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Abstract Designing urban rail transit systems is a com-

plex problem, which involves the determination of station

locations, track geometry, and various other system char-

acteristics. Most of the previous rail transit route opti-

mization studies have focused on the alignment design

between predetermined stations, whereas a practical design

process has to account for the complex interactions among

railway alignments and station locations. This paper pro-

poses a methodology for concurrently optimizing station

locations and the rail transit alignment connecting those

stations, by accommodating multiple system objectives,

satisfying various design constraints, and integrating the

analysis models with a geographical information system

database. The methodology incorporates demand and sta-

tion costs in the evaluation framework and employs a

genetic algorithm for optimizing the decision variables for

station locations, station types, and track alignments. It is

expected that transit planners may greatly benefit from the

proposed methodology, with which they can conveniently

and efficiently optimize candidate alternatives. The Balti-

more Red Line is used as a case study to demonstrate how

the model can find very good solutions in regions with

complex geography.

Keywords Rail transit � Concurrent optimization �
Station location � Track alignment

1 Introduction

As a high-capacity transportation mode that is free from

surface road congestion, urban rail transit has witnessed

significant expansion in many cities during recent decades

despite the substantial investment needed for its construc-

tion and maintenance. Designing urban rail transit systems

is a complex problem, which involves the determination of

station locations, track geometry, and various other system

characteristics. Currently, the design of urban rail transit

systems is mostly approached empirically with a trial-and-

error process: planners develop alternatives subject to

design specifications and local conditions, and then eval-

uate these alternatives based on project budget as well as

system performance criteria. Such a design process is time-

consuming and cannot guarantee that its results are even

close to optimal.

In response, various optimization models have been

proposed to establish alignments that meet various geom-

etry requirements. The early work focused especially on

modeling techniques, such as calculus of variations [1, 2],

numerical search [3, 4], linear programming [5, 6], network

optimization [7–9], and dynamic programming [3, 8, 10,

11]. Recent studies advanced the methodology by remov-

ing unrealistic assumptions and incorporating real-world

constraints. Researchers at the University of Maryland

have proposed a series of GA-based alignment optimiza-

tion models. Jong [12] and Jong and Schonfeld [13] first

demonstrated the concept in highway alignment opti-

mization, featuring its comprehensive cost function and its

consistency with engineering practice in the generated
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alignments. Jha [14], Jha and Schonfeld [15] and Jha et al.

[16] extended the model by integrating a GIS to better

accommodate the complex topological and environmental

features. Kim [17] and Kim et al. [18] developed methods

for incorporating the cost of major structures, i.e., bridges

and tunnels. Kang et al. [19] further improved the GA-

based solution algorithm by introducing the Feasible Gates

approach.

Jha et al. [20] extended the previous highway models to

railway alignment optimization. Lai and Schonfeld [21]

presented a practical rail transit alignment optimization

method to account for vehicle dynamics, which aims to

balance the initial construction cost with the operation and

user costs recurring throughout the system’s life cycle. Kim

et al. [22, 23] focused on vertical alignments between rail

transit stations that exploited gravity to help accelerate and

decelerate trains. Most of these publications on optimizing

urban rail transit designs focused on the alignment opti-

mization between two or more predetermined stations,

whereas the selection of station locations may actually be

even more challenging. Planners sometimes have to identify

the potential station locations and select the best set among

these locations, while accounting for various geometric,

topological, environmental, and financial constraints.

This paper proposes a methodology for concurrently

optimizing station locations and the rail transit alignment

connecting these stations, by accommodating multiple

system objectives, formulating various design constraints,

and integrating the analysis models with a geographical

information system (GIS) database. The methodology

incorporates demand and station costs in the evaluation

framework and employs a genetic algorithm (GA) for

optimizing the decision variables for station locations,

station types, and track alignments. It is expected that

transit planners may greatly benefit from the proposed

methodology, with which they can conveniently and effi-

ciently optimize alternatives.

2 Methodology

Figure 1 illustrates the framework of the proposed

methodology for concurrently optimizing rail transit

alignment and station locations, and also for helping

planners select the type of each station.

Following the engineering practice, this paper models the

3-dimensional rail track alignment with three separate

components: the selection of stations, including station

sequence and station type, the horizontal alignment that

defines the track’ path on the XY plane, and the vertical

alignment that defines the elevation along the horizontal

alignment. The model also incorporates various geometry

constraints derived from engineering practice [24], using the

cutting-plane concept [12] to define the Point of Intersec-

tion. The simulation of vehicle dynamics is based on the

essential train dynamics equations in Hay [25], which divide

the train operation between each pair of neighboring stations

into acceleration, cruising, and braking stages, and then

calculates train energy consumption and travel time along a

given track alignment with an iterative process [21].

