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Abstract This paper develops a method for optimizing

the construction phases for rail transit line extension pro-

jects with the objective of maximizing the net present

worth and examines the economic feasibility of such

extension projects under various financial constraints (i.e.,

unconstrained, revenue-constrained, and budget-con-

strained cases). A Simulated Annealing algorithm is used

for solving this problem. Rail transit projects may be

divided into several phases due to budget limits or demand

growth that justifies different sections at different times. A

mathematical model is developed to optimize these phases

for a simple, one-route rail transit system, running from a

Central Business District (CBD) to a suburban area. Some

interesting results indicate that the economic feasibility of

links with low demand is affected by the completion time

of those links and their demand growth rate after their

implementation. Sensitivity analysis explores the effects of

interest rates on optimized results (i.e., construction phases

and objective value). With further development, such a

method should be useful to transportation planners and

decision-makers in optimizing construction phases for rail

transit line extension projects.

Keywords Rail transit � Phased development �
Optimization � Simulated annealing � Net present worth

1 Introduction

Projects for new or extended rail transit lines may be

subdivided into phases based on demand growth consid-

erations and budget limits over time. Any additions of

stations or extensions of rail lines affect many users and

involve substantial investments. Consequences of adding

stations may include increased mobility, higher land val-

ues, increased employment opportunities, environmental

impacts, and reduced congestion. Therefore, such a project

requires a comprehensive evaluation of all direct and

indirect consequences, including positive and negative

effects on different affected groups [22]. No general

guidelines are yet available on how many phases are nee-

ded and when each phase should be implemented. The

phases and execution time are usually based on available

budgets, demand forecasts, and political reasons (e.g.,

equity among regions). The scheduled phases may be far

from optimal if significant effects of extensions are

neglected, such as faster demand growth after service

quality and accessibility improvements (e.g., new stations).

Scheduling decisions affect system performance over the

entire analysis period. Therefore, in order to overcome

existing analytic weaknesses, we propose a model that

optimally subdivides a predetermined rail transit line into

sections for phased development and optimizes the

implementation times of those sections over a planning

horizon. The evaluation and scheduling of additions to

lines (i.e., links and stations) are performed jointly by this

model. Based on various specified evaluation criteria, the

model can optimize a phased development plan. This
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model is demonstrated here for one hypothetical rail transit

line but is designed to be applicable to any such transit

lines.

Tavares [21] optimizes the schedule for a set of inter-

connected railway projects with the purpose of maximizing

the net present worth (NPW), using Dynamic Program-

ming. This model is applicable for scheduling large sets of

expensive and interconnected development projects under

tight capital constraints and with a marginal net present

value. He notes that maximizing the NPW of a project in

terms of its schedule under eventual restrictions concerning

its total duration can be considered as a dual perspective of

the problem of minimizing makespan (defined as the total

duration of a project) with resource constraints. The model

presented in the paper does not consider demand reductions

during construction. The items considered in NPW are only

construction expenditures and payments received after

completion of projects. Since it is a renewal project, all the

items that are affected by the project should be taken into

account.

Kolisch and Padman [9] summarize and classify previ-

ous studies on the resource-constrained project scheduling

problem (RCPSP) by their objectives and constraints: NPW

maximization and makespan minimization, with and

without resource constraints. For the resource-uncon-

strained case, generally it is optimal to schedule jobs with

associated positive cash flows as early as possible, and jobs

with net negative cash flows as late as possible, subject to

restrictions imposed by network structure.

Matisziw et al. [14] propose an optimization model to

determine route extension networks for bus transit systems.

It is similar to a routing problem that maximizes covering

areas and minimizes the extension length under resource

constraints. It is important to expand the existing service

network to tap into emerging areas of demand not being

served. Maximizing network coverage can increase rider-

ship. While increasing this potential ridership is significant,

it is necessary to keep any route extension to a minimal

length. Extending routes to low-demand areas could result

in low service utilization. In our present study, the NPW

maximization objective determines how far routes should

be extended to low-density suburbs.

