriptors

were defined by the expert: location of the trains, initial-

ization, and safety instructions. This approach makes it

possible to define a second rate of adequacy, which reflects

the semantics of knowledge:

Tad 2ðEi;CkÞ ¼
P

m;nð Þ=ðAn;Vn
mÞ soit 00cl�e00 deCk

Dn
mðEiÞ � snmðCkÞ

P
m;nð Þ=ðAn;Vn

mÞ soit 00cl�e00 deCk
snmðCkÞ

ð3Þ

The combination of these two adequacy rates (2) and (3)

ultimately leads to the definition of a rate to measure the

adequacy between a new example Ei and a class Ck, taking

into account both the statistical aspects and the semantics

of the data:

TadðEi;CkÞ ¼ k Tad1 ðEi;CkÞ þ ð1� kÞTad 2ðEi;CkÞ; ð4Þ

with 0 B k B 1.

k is a smoothing coefficient that can be adjusted

experimentally or proposed by the domain expert to take

account of his deep convictions. It is possible to give more

or less importance to statistical or semantic processing; For

example, if k = 0, the matching rate is purely semantic,

whereas if k = 1, it is purely statistical, while the two types

of treatment are taken into account equally in the case

where k = 0.5.

9.1.6 Validation of Knowledge Learned by the System

The probable membership class of the new scenario iden-

tified must be validated by the expert using a dialog module

which enables argumentation by the system and a decision

by the expert. In argumentation, the system keeps track of

the deduction phase to build its explanation. Following this

phase of justification of the classification decision, the

expert decides either to accept the proposed classification,

in which case the scenario will be learned by the classifi-

cation algorithm, or to reject the classification. In the

second case, it is up to the expert to decide what to do next;

For example, they can adjust the learning parameters (k, ss,
etc.), create a new class, modify the description of the

scenario, or put the scenario on hold. In the situation where

the tool assigns the new example of a scenario to a class,

this class needs to be updated. The updating process gen-

erates four situations as below:

• Particularization of descriptors, viz. descriptors which

are considered characteristic at instant t may lose their

significance at instant (t ? 1)

• Generalization of descriptors: descriptors considered to

be not meaningful may become characteristic

• Simultaneous particularization and generalization

• Learning of new descriptors which enrich the descrip-

tion of the class

This phenomenon demonstrates the nonmonotonic

character of the learning system.

9.1.7 Study of Convergence of the Learning System

The integration of a new example into a class causes a

refresh of the frequency of appearance of the descriptors. In

this context, the unavoidable presence of ‘‘noise’’ makes

nonmonotonic learning necessary, so that the frequency of

appearance of a descriptor can increase or decrease

depending on the influence of the new scenarios on the

consistency of the class. To solve this problem of conver-

gence, we decided to change the value of the similarity

threshold ss throughout the classification cycle, to become

increasing ‘‘demanding’’ with growth of the size of the

considered class. This approach leads to the definition of

two types of convergence: ‘‘internal convergence,’’ related

to the stability of knowledge within a class, and ‘‘global

convergence,’’ which ensures the stability of knowledge for

all classes. These two types of convergence are encom-

passed in a broader definition called ‘‘enhanced internal

convergence’’ (formula 5):

ss Ck; nð Þ ¼ 1� a eb 1�CardCkð Þ
� �

1� ced n0�nð Þ
� �

; ð5Þ

where

• ss(Ck, n) is the similarity threshold that increases

monotonically as a function of Card Ck and n and tends

to 1. It is updated with each addition of an example to a

class.
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• Card Ck is the cardinality of class Ck at time t, which

evolves with the addition of new examples to a class

Ck.

• n0 is the set of learning examples provided to the

system from the start.

• n is the number of total examples that cover the domain

considered.

• a, b, c, and d are four coefficients calculated from four

initial conditions to be determined. Note that the values

of a, b, c, and d (a[ 0, b[ 0, c[ 0, d[ 0) can be set

differently from one class to another. b and d affect the

learning time and consequently the speed of conver-

gence. These two factors affect the convergence.

Variation of b and d allows the user to evolve the

system at will and ensure its convergence.

9.1.8 Update of HSKB Database

A scenario that is classified by the system, judged to be

relevant, and validated by the expert will subsequently be

integrated into the HSKB database. This phase includes

updating the data and therefore learning new scenarios of

potential accidents.