The remaining sections will detail three other key steps,

i.e., the generation of the candidate station pool, the mode

choice model, and the calculation of the cost function.

2.1 Generation of the Candidate Pool of Potential

Rail Transit Stations

The proposed concurrent optimization model directly

addresses the tradeoffs between ridership and cost in

selecting station locations and generating the alignment in

between. As it is impractical to check every point in the

study area as potential station sites, this section presents

procedures that apply quantified constraints to screen the

study area and build a candidate pool of possible station

locations. This candidate pool is then used as an input in

the concurrent station and alignment optimization model to

identify the best station locations.

Based on engineering practice, the candidate station

locations typically should satisfy the following general

requirements:

1. Stations cannot be located within infeasible areas (e.g.,

lakes or rivers), environmentally sensitive areas (e.g.,

wetland or residence of protected species), or histor-

ically sensitive areas (e.g., churches or cemeteries).

2. Stations should have the potential to attract considerable

ridership, which can be realized in three ways. First, the

catchment areas of stations could cover a sufficient

number of households or employment locations. How-

ever, the size of the catchment area is related to the

selected station type: walking-based stations have a

shorter radius compared to park-and-ride stations.

Secondly, stations may be located at existing activity

centers or transfer centers of railway or bus transit

systems. Finally, areas having the potential to support

future growth at higher densities, such as land reserved

for future transit-oriented development, may also be

good candidate station locations.

3. To attract more ridership, stations should have good

accessibility for their target population. Park-and-ride

stations should have easy access to the existing road

network and preferably be near the roadways carrying

significant traffic volumes; walking-based stations

should have good accessibility for pedestrians.

4. Stations should avoid locations that could incur

extremely high cost, such as extensively developed
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neighborhoods with expensive right-of-way cost. The

park-and-ride stations should not be too close to

downtown; otherwise commuters would be unlikely to

use rail transit for very short trips.

In accordance with these selection criteria, the following

procedures are used here to generate the candidate pool of

possible rail transit stations:

Step 1 Create a layer of grids inside the study area,

XS, with attributes:

Siw, feasibility of grid i to be pedestrian-

orientated station (0—infeasible; 1—feasible)

Sip, feasibility of grid i to be park-and-ride

station (0—infeasible; 1—feasible)

Set Siw ¼ 0; Sip ¼ 0

Step 2 Create a layer Xi for infeasible areas, which

combines wetlands, historic districts, histori-

cally sensitive areas, and topography features

such as rivers, lakes, and valleys

Step 3 Overlay the two layers from Step 1 and Step 2

to create the feasible grid layer

Xf ¼ Xs

\
�Xl ð1Þ

Step 4 Find all grids with the number of households

within walking distance above a threshold

For each Gi 2 Xf ;

set Siw ¼ 1 if
X

j

HjjRi
j �Rw

 !
�Hw

\
�Xl;

ð2Þ

whereHj is the number of households in block j,

from census data, Ri
j is the distance from the

center of census block j toGi,Rw is the walking

distance, Hw is the pre-specified threshold

number of households within walking distance
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Fig. 1 Framework of the concurrent optimization model
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Step 5 Find all grids with the number of households

within driving distance above a threshold

For each Gi 2 Xf ;

set Sip ¼ 1if
X

j

HjjRi
j �Rp

 !
�Hp;

ð3Þ

where Rp is the radius for park-and-ride sta-

tions, Hp is the pre-specified threshold number

of households within driving distance

Step 6 Find all grids with the number jobs within

walking distance above a threshold

For each Gi 2 Xf ;

set Siw ¼ 1 if
X

j

EjjRi
j �Rw

 !
�Ew

ð4Þ

where Ej is the employment number of block

j, from census data, Ew is the pre-specified

threshold number of jobs within walking

distance

Step 7 Find the grids close to rail transfer or bus

stations

For each Gi 2 Xf ; set S
i
w ¼ 1 if count of rail

or bus stations which satisfy Di
j �Rw exceeds

Ns,

where Di
j is the distance from the bus/rail

station j to Gi, Ns is pre-specified threshold

number of bus/rail stations

Step 8 Find the grids without extremely high right-

of-way (ROW) cost

For each Gi 2 Xf ;

set Siw ¼ 0 if
X

j

CjjLij � Lw

 !
�Cw;

set Sip ¼ 0 if
X

j

CjjLij � Lp

 !
�Cp; ð5Þ

where Cj is the ROW cost for property j, Lij
is the distance from property j to Gi, Lw is the