Wang and Schonfeld [23] develop a simulation model

to evaluate waterway system performance and optimize

the improvement project decisions with demand model

incorporated. They argue that minimizing total costs

rather than maximizing the NPW over the entire analysis

period is not valid in a system where demand is elasti-

cally affected by the system improvements being opti-

mized. The results show how demand elasticity can be

used in estimating net benefits. Shayanfar et al. [16]

compare the relative merits of three metaheuristic algo-

rithms, namely simulated annealing, tabu search, and a

genetic algorithm, for selecting and scheduling improve-

ments in road networks.

Numerous other researchers have developed related

models for optimizing various characteristics of public

transportation systems. These include Guan et al., [5], Fan

and Machemehl [3], Zhou et al. [24], Li et al. [11], Tsai

et al. [20], DiJoseph and Chien [2], Kim and Schonfeld [8],

and Markovic et al. [13]. Kim et al. [7] optimized vertical

alignments and speed profiles for rail transit lines. Lai and

Schonfeld [10] optimized the location of rail transit lines

and stations, based on GIS databases and using a genetic

algorithm, but without considering phasing decisions. Lo

and Szeto [12] and Szeto et al. [19] deal with the timing of

improvements in discrete network design. Guihaire and

Hao [6] review transit network design and scheduling

approaches, while Farahani et al. [4] review urban trans-

portation network design more generally.

The modeling approach used in our present study is partly

based on a model of Chien and Schonfeld [1], except for the

decision variables. They developed a model that jointly

optimized the characteristics of a rail transit route and its

associated feeder bus routes in order to minimize total costs.

Somewhat similarly, Spasovic and Schonfeld [17] also opti-

mize the transit service coverage with a minimum total cost

objective. Their analytic results showed that in order to min-

imize total costs, the operator cost, user access cost, and user

wait cost should be equalized. They also noted that the most

significant factor in determining the rail line length is the

demand. Thus, no route completion constraint is considered in

our present model because it might overextend routes into

distant suburbs with insufficient demand density. Sun and

Schonfeld [18] analyze a related phased development prob-

lem, but for airport facilities rather than rail transit lines.

Although the published studies we found do not deal

with the optimized phased development of transit lines, this

problem can be treated as an RCPSP with unique charac-

teristics. First, the activities in this project represent the

stations to be added. Second, the precedence relations in

this problem are much easier than those in the general

project scheduling problem. Our transit line can only be

extended sequentially from one end (i.e., CBD) to the other

(We can still treat a line through a CBD as two end-to-end

radial lines). Third, constraints on both capital budget and

revenue are considered in this study. For the capital budget

constraint, subsidies are equally distributed here within

each given time interval, although any distribution may

easily be specified. The revenue constraint is used for

balancing the operational expenditure. It is important to

note that the resource constraints vary over the entire time

horizon, since these two constraints are affected by the

operational situation and decision made in previous years.

Hence, this problem is a dynamic RCPSP. NPW maxi-

mization is our chosen objective. All the quantifiable items
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that would be affected by the extension should be consid-

ered in this problem (e.g., user waiting costs, in-vehicle

costs, and operating and maintenance costs), including

socio-economic effects if they can be quantified and esti-

mated correctly. Due to the complexity of the dynamic

RCPSP, including the pervasiveness of local optima, we

use a Simulated Annealing algorithm to solve this problem.

The model formulation and design of the SA algorithm are

presented below.

2 Model Formulation

Table 1 defines the notation used in the paper. The fol-

lowing simplifying assumptions are made here.

A given demand at the starting time interval (t = 0) is

already consistent with network equilibrium.

1. Transit routes and station locations are predetermined.

Hence, user access costs are omitted from this analysis.

2. Effects of development schedules of other transporta-

tion system changes on the demand of our line are

neglected.