9.2 Description of the Expert System to Aid

in Evaluation of Safety Based on Learning

of Rules: EVALSCA

The second level of processing (EVALSCA) considers the

class to which CLASCA has deduced that the scenario

belongs, in order to evaluate the consistency of the man-

ufacturer’s scenario. The evaluation approach is centered

on the summarized failures (SFs) which are involved in the

manufacturer’s scenario. An accident scenario describes a

set of circumstances that can lead to a dangerous situation.

It is characterized by a context and a set of parameters, in

particular an SF, risk (hazard or potential accident), the

actors involved, the incidental functions, and a geographic

zone. An SF is a generic failure produced by the combi-

nation of a set of basic failures which has the same effect

on the performance of the system. Each scenario brings

into play one or more SFs. A list of the SFs involved in all

the scenarios collected so far has been compiled. The fol-

lowing list is a sample of a few SFs:

• SF1: train reversing into an occupied block

• SF2: collision avoidance transmitter failure in a train

• SF3: masking of an alarm by initialization

Consequently, the evaluation of a scenario involves the

following two modules (Fig. 11):

• A mechanism for learning rules (CHARADE) which

makes it possible to deduce SF recognition functions

and thus generate a base of evaluation rules

• An inference engine which exploits the above base of

rules in order to deduce which SFs are to be considered

in the manufacturer’s scenario.

9.2.1 Learning the SF Recognition Functions

The goal is to generate a recognition function for each SF

associated with a given class. The SF recognition function

is a production rule which establishes a link between a set

of facts (parameters which describe a scenario or descrip-

tors) and the SF fact. This involves a logical dependence,

which can be expressed as shown in Fig. 12.

In this way, a base of evaluation rules can be generated

for each class of scenarios. This phase of learning attempts

to generate a system of rules by using the base of 80

examples which was formed previously. A base of evalu-

ation rules can be generated for each class of scenarios.

The conclusion of each generated rule should contain the

SF descriptor or fact. In this context, it has proved indis-

pensable to use a learning method which allows production

rules to be generated from a set of historical examples (or

scenarios). The specification of the properties required by

the learning system and a review of literature led us to

choose the CHARADE mechanism [12]. The ability of

CHARADE to automatically generate a system of rules,

rather than isolated rules, and its ability to produce rules in

order to develop SF recognition functions make it of

undeniable interest. CHARADE is a learning system whose

purpose is to construct knowledge-based systems on the

basis of examples. It makes it possible to generate a system

of rules with specific properties. Rule generation within

Knowledge-based system

Knowledge base

Base of
facts

Base of historical
scenarios 

Comparison

Failures
considered
in the scenario

Base of
rules

Automatic
generation

of rules
(CHARADE )

Inference engine
Failures
suggested
by the system

Failures not
considered
in the scenario

Description
of scenario

(without failures)

Scenario
for evaluation

Fig. 11 General architecture of EVALSCA module
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CHARADE is based on looking for and discovering

empirical regularities which are present in the entire

learning sample. A regularity is a correlation which is

observed between descriptors in the base of learning

examples. If all the examples in the learning base which

possess the descriptor d1 also possess the descriptor d2, it

can be inferred that d1 ? d2 in the entire learning set. To

illustrate this rule generation principle, let us assume that

there is a learning set which consists of three examples E1,

E2, and E3:

• E1 = d1 & d2 & d3 & d4

• E2 = d1 & d2 & d4 & d5

• E3 = d1 & d2 & d3 & d4 & d6

In this case, CHARADE can detect an empirical regu-

larity between the combination of descriptors (d1 & d2)

and the descriptor d4. All those examples described by d1

& d2 are also described by d4. The rule d1 & d2 ? d4 is

thus obtained (Fig. 13).

9.2.2 Deduction of SFs To Be Considered

in the Manufacturer’s Scenario

The SF deduction stage requires a preliminary phase during

which the rules generated by CHARADE are transferred to

an expert system to construct a scenario evaluation

knowledge base. The purpose of the EVALSCA module is

to compare the list of SFs suggested in a manufacturer

scenario with the list of stored historical SFs (in the rule

base of the expert system), so as to stimulate the formu-

lation of hazardous situations which have not been antici-

pated by the manufacturer. This evaluation task draws the

attention of the expert to any failures which have not been

considered by the manufacturer and which might jeopar-

dize the safety of the transport system. This may thus

promote the generation of new accident scenarios.