impact distance for pedestrian-orientated sta-

tion, Cw is the maximal allowed ROW cost

for pedestrian-orientated station, Lp is the

impact distance for park-and-ride station, Cp

is the maximal allowed ROW cost for park-

and-ride station

Step 9 Obtain the layer of annual average daily traffic

(AADT) polyline features and select those with

AADT above a user input value to form a new

layer XA. Find grids that are far away from

these features. For each Gi 2 Xf , set S
i
p ¼ 0 if

Bi

T
XA ¼ ;; where Bi is a buffer area around

grid i with a buffer radius RA

Step 10 Find grids that are close to the downtown

center. For each Gi 2 Xf Set Sip ¼ 0 if

Ki �Kd, where Ki is the distance from grid

i to the downtown center, Kd is a pre-

specified threshold distance from the down-

town center

Step 11 Let Xs ¼ Gi 2 Xf jSiw þ Sip [ 0
n o

be the can-

didate pool. SortXs; based on the distance from

the starting terminal Xs ¼ G1;G1; . . .;Gi;f
Giþ1; . . .; jL0i � L0iþ1g, where L0i is the distance

from the starting terminal to Gi

After the proposed procedures screen the study area and

generate the candidate pool of potential station locations,

the concurrent optimization model encodes the decision

variable for the selection of potential station site Gi as Xi,

where Xi ¼ 1; if Gi is selected; Xi ¼ 0; ifGi is not selected.

The selection of stations must satisfy the following

constraints:

(a) Minimum number of stations NL

X

i

Xi �NL ð6Þ

(b) Maximum number of stations NU

X

i

Xi �NU ð7Þ

(c) Minimum spacing between any two selected stations

8Xi ¼ 1;Xj ¼ 1; i 6¼ j : Yi;j � Ymin; ð8Þ

where Yi;j is the distance along the alignment from

Station i to Station j, Ymin is the minimum spacing

required between stations

(d) Maximum spacing between any two selected stations

8Xi ¼ 1;Xj ¼ 1; i 6¼ j : Yi;j � Ymax; ð9Þ

where Ymax is the maximum spacing required

between stations
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(e) Minimum distance to depart from the starting

terminal

8Xi ¼ 1; Xj ¼ 1; j[ i : L0j � L0i � L0; ð10Þ

where L0i is the distance from the starting terminal to

Station i, L0 is the minimum spacing required to

depart from the starting terminal

(f) Minimum distance to approach the end terminal

8Xi ¼ 1;Xj ¼ 1; j[ i : L1i � L1j � L1; ð11Þ

where L1i is the distance from Station i to the end

terminal, L1 is the minimum spacing required to

approach the end terminal

These decision variables and constraints are then incorpo-

rated into a GA-based solution heuristic for generating

alignments that connect the selected stations.

2.2 Forecast of Rail Transit Demand

Existing station location models represented ridership

attraction either by the number of rail transit users calcu-

lated with simple mode choice models, or by the alignment

coverage estimated as line coverage or station coverage

[26]. Such methods are quite simplified compared to var-

ious transit ridership forecasting models that are used in

rail transit planning studies. This paper incorporates in the

proposed concurrent optimization framework a discrete

choice model, which is a widely accepted transit ridership

forecasting model in real-world practice.

2.2.1 Choice Modeling for Rail Travel Demand Forecast

Discrete choice models model the travelers’ choice among

different transportation modes. The choice modeling is

based on the random utility theory, which assumes that the

decisions maker’s preference for a discrete alternative is

captured by a value called a utility, and his/her choice is

reflected in the choice set with the highest utility. Choice

models can be aggregate or disaggregate, according to the

type of input data. The aggregate approach directly models

the aggregate share of all decision makers choosing each

alternative as a function of the characteristics of the

alternatives and socio-demographic attributes of the group.

The disaggregate approach recognizes that aggregate

behavior is the result of numerous individual decisions and

to model individual choice responses as a function of the

characteristics of the alternatives available to and socio-

demographic attributes of each individual. In this paper, it

is assumed that the total trips matrix is known from

external regional demand forecasting models, and thus

aggregate choice models are employed. The models use the

trip matrix as input and split the matrix into separated

matrices, one for each mode.

Depending on the logit structure for the alternatives in

the study area, the proposed concurrent optimization model

employs two types of choice models in its rail ridership

forecasting module: a multinomial logit choice model for

pedestrian-oriented stations and a nested logit choice

model for Park-and-Ride facilities.

2.2.2 Multinomial Logit Choice Model for Pedestrian-

Oriented Stations

The multinomial logit choice (MNL) model is the most

widely used discrete choice model, as its formula for the

choice probabilities has a closed form and is readily

interpretable. MNL relies on the assumption of indepen-

dence of irrelevant alternatives (IIA). The basic utility Um

for choosing alternative m in MNL model is

Um ¼ Vm þ em; ð12Þ

where Vm is the representation of utility using observed

variables, em is the unknown part which is treated as

random.