3. Stations can only be added sequentially from the CBD

outward. With a double crossover track at every

station, any station can be at least temporarily the

line’s terminal station. Hence, turnaround time is

omitted from this analysis.

4. There are no binding construction time constraints.

5. Potential demand for each O/D pair increases at a

higher rate after the station is completed.

Table 1 Notation Variables Descriptions Units

B Total benefit $

C Total cost $

CC Capital cost $

CI In-vehicle cost $

CM Maintenance cost $

CO Operating cost $

CS Supplier cost $

CU User cost $

CW Waiting cost $

d Station spacing mile

f Taxation ratio for covering operational expenditure %

FT Fleet size vehicle

h Headway h

i The origin in the O/D matrix –

j The destination in the O/D matrix –

k Capital cost for station and rail line $

m The row in the O/D matrix –

nC Number of cars needed per train cars/vehicle

P Demand function –

NPW Net present worth of total benefits $

qij Rail passenger flows from origin i to destination j people

r Demand growth rate –

R Round trip time h

s Interest rate –

t Time interval –

td Dwell time hour

uI Unit cost of user in-vehicle time $/passenger-h

uL Maintenance unit cost $/passenger-mile

uT Hourly operating cost $/vehicle-h

uW Unit cost of user waiting time $/passenger-h

UB User benefit $

V Cruise speed miles/h

y Decision variable –
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6. Capital costs are reduced if multiple stations and their

links are built together.

7. The interest rates are effective rates which already

consider inflation.

Figure 1 shows the proposed example rail transit

line, which is 54.4 miles long and has 30 stations.

Currently, only 4 stations are completed and in service.

The study’s time horizon is 30 years. Our binary deci-

sion variable yi
(t) = 1 if link i and its station already

exist in time period t; yi
(t) = 0 if link i is yet unbuilt in

time period t. Here link i is defined as the section

between stations i - 1 and i, and link i includes station

i. The first time yi
(t) changes from 0 to 1 which indi-

cates that link i is added in year t. In the long term, the

traffic increase may occur due to demographic and

economic growth. Demand growth is considered here by

multiplying the demand relation for the initial period

(t = 0) with a compound growth rate (1 ? r)t, where

r is the growth rate per time interval (e.g., per week,

month, or year) and t represents intervals of growth

(Fig. 2). The baseline demand function for each origin/

destination pair is a linear demand function (i.e.,

Q = a-b*P).

As discussed above, the origin/destination (O/D) matrix

values can continuously increase at a specific annual

growth rate based on traffic demand forecasts. qij
(t) = -

qij
(0) 9 (1 ? r)t, Vi, j, where qij denotes rail passenger

flows from origin i to destination j. For our numerical

study, the O/D matrix is symmetric, with qij = qji. There

are 4 stations in service in time interval zero. The O/D

matrix is

DðtÞ ¼

� y2q12 y3q13 y4q14 y5q15 y6q16 . . .
y2q21 � y3q23 y4q24 y5q25 y6q26 . . .
y3q31 y3q32 � y4q34 y5q35 y6q36 . . .
y4q41 y4q42 y4q43 � y5q45 y6q46 . . .
y5q51 y5q52 y5q53 y5q54 � y6q56 . . .
y6q61 . . . . . . . . . . . . � . . .
y7q71 . . . . . . . . . . . . . . . �

2
666666664

3
777777775

ðtÞ

;

where at t = 0, y1 = y2 = y3 = y4 = 1, y5 = y6 =

… = 0.

2.1 Benefit Function

User benefit (UB), in any time interval t, is defined as the

area under the demand (=marginal user benefit = P) curve

for that interval, integrated from 0 to qij
(t), where qij

(t) is the

traffic flow from i to j in the tth simulation interval (Fig. 2).

Since qij may fluctuate in different intervals, the overall

user benefit for the entire analysis period is

UB ¼
X30
t

X30
i

X30
j

Z q
ðtÞ
ij

0

P � dQ
 !