Assuming that the constructor’s scenario consists of the

following facts: ‘‘moving_block,’’ ‘‘collision,’’ ‘‘manage-

ment_of_automatic_driving-train_monitoring,’’ ‘‘initial-

ization,’’ ‘‘terminus,’’ ‘‘operator_at_CC,’’ ‘‘ad_without_

redundancy,’’ and ‘‘instructions,’’ the inference engine of

the expert system, proceeding by forward chaining of the

rules generated by CHARADE, can deduce the summary

failure (SF) shown in Fig. 14.

10 Perspectives: Towards the Development
of a System to Aid Automatic Generation
of Accident Scenarios (GENESCA Module)

The two levels of processing described above make use of

the static description of the scenario (descriptive parame-

ters). They are supplemented by a third level (GENESCA)

which makes use of the ‘‘dynamic description’’ of the

scenario (the Petri model) and three reasoning mechanisms,

namely induction, deduction, and abduction. Generation of

a new scenario is based on injecting an SF, defined by the

previous level as plausible, into a specific sequencing of

the change in the marking of the Petri net (Fig. 15). In view

of the scale of the problem, the design and construction of

the demonstration model of the ACASYA system con-

centrated on the first two levels of processing (classifica-

tion and evaluation of scenarios).

IF Type of block (TB) 
And Hazard (H) 
And Hazard related functions (HRF) 
And Geographical zones (GZ) 
And Elements involved (EI) 
And Incident functions (IF) 

THEN Summarized Failures (SF)

Fig. 12 Form of SF recognition rules

If Elements involved = mobile operator,
Incident functions = instructions
Elements-involved = operator in CC.

Then summarized failures = SF11
(Invisible element on the zone of completely automatic driving),
Elements involved = AD with redundancy,
Hazard related functions =train localization,
Geographical zones = terminus.
[0]

If Type of block = fixed block,
Hazard related functions = initialization
Incident functions = instructions

Then summarized failures = SF10
(Erroneous re-establishment of safety frequency/high voltage,)
Hazard related functions = Full control/High voltage permission
Hazard related functions = alarm management,
Hazard related functions = train localization.
[0]

If Hazard related functions = train localization,
Elements involved = AD without redundancy.

Then summarized failures = SF9
(Entry of a train into an occupied block),
Geographical zone = line,
Type of block = fixed block.
[0]

Fig. 13 A sample of some rules generated by CHARADE

@@ 09/02/2019
moving_block
collision
management_of_automatic_driving-train_monitoring
initialization
terminus
operator_at_CC
ad_without_redundancy
instructions

DEDUCTION:
Summarized failure = SF19 (Silent train)

Fig. 14 Example result of deduction by the expert system
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11 Conclusions

The essence of the task of analyzing rail safety is to imagine

new scenarios of potential accidents that either demonstrate

the completeness of the safety analysis performed by the

manufacturer or contradict it. Indeed, in the presence of a

dangerous situation described in the form of scenarios by

the manufacturer, the expert reasons by analogy, that is,

trying to bring a new situation of insecurity closer to cer-

tain situations experienced with equipment or similar sys-

tems that have already been certified. Before making an

adequate decision, the expert looks for similarities between

the submitted case and a set of typical simulated or expe-

rienced cases with which they have already been con-

fronted. In this sense, improving the quality of the expert’s

decisions by implementing a tool to help find similarities

between different configurations or situations of insecurity

represents a substantial aid for safety experts. This paper

presents our contribution to the improvement of the meth-

ods which are normally used to analyze and assess the

safety of automatic devices in guided transport systems.

This contribution is based on the use of artificial intelli-

gence techniques and has involved the development of

several approaches and tools to assist in the modeling,

storage, and assessment of knowledge about safety. The

software tools have two main purposes: firstly to record and

store experience concerning safety analyses, and secondly

to assist those involved in the development and assessment

of the systems in the demanding task of evaluating safety

studies. Currently, these tools are at the mock-up stage, but

a first validation by security experts has shown the interest

of the suggested approaches. This study aims to complete

and improve the model of representation of accident sce-

narios by taking into account human factors [27].
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