TheMNLmodel is obtained by assuming that each em is an

independently identically distributed extreme value. The

relation of the logit probability to representative utility is

sigmoid, or S-shaped. This shape has implications for the

impact of changes in explanatory variables. If the represen-

tative utility of an alternative is very low or high compared

with other alternatives, a small change in the utility of the

alternative has little effect on the probability of it being cho-

sen. The point at which the increase in representative utility

has the greatest effect on the probability of it being chosen is

when the probability is close to 0.5, meaning a 50–50 chance

of the alternative being chosen. In this case, a small

improvement tips the balance in people’s choices, inducing a

large change in probability. For pedestrian-oriented stations,

the structure of the MNL model is shown in Fig. 2.

The probability of taking mode m between OD pair ij is

given as

Pijm ¼ eVijm

P
m eVijm

: ð13Þ

Person Trips

1 Drive Alone 2 HOV 3 Walk Access

Fig. 2 Multinomial logit choice model for pedestrian-oriented

stations
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Here Uijm is the utility of mode m between OD pair ij for a

representative traveler. Representative utility is usually

specified to be linear in parameters Vijm ¼ b0xijm, where xijm
is a vector of observed variables relating to alternative m.

With this specification, the logit probabilities become

Pijm ¼ eb
0xijm

P
m eb

0xijm
: ð14Þ

2.2.3 Nested Logit Choice Model for Park-and-Ride

Stations

The nested logit model (NLM), also known as generalized

extreme value (GEV) model, allows partial relaxation of

IIA property. It is useful when the unobserved portions of

utility for some alternatives are correlated and IIA does not

hold. An NLM is considered when the set of alternatives

can be partitioned into subsets, called nests, so that the

following properties hold:

1. For any two alternatives that are in the same nest, the

ratio of probabilities is independent of the attributes or

existence of all other alternatives. That is, IIA holds

within each nest.

2. For any two alternatives in different nests, the ratio of

probabilities can depend on the attributes of other

alternatives in the two nests. IIA does not hold in

general for alternatives in different nests

In the nested logit model, the utility is expressed as

Um ¼ Wk þ Ym þ em ð15Þ
Vm ¼ Wk þ Ym: ð16Þ

Here the observed component of utility can be decom-

posed into two parts. The part Wk is constant for all

alternatives within a nest and depends only on variables

that describe nest k. These variables differ over nests but

not over alternatives within each nest. The part Ym depends

on variables that describe alternative m and varies over

alternatives within a nest k. For park-and-ride stations, the

structure of the nested logit model is shown in Fig. 3.

The probability of taking mode m between OD pair ij is

given as the product of two standard logit probabilities.

The probability of choosing alternative m [ Bk, Pijm, is the

product of two probabilities:

• The probability that an alternative within nest Bk is

chosen, PijBk
, which is the marginal probability of

choosing an alternative in nest Bk

• The probability that then alternative m is chosen given

that an alternative within Bk is chosen, PijmjBk
, which

can be obtained by using MNL model

Pijm ¼ PijmjBk
� PijBk

ð17Þ

PijmjBk
¼ eYijm=kkP

l2Bk
eYijl=kk

ð18Þ

PijBk
¼ eWkþkkIijk

PK
l¼1 e

WlþklIijl
ð19Þ

Iijk ¼ ln
X

m2Bk

eYijm=kk

 !
: ð20Þ

The choice of nest is a marginal probability, also called

the upper model. The choice of alternative within the nest

is a conditional probability, also called the lower model.

The quantity Iijk, which is called the inclusive value or

inclusive utility of nest k, links the upper and lower models

by bringing information from the lower model into the

upper model. The coefficient kk of Iijk in the upper model is

called the log-sum coefficient. It indicates the degree of

independence among the unobserved portions of utility for

alternatives in nest Bk. A lower kk indicates less indepen-

dence (more correlation).

2.3 Estimation of System Cost

The proposed concurrent optimization model uses the total

net cost Cnet as the fitness function, which is a function of

initial costs Cc, operation cost saving SO, and user cost

saving SU .

Cnet¼ Cc � SO � SU: ð21Þ

2.3.1 Initial Cost

The initial cost of the alignment is the capital cost, which

includes earthwork costs CE, bridge costs CB, tunnel costs

CT, right-of-way costs CR, track costs CL, train vehicle

costs CV, and station costs Cs:

Cc ¼ CE þ CB þ CT þ CR þ CL þ CV þ Cs: ð22Þ

Person Trips

1 Drive Alone 2 HOV Rail Transit

3 Walk Access 4 Drive Access

Fig. 3 Nested logit model for park-and-ride stations
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Following engineering practice, this paper applies the

typical track cross sections, as shown in Fig. 4, at an equal

spacing LCS along the horizontal alignment on the corre-

sponding elevation from the vertical alignment. It then uses

the elevation data from the GIS database to characterize the

cut/fill sections that contribute earthwork costs and

bridge/tunnel sections that contribute to structure costs.