; i 6¼ j: ð1Þ

2.2 Cost Function

The user cost (CU) consists of three components: in-vehicle

cost, waiting cost, and access cost. Access cost is the total

demand multiplied the access time. Because we assume that

station locations are predetermined, the access cost might be

omitted.Thewaiting cost,CW, is the total demandmultipliedby

thewaiting time (which is approximated ashalf of theheadway,

h), and the unit cost of user waiting time, uW ($/passenger-h):

C
ðtÞ
W ¼ DðtÞ � h

2
� uW : ð2Þ

In-vehicle cost, CI, is the through flow multiplied by the

in-vehicle time which includes the riding and dwell time

and the unit cost of in-vehicle time, uI ($/passenger-hour).

Through flow is equal to inflow minus outflow at each

station, and it can be determined from the O/D matrix:

Through flow ¼ 2�
X30
m¼1

Xm
i¼1

X30
j¼iþ1

yjqij �
Xi
j¼1

yiqij

 !
;

ð3Þ

where m is the row in the O/D matrix, i is the origin in the

O/D matrix, j is the destination in the O/D matrix.

CI ¼ 2�
X30
m¼1

Xm
i¼1

X30
j¼iþ1

yjqij �
Xi
j¼1

yiqij

 !

� dmþ1

V
þ td

� �
ymþ1 � uI ;

ð4Þ

Fig. 1 Proposed route
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where dm?1 represents the station spacing between station

m ? 1 and m, V is the transit speed, and td is the lost time at

each station. The factor td accounts for the time lost through

deceleration and acceleration as well as for dwell time at a

station. No out-of-pocket costs are included in the user cost.

Transit fares are not part of the user cost since they are

merely transfer payments from users to operators. Thus, the

user cost is equal to the waiting cost plus in-vehicle cost:

CU ¼ CW þ CI: ð5Þ

The supplier cost (CS) consists of three components as

shown in Eq. (6):

CS ¼ CC þ CO þ CM: ð6Þ

These are capital cost (CC), operating cost (CO), and main-

tenance cost (CM). Capital cost (CC) includes land acquisition,

design, and construction, and rail-track laying costs:

CC ¼
X30
t

X30
i

y
ðtÞ
i � y

ðt�1Þ
i

� �
ki; ð7Þ

where ki is the fixed cost for link i. We use yi
(t) - yi

(t-1),

since ki is the cost which only counts the first time when yi
(t)

changes from 0 to 1. We assume (in Assumption 7 above)

that some economies occur if several stations (and their

links) are built together. In our numerical examples, the

construction cost savings are set at 3 % for 2 stations, 6 %

for 3 stations, 9 % for 4 stations, 12 % for 5 stations, 15 %

for 6 stations, 18 % for 7 stations, 21 % for 8 stations, and

24 % for more than 9 stations.

The operating cost is the transit fleet size FTmultiplied by

the hourly operating cost per car uT($/vehicle-h) and the

number of cars nC needed per train. uT includes the equiva-

lent hourly capital cost of the rail cars. Because the optimal

headway changes as we extend the line, we have to update

the headway after every decision made. To obtain the fleet

size, the transit round trip time R(t) is derived first as follows:

RðtÞ ¼ 2
X30
i

diþ1

V
þ td

� �
y
ðtÞ
iþ1; ð8Þ

where di?1 represents the station spacing between stations

i ? 1 and i. Since our demand function is not elastic with

respect to headway (which means that demand is fixed

during each iteration), the optimal headway h can be found

by checking the first-order derivative of the total cost (C)

function with respect to h equal to zero and solving it for h.