The total earthwork cost for a typical cut/fill section is

calculated as follows:

EN ¼
X

i
EC;ise �

X
i
EF;i

CE ¼ KC

X
i
EC;i þ KF

X
i
FF;i þ KlmaxðEN; 0Þ

� kbminðEN; 0Þ

: ð23Þ

Here EN is the net earthwork, CE is the total earthwork

cost, se is earth shrinkage factor, KC is unit cutting cost, KF

is unit filling cost, and Kl and kb are unit transportation cost

for, respectively, moving earth to a landfill and from a

borrow pit. The cut volume EC;i and fill volume EF;i are

calculated for each cross section i by stratifying each sec-

tion with very small intervals and calculating the cut area

A
j
C;i and fill area A

j
F;i between the proposed and the existing

ground for each stratum j.

EC;i ¼ 0:5�
X

j
A

j
C;i þ

X
j
A

j
C;iþ1

� �
� LCS

EF;i ¼ 0:5�
X

j
A

j
F;i þ

X
j
A

j
F;iþ1

� �
� LCS

ð24Þ

The total structure cost includes both bridge cost and tunnel

cost. For each bridge i, an enumeration method is used to

find the optimal span length LBi that minimizes the sum of

superstructure CU
Bi and substructure costs CL

Bi. The cost

calculation is based on the predefined bridge width, the

bridge length identified in the first step, and the pier height

that depends on the vertical alignment and the ground

elevation extracted from the GIS database. The cost for

each tunnel i depends on the predefined unit cost for tunnel

excavation, the area of tunnel cross sections and the tunnel

length. To calculate the right-of-way cost, this paper first

generates the right-of-way band along the horizontal

alignment by connecting the edge points of each cross

section. For a cut/fill section, the edge points are outside

the edge of earthwork with a buffer width. For bridges, the

edge points are outside the bridge cross section with a

buffer width. Tunnel sections require no right-of-way. The

track cost depends only on the track length and a unit track

installation cost. The vehicle costs CV are the product of

the number of trains NT needed in the fleet, the number of

cars per train Nc, and the cost per car KV in millions:

CV ¼ NT � Nc � KV: ð25Þ

Assuming a fixed headway H in train schedule, the number

of needed trains NT can be calculated as the round trip

travel time divided by the headway:

NT ¼ TR

H
: ð26Þ

The above formulations of train vehicle costs indicate that

lower travel times require fewer trains, and thus decrease

the cost of purchasing vehicles. The proposed concurrent

optimization model assumes that station cost includes two

parts: a fixed station cost that is independent of station

locations, and a location-based station cost. The fixed sta-

tion cost includes the cost for station facilities and for

parking facilities. Assuming the station site to have a

rectangular shape with user specified length and width, the

fixed cost for station facilities varies only with the con-

struction type, i.e., at-grade, elevated, or underground,

which depends on the elevation difference between the

proposed station and the existing ground. Assuming the

cost of parking facilities is linear with respect to the park-

and-ride demands, their fixed cost is calculated based on a

preset unit cost per parking space. The location-based

station cost includes the ROW cost and the earthwork cost.

The ROW cost and earthwork cost for at-grade stations and

parking facilities can be obtained from a GIS.

2.3.2 Operation Cost Saving

The operating cost includes energy costs and other opera-

tion and maintenance cost. In each time period p, the

number of train trips needed Np is calculated based on the

estimated rail transit ridership.

 

 

Fig. 4 Earthwork of a typical

cut/fill section
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Np ¼
P

i

P
j Dijp

NcDc

; ð27Þ

where Dc is the average number of passengers a train car

can carry, Nc is the number of cars per train. Assuming the

train service is only provided on workdays, the annual

energy costs are

Ae ¼ ð52� 5Þ
X

p

Np � ER � Ke

106
; ð28Þ

where ER is the round-trip energy consumption (kwh), Ke is

the unit cost of energy ($/kwh). The railway operation and

maintenance costs are

Am ¼ ð52� 5Þ
X

p

X

i

X

j

DijpLi;j �
KO

106
; ð29Þ

where Li;j is the travel distance from station i to station j

(mile), KO is the unit operation and maintenance cost for

rail ($/passenger-mile). The auto operation cost for the

park-and-ride trips is

AP ¼ ð52� 5Þ
X

p

X

i

X

j

DP
ijpL

P
i; j �

Ka

106
; ð30Þ

where DP
ijp is the number of park-and-ride trips from Traffic

Analysis Zone (TAZ) i to j in period p, LPi;j is the auto travel

distance forDP
ijp (mile), Ka is the unit operationcost for auto

($/passenger-mile). The original auto operation cost for the

rail riders is

Aa ¼ ð52� 5Þ
X

p

X

i

X

j

Dr
ijpL

a
i;j �

Ka

106
; ð31Þ

where Dr
ijp is the number of trips from TAZ i to TAZ j

using rail in period p, Lai;j is the auto travel distance for trip

from TAZ i to TAZ j (mile). The annual operating cost

saving is

Ao ¼ Aa � Ae þ Am þ Ap

� �
: ð32Þ

Assuming an annual interest rate of r and a life cycle of na
years, the present value of operating cost saving over the

system’s life cycle is

So ¼ Ao

ð1þ rÞna � 1

rð1þ rÞna : ð33Þ

2.3.3 User Cost Saving

Similarly to the calculation of the operation cost saving, the

annual user cost saving for railway riders is

AU ¼ 52� 5ð Þ
X

p

X

i

X

j

Dr
ijp

� Ta
i;j;p �

1

3600
� Ka

U

106
� T r

i;j;p �
1

3600
� Kr

U

106

� �
;

ð34Þ

where Ta
i;j;p is the travel time by auto from TAZ ito TAZ j

in time period p (s), T r
i;j;p is the travel time by rail from

TAZ i to TAZ j in time period p(s), Ka
U is the unit user cost

for auto ($/passenger-hour), Kr
U is the unit user cost for

rail ($/passenger-hour).

The present value of user cost saving is

SU ¼ AU

ð1þ rÞna � 1

rð1þ rÞna : ð35Þ

3 Case Study

Using Baltimore City as the study area, this case study

aims to illustrate the data preparation procedures of the

proposed concurrent station location and alignment opti-

mization model, and to demonstrate its effectiveness

compared to the sequential optimization methodology

where stations are first selected and alignment is then

designed between these selected stations.

3.1 Data Preparation for the Proposed Concurrent

Optimization Model

3.1.1 Data for Candidate Stations

Following the aforementioned procedures, a grid layer

inside the study area is created with user-specified grid size

(1000 feet by 1000 feet in the case study). Then a series of

GIS operations are applied to identify the grids for candi-

date pedestrian-oriented stations and park-and-ride sta-

tions, as shown below.

• Land use pattern

Certain types of land use are excluded for railway

alignment and stations, such as forest, river, wetlands,

historical area, and some restricted area due to political

or economic concerns. The grid layer generated from

the previous step is overlaid with the land use layer in

GIS. All the grids intersecting with those restricted

zones are identified as infeasible grids for railway

stations.

• Census block data

Census data are obtained from the United States Census

Bureau. Year 2000 census data for Baltimore City and

Baltimore County are used in the case study, as shown

in Fig. 5.
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The stationsgrid cellswhich attract highpopulationor high

employment are considered as potential station locations.

As noted earlier, pedestrian-oriented stations and park-

and-ride stations have different catchment area dimensions

and thresholds of population and employments.

• AADT

Candidate park-and-ride stations need to meet the

requirement of easy access to the existing road network.

AADT line information obtained from the Maryland

State Highway Administration is used to determine the

accessibility of potential park-and-ride station loca-

tions: the roadways near the candidate location should

carry significant traffic volumes, as shown in Fig. 6.

• Properties Data

Based on the properties distribution, a 250 feet by 250

feet grid layer is created in the study area with a ROW

cost value for each grid cell. The candidate station

locations should avoid the high ROW cost grid cells.

After applying the proposed procedures for generating the

candidate pool of potential rail transit stations, 52 candidate

pedestrian-orientated station locations and 10 candidate

park-and-ride station locations are found, as shown in Fig. 7.

3.1.2 Data for Estimating Railway Travel Demand

The proposed concurrent optimization method applies a

nested logit mode choice model to calculate mode choice

for personal trips and outputs the following four trip tables:

• Mode 1: Drive alone

• Mode 2: High occupancy vehicle

• Mode 3: Walk to rail

• Mode 4: Drive to rail.

The utility Uijm is a function of the alternative charac-

teristics and decision maker’s characteristics, which

includes the following variables:

• T IN
ijm—Travel time in the vehicle or train from TAZ i to

j for mode m

• TOUT
ijm —Travel time outside of the vehicle or train from

TAZ i to j for mode m

• Tw—Waiting time or headway of the train at the

boarding station

• Cijm—Cost of mode m (gas, parking, and ticket) from

TAZ i to j

• Sijm—Travel distance from TAZ i to j for mode m

• Ai—The number of autos per person in TAZ i

• Bj—Binary variable to check if the TAZ j is close to

CBD

• Ej—Employment density of the TAZ j.