The second derivative of the total cost function with

respect to h is also checked to insure that the total cost

function is convex.

oC

oh
¼ 0 ð9Þ

oC

oh2
¼ 2RnCuT

h3
[ 0 ð10Þ

The resulting optimal headway is

hðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nCuTy

ðtÞ
iþ1

P30
i

diþ1

V
þ td

� �

uW
P30
i

y
ðtÞ
i q

ðtÞ
ij

vuuuuuut ; ð11Þ

where h(t)[ hmin (i.e., 0.0222 h) and h(t)\ hmax = train

capacity/peak point one-way passenger flow.

The fleet size F(t) is then the transit round trip time

divided by the headway h:

FðtÞ ¼ RðtÞ

hðtÞ
: ð12Þ

With the fleet size, we can then determine the operating

cost:

C
ðtÞ
O ¼ FðtÞnCuT: ð13Þ

Maintenance cost, CM, is expressed as the passenger

miles traveled (PMT) multiplied by a unit maintenance

cost, uL($/pass. mile):

CM ¼ 2�
X30
m¼1

Xm
i¼1

X30
j¼iþ1

yjqij �
Xi
j¼1

yiqij

 !

� dmþ1

V
þ td

� �
ymþ1 � uL:

ð14Þ

Therefore, the supplier cost is equal to the operating cost

plus maintenance cost:

Fig. 2 User benefits
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CS ¼ CO þ CM þ CC: ð15Þ

Equations (16) to (21) present a model for maximizing

the system’s net present worth:

Maximize NPW ¼
X30
t

B� Cð Þ 1þ sð Þ�t ð16Þ

Subject to y
ðtÞ
i ¼ 1 or 0 ð17Þ

y
ðtÞ
i � y

ðt�1Þ
i � 0; for all i; t� 1 ð18Þ

y
ðtÞ
i � y

ðtÞ
iþ1 � 0; for all t; i� 1 ð19Þ

f � revenueðtÞ �C
ðtÞ
O þ C

ðtÞ
M ; for all t ð20Þ

1� fð Þ � revenueðt�1Þ þ SubsidyðtÞ �C
ðtÞ
C ; for all t:

ð21Þ

Equation (16) is the objective function thatmaximizes the

system’sNPW.The annual net benefit is equal to total benefit

(B) minus total cost (C). Total benefit includes user benefit;

total cost includes supplier cost and user cost. We have to

include the interest rate in the model to obtain the NPW. In

Eq. (17) the decision variables are binary. Equation (18) is

the realistic constraint ensuring that after link i is built, it

always remains in operation. Equation (19) is the prece-

dence constraint that prevents any link i from being built if

any one of its predecessors is not yet completed. The transit

line has to be built sequentially, since there would be fewer

benefits if we randomly choose any segment to build along

the route. In transit operation, some fraction of the fare col-

lection may be used for covering operation expenses, and the

remaining fraction (if any) may be used for funding the

construction of new transit line extensions. Equation (20) is

the revenue constraint for covering operational expenses,

i.e., operating and maintenance costs. Due to uncertainties

about the future, transit operators may try to balance their

operation-related expenditures in each year. Thus, a fraction

f of the revenue collected from fares is used to cover the

operating and maintenance costs in each year. Equation (21)

is the budget constraint for funding the capital investments. It

shows that the construction costs in any year must not exceed

the available capital funds plus some fraction (1 - f) of the

fare revenues accumulated from the previous year.

2.3 Simulated Annealing

Simulated Annealing (SA) is a heuristic method, which is

very useful in optimizing objective functions with numer-

ous local optima. It was originally developed by Metropolis

et al. [15] who describe its details. Unlike most of the

earlier search methods, SA may accept (with a decreasing

probability) moves to neighboring solutions which worsen

the objective function, in order to escape from locally

optimal ‘‘holes.’’ Using SA, if a neighborhood solution is

better than the previous one, it is always accepted. To avoid

getting stuck in a local minimum or maximum, occasion-

ally solutions worse than the current one are also accepted

but with a probability similar to that in the dynamics of the

annealing process. As the temperature decreases, the

probability of accepting a bad solution is decreased and in

the final stages the Simulated Annealing algorithm

becomes similar to gradient-based search.

The simulated annealing process proceeds as follows:

Step 1 randomly generate a feasible initial solution x0
and calculate f(x0).

Step 2 from the current solution x0, jump to its neighbor

x0 and calculate f(x0).
Step 3 compare f(x0) and f(x0).

If f(x0)[ f(x0), x
0 replaces x0 to be the current solution.

Otherwise, randomly generate a number z between 0.01

and 0.99.

If z\ exp � f ðxÞ�f ðx0Þ
T

� �
[8], x0 becomes the current

solution.

Otherwise, do nothing.

Step 4 for every 5 iterations, reduce the temperature T by

1 %, i.e., multiplying by 0.99.

Step 5 check termination rule.

Maximum iterations reached or stopping criteria

reached.

If yes, algorithm stops; otherwise, return to Step 2.

More detailed SA design and parameter tuning can be

found in Cheng [9].

2.4 Numerical Results

The procedurewas codedwithMATLAB7.2.0 and run on an

IBM Laptop with a 1.60 GHz Pentium R processor and 1.00

Gigabytes of RAM. Since running a 30-station route over a

30-year analysis period takes considerable time, a very large

number of iterations are needed to converge while searching

with Simulated Annealing. In the numerical examples pre-

sented here, it is assumed for simplicity that the externally

funded budget for capital improvements is equally dis-

tributed over all periods. Two problem cases were tested: an

unconstrained case and a revenue-budget-constrained case.

2.5 Unconstrained Case

Figure 3a shows the resulting discounted net benefits/year

and the optimized phases. Surprisingly, this optimized

solution has only one phasewhich consists of adding 23 links
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in year 2. Since it is assumed thatwe have unlimited funds for

extensions, this answer implies that we should add links as

soon as possible if the demand is sufficient. The demand at

stations 28, 29, and 30 is initially too low, so the route stops at

station 27. The annual discounted net benefits respond to the

addition of links. In year 2, the negative value is due to the

construction costs. Figure 4a compares four alternatives.

The green line is the optimized solution found for the

unconstrained case. The black line is the case without addi-

tion of links, which has only 4 stations in service for the

30-year horizon. The drop in year 2 is due to capital costs for

extension. If the transit line is extended to link 27 in year 2,

the NPW will increase much faster than without an exten-

sion. Alternative 1 (red) extends to link 27 in year 17;

alternative 2 (blue) extends to link 30 in year 2. None of them

have a higher objective value than the green line.

2.6 Constrained Case

Two kinds of constraints are added: a revenue constraint

and a budget constraint. Penalty methods are used here for

dealing with constraints. A 5 % borrowing allowance is

added into both revenue and budget constraints. Adding

such an offset is reasonable to avoid delaying the con-

struction just because of small shortfalls.

For the revenue-budget-constrained case, the stopping

criterion is increased to 100 k iterations and the objective

value is 4.0591 9 109. Figure 3b shows the annual dis-

counted net benefits in each year and the optimized phases.

There are six phases for this case: Phase I adds 3 links in

year 3; Phase II adds 2 links in year 5; Phase III adds 1 link

in year 6; Phase IV adds 1 link in year 9; Phase V adds 3

links in year 13; and the last phase adds 1 link in year 14.

The annual discounted net benefits drop significantly when

links are added but bounce back with a higher value the

following year. Figure 4b shows the NPW for different

cases. In Fig. 4b, as more constraints are applied, NPW

decreases, as expected. However, the differences in NPW

between revenue-constrained case and revenue-budget-

constrained case are small. There are probably two reasons:

first, the 5 % borrowing allowance brings the answers in

our two cases fairly close; second, the revenue constraint

dominates in the numerical example. Adding a budget

constraint does not bind the solution. Compared with the

unconstrained and revenue-budget-constrained cases, the

NPW in the case constrained by revenue and budget is

nearly one-third of that in the unconstrained case. NPW is

significantly affected by the construction phases.