This study considers all the Traffic Analysis Zones

(TAZs) within 1 mile of candidate Pedestrian-oriented

stations and/or within 5 miles of candidate Park-and-Ride

stations. The TAZ data are obtained from Baltimore

Metropolitan Council (BMC) models [27]. TAZ data con-

tain zone-related information, such as population,

Fig. 5 Census block data
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Fig. 6 AADT data

Fig. 7 Candidate station

locations
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employment density, income, number of autos per person,

and whether or not inside CBD. The roadway network

travel time information is also obtained from BMC models

[27] for AM/PM peak and midday periods, which consider

the congestion level for different time periods. All TAZ

centers and candidate station locations are connected to the

existing roadway network via artificial connectors. TAZ to

TAZ, TAZ to Station, and Station to TAZ travel time and

distance matrices are generated using GIS shortest path

function prior to the mode choice process. Then the travel

time and distance by train between any two stations are

computed via an iterative process based on vehicle

dynamics [21].

All of the above data are used to calculate the variables

in the utility function. For mode m,

Uijm ¼ ða0m þ a1mT
IN
ij2 þ a2mT

OUT
ij2 þ a3mT

w
ij þ a4mCijm þ a5mSijm

þ a6mAi þ a7mBj þ a8mEjÞ;
ð36Þ

where a0m is the constant for mode m, aim; i ¼ 1 to 8; is the

coefficient for the aforementioned 8 variables for mode m.

The case study adapts the values in Table 1 for con-

stants, coefficients, and correlations from BMC model [27].

It is noted that the original model used different sets of

parameters depending on the trip type (home-based, work-

based, other-based) and income level (I, II, and III). For

simplicity, this section only uses home-based trip and level

II parameters in the mode choice modeling, which should

be sufficient for examining the effectiveness of the pro-

posed concurrent station and alignment optimization

model.

After applying the above mode choice model to all OD

pairs of TAZs in the study area, the total tripmatrices in three

time periods are split into 4 modes: drive alone, HOV, walk

to rail, and drive to rail. The trip matrices for the latter two

modes are used to compute the rail transit station to station

demands, and are incorporated into the fitness calculation in

the GA process.

3.2 Model Results

To test the effectiveness of the proposed concurrent station

location and alignment optimization model, the following

two optimization methods are examined:

• Two-stage optimization Locate stations first to maxi-

mize the demand, then find the alignment to minimize

the cost.

• Concurrent optimization Concurrently optimize the

station locations and alignment to minimize the system

cost.

3.2.1 Comparison of the Two Optimization Methods

Table 2 presents the optimization results of the two-stage

optimization and concurrent optimization.

Compared to the two-stage optimization, the concur-

rent optimization significantly reduces the total cost from

41.8 to 17.6 M. Concurrent optimization reduces the rail

line’s passenger trips by 21.8 % compared to the two-

stage optimization. By compromising in the passenger

attraction, concurrent optimization reduces the travel

time from 11.8 to 10.8 min, shortens the track length

from 6.7 to 5.8 miles, decreases the initial cost from

74.3 to 54.1 M, and also decreases the operation and

user cost for about 4.0 M. The numerical results for this

case demonstrate the advantage of concurrent optimiza-

tion over the two-stage optimization.

Table 1 Nested logit model

parameters
Drive alone HOV Walk access Drive access

m 1 2 3 4

a0m -1.05989 1.29430 -0.55102

a1m -0.0338 -0.0338 -0.0125 -0.0125

a2m -0.0443 -0.0443 -0.0443 -0.0443

a3m if Tw
ij � 7:5 min -0.0291 -0.0291

a3m if Tw
ij [ 7:5 min -0.0186 -0.0186

a4m -0.1430 -0.1430 -0.0529 -0.0529

a5m 0.0991 0.3038 0.3038

a6m -2.1822 -4.7928 -4.7928

a7m 0.3393 0.3393 0.3393

a8m 0.00003 0.00003

km 1.0000 1.0000 0.7274
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Figure 8 presents the station locations and horizontal

alignments generated from the two optimization methods.

Both alignments have three intermediate stations. The first

intermediate station is the same. For the second and the

third intermediate stations, the two-step optimization

selected two dispersed locations to attract more railway

passengers, whereas the concurrent optimization selected

two closer locations to shorten the alignment length and

travel time, so as to decrease the system total cost. The

alignments are similar at both ends for the two optimization

methods, whereas the middle sections of the alignments are

shifted to connect different selected stations.