2.7 Reliability

The reliability of the obtained solution is an important

concern. Since the exact optimal solution to this problem is

not known (note that no existing methods guarantee finding

the global optimum for a large RCPSP), it is difficult to

prove the goodness of the solution found by the proposed

Simulated Annealing algorithm. Therefore, an experiment

is designed to statistically test the effectiveness of the

algorithm. In this experiment, the fitness value is evaluated

for each randomly generated solution to the problem. First,

numerous solution samples are generated and tested. The

next step compares the random sample solutions with the

SA optimized solution.

We first create a random sample of 1,000,000 observa-

tions. The best fitness value (i.e., NPW) in this sample is

3.7527 9 109, while the worst one is -1.0278 9 1012. The

sample mean is -2.2814 9 1011 and the standard deviation

is 1.4481 9 1011, as shown in Fig. 5. In the experiment,

the optimized solution obtained (4.0591 9 109) is

approximately 8 % higher (i.e., better in NPW) than the

highest value in the random sample (3.7527 9 109). In

other words, the solution found by the SA algorithm

dominates by a considerable margin all the solutions in the

distribution. In fact, the random sample does not cover the

range of the fitness values for all possible solutions in the

search space. The number of possible solutions for the

unconstrained case is 2729, which includes infeasible

solutions. This number comes from the solution vector

which has 30 elements. Besides the base year (year 1), in

each year the number of stations in service can change

from 4 to 30, so there are 2729 different permutations. It is

difficult to calculate the exact number of possible feasible

solutions, since the problem is dynamic. This suggests that

an even larger sample might be worth testing. However, the

optimized solution value is considerably better than any of

the 1 million random solutions sampled. The result shows

that the best solution found by the SA algorithm, although

not necessarily globally optimal, is still remarkably good

when compared with other possible solutions in the search

space and is unlikely to be significantly improved upon by

the globally optimal solution. We can conclude that the

solution quality will be limited by the various uncertainties

regarding the inputs rather than the capabilities of the

Simulated Annealing algorithm. This analysis indicates a

very promising performance for the proposed optimization

model.

2.8 Computation Time

One of the main drawbacks of the Simulated Annealing

approach is its computation time. As the problem size

changes from ten stations and 10 years to thirty stations

and 30 years, respectively, the computation time increases

significantly, as shown in Fig. 6. Various computations

such as computation of the net present worth function and

computation of the probability of accepting bad solutions
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increase the computation time when the problem size

grows. Also, for better results the cooling schedule has to

be carried out very slowly and this significantly increases

the computation time.

2.9 Sensitivity Analysis

The following sensitivity analysis is designed to investigate

the effects of one input parameter (i.e., the interest rate) on

the resulting optimized values (i.e., construction phases and

total net benefits). If the model is very sensitive to changes

in a particular input parameter, that parameter should be

predicted as accurately as possible and decisions should be

made more cautiously.

2.9.1 Interest Rate

The interest rate plays an important role in project

scheduling, especially in large investment projects. Theo-

retically, projects tend to be postponed when the interest

rate is high. If the interest rate increases, then investment

decreases due to the higher cost of borrowing. Although

transit planners cannot control the interest rate, sensitivity

analysis can show them how extension decisions are

affected by interest rates.

To evaluate the effects of different interest rates (s) on

phasing decisions and NPW in this section, s, whose base

value is 5 %, is varied between 0 and 30 %. Table 2 shows

the differences in optimized values and phases. Not only is
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the extension postponed but also the number of phases

decreases when the interest rate increases. When s is below

10 %, the transit line is extended to link 15. When s in-

creases to 15 %, the line is extended to link 8. When

s exceeds 30 %, the transit route merely extends to link 5.