3.2.2 Impact of Demand Variation on Optimization Results

This section examines how the proposed concurrent opti-

mization model adjusts its station selection and alignment

design with variations in demand distribution so as to

minimize the total cost. The design scenario adjusts the

total demands from/to the four TAZs of 86, 87, 88, and 90

from 12,869 to 51,476, as shown in Fig. 9. Figure 9 also

compares the optimized station locations and alignments

for the original and the adjusted demand distributions.

Two of the three stations selected for the original

demand distribution are shifted to locate within the four

TAZs with the adjusted demands. The two alignments start

with the same segments at the western end of the study

area, until they approach the first intermediate station. The

solution algorithm then generates different tangent seg-

ments through the first intermediate station to adjust the

alignment toward the two shifted station locations. Com-

pared to the optimized station locations and alignment

generated for the original demand distribution, the shifted

station locations and alignment incur an initial cost

increase of 7.7 M from 54.1 to 61.8 M. However, the

savings in operation and user cost over the system’s entire

life cycle increase by 91.4 M for the shifted station loca-

tions, as they attract more than twice of the original

Table 2 Comparison of two-

stage optimization and

concurrent optimization

Two-stage Concurrent Difference (%)

Number of stations 5 5 0

Total daily passengers 4879 3814 -21.8

Travel time (min) 11.8 10.8 -8.5

Total length (miles) 6.7 5.8 13.4

Total initial cost (M) 74.3 54.1 -27.2

Operation and user cost saving (M) 32.5 36.5 12.3

Total cost (M) 41.8 17.6 -57.9

Fig. 8 Optimized station

locations and alignments
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demand by directly serving the TAZs with higher demand.

The results show that the algorithm is effective in adapting

the demand patterns and can concurrently optimize the

station locations and alignment accordingly.

3.2.3 Statistical Test of Solution Goodness

This case study applies a statistical method from Jong and

Schonfeld [13] to test the effectiveness of the proposed

algorithm in finding near-optimal solutions. This procedure

is a sampling process. 50,000 random solutions are gen-

erated, of which 23.7 % (11,870) are feasible. The average

cost of the feasible solutions is 161.1 M, and standard

deviation is 46.9 M. The least cost of any random solution

is 41.5 M, which is very far above the best solution

(17.6 M) found with our proposed algorithm.

We also use the Gamma and Normal distributions to fit

the cost distribution from the feasible random solutions, as

shown in Fig. 10, with R2 values of 0.99 and 0.91,

respectively.

The optimized cost from the proposed concurrent opti-

mization model in scenario 2 is 17.6 M, which is better

than 99.89 % of solutions in the fitted Normal distribution,

and close to 100 % of solutions in the fitted Gamma dis-

tribution, but far better than any of the random feasible

solutions. This indicates that neither the Normal nor

Gamma distributions fit well the extreme low-cost end of

the randomly generated solutions. This test shows that

although we cannot guarantee a global optimum using the

proposed genetic algorithm (or other such metaheuristic

algorithms), the optimized solution is extremely good

compared to the other solutions in the search space.

Fig. 9 Impact of demand

variation on optimization results

Fig. 10 Statistical test of

solution goodness
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4 Summary

This paper presents a concurrent railway station location

and alignment optimization methodology. The methodol-

ogy first constructs the candidate pool of potential rail

transit stations based on the consideration of various site

requirements regarding topological features, accessibility

to the existing roadway network, and land availability.

These candidates are then selected along with the align-

ment between each pair of neighboring stations using the

concurrent optimization model to minimize the total sys-

tem cost while satisfying station selection and track

geometry constrains.

The proposed methodology demonstrates how massive

amounts of geographic information can be processed and

employed within an optimization framework in planning an

urban rail transit system in real-world practice. In partic-

ular, it demonstrates how route alignments and station

locations can be jointly optimized in continuous space

(rather than on an abstracted graph) using whatever rele-

vant geographic information is available. The optimization

objectives and constraints used in this paper can be chan-

ged without drastically changing the modeling approach

presented here. The comprehensive cost evaluation

framework addresses the essential trade-off between min-

imizing capital cost and maximizing savings in operation

and user costs by shifting trips from auto to rail. The

embedded GA-based heuristic can concurrently optimize

the decision variables for station locations, station types,

and track alignments connecting each pair of neighboring

stations. The case study demonstrates the applicability of

the proposed concurrent optimization model and its

advantages over the previously used two-stage

optimization.

The proposed methodology is expected to help transit

planners generate viable alternatives for a single rail transit

line effectively and efficiently. Future research could

consider the complex interactions between the rail transit

line and the existing surface road network, provide the

ability to repair infeasible alignments by relaxing some

geometric constraints (e.g., by reducing design speeds),

improve the computational performance with a distributed

genetic algorithm operated on parallel processors, and

address the problem of optimizing networks of rail transit

lines with feeder bus lines.
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