For links with enough demand, delaying the construction

causes no problem. The marginal benefits of adding links

with enough demand are always positive, except when

adding links in the last year of the analysis period. How-

ever, links with initially low demand and enough high

growth rates after implementation are only beneficial over

the analysis period if they are built early. In order to

achieve higher cumulative net benefits, the links which

would be economically beneficial at the end of the analysis

period must be added as soon as possible. If some

constraints prevent the extensions at early stages, the line

cannot be extended as far as in the unconstrained case.

3 Conclusions

A model is developed for optimizing the construction

phases of any rail transit line that is built without gaps from

one end toward the other. It can be used to determine not

only the construction phases but also the economic feasi-

bility of additional links under various financial constraints.

The optimized solution also avoids overextension of the

proposed line. In addition, tax-funding policy also can be

optimized through sensitivity analysis, as demonstrated.

The study leads to the following conclusions:

The numerical analyses show that for the unconstrained

case, immediately adding all links with positive net

Fig. 4 Cumulative net benefits over years on different alternatives

and cases

Fig. 5 Optimized SA solution compared to 106 random solutions

Fig. 6 Computation time

Urban Rail Transit (2015) 1(4):227–237 235

123



benefits achieves the highest objective value. This result is

consistent with the one found in Kolisch and Padman [9],

which is to schedule jobs with positive cash flows as soon

as possible and to delay jobs with negative cash flows as

much as possible. With its given inputs, the optimized

solution has only one phase and, in the absence of a

completion constraint, does not reach the end of the route.

Therefore, those links with negative values are postponed

indefinitely. If we insist (through completion constraints)

that outer links with unjustifiably low demand must be

completed, then those links with insufficient demand

would be added in the last time period (The present worth

of their costs would thus be minimized). For the case in

which demand grows faster after an extension, the eco-

nomic feasibility of adding one link is affected signifi-

cantly by the construction time. Compared with various

financial constraints, the transit line can be extended to link

27 for the unconstrained case, but it can only be extended

to link 15 for the case constrained by external budget and

route-generated revenue. If some links with low demand

and high growth rate after extension cannot be added at

early stages, they do not become justified within the

remaining 30-year span of our case study. That is due to

the high capital costs of adding links. In our sensitivity

analysis, no extension was justified at later stages. Con-

sequently, when analyzing the economic feasibility of a

project with high capital cost, construction phases should

be taken into account.

The results obtained are reasonable, even for the pos-

sibly counterintuitive results where demand growth

accelerates after links and stations are added. Such a model

is valuable because it quantifies the effects of extension

alternatives and finds extremely good solutions for this

large combinatorial problem. While most of the results

seem reasonable or even obvious qualitatively, such a

model can help quantify and optimize the route develop-

ment decisions.

3.1 Future Research

The following extensions are suggested for further studies:

(1) The model designed in this study is deterministic.

Based on uncertainties about the future, this model

could be improved to consider probabilistic factors.

For instance, the demand growth rate might change

over time. Demand will not necessarily increase in

the future. Interest rates and inflation rates also vary

over time. A probabilistic model can address this

problem more realistically than a deterministic

model.

(2) For increased realism, a future model might relax

some simplifying assumptions, such as that specifyingT
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sequential link addition. Currently the model can be

used for radial networks. For some other cases, the

assumption that only adds links sequentially should be

relaxed.

(3) Additional factors that would be affected by transit

extensions might be modeled, such as multi-modal

access to stations. External benefits and costs can be

added into the model if they are correctly estimated,

including employment opportunities, land values,

travel time savings, and environmental impacts.

(4) Some operational variables (e.g., transit fare and

cruise speed) can also be optimized by a modified

model at various times instead of keeping them

fixed. In order to optimize these variables, price and

travel time elasticity of the demand would have to be

considered.

(5) This model optimizes the construction phases for a

single route. It might be improved to deal with more

complex networks that include branched routes.

(6) Other metaheuristic algorithms, such as genetic

algorithms and tabu search, might be tried for this

problem in attempting to reduce the computation

time.
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