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Abstract
It is shown that a polynomial map F ∶ ℝ

n
→ ℝ

n with nowhere zero Jacobian 
determinant is invertible if and only if an explicit auxiliary polynomial system 
admits only the trivial solution. The main corollary is a concrete invertibility 
criterion in the Jacobian conjecture. The proof, conceptually related to differential 
geometry, represents a simple but infrequent application of differential equations to 
algebra.

1 Introduction

The primary goal of this note is the algebraic characterization of the systems 
F(x) = y of n polynomial equations in n real variables for which the solution exists, 
is unique, and varies differentiably with y.

Equivalently, we formulate algebraic necessary and sufficient conditions in order 
for the polynomial map F ∶ ℝ

n
→ ℝ

n underlying the system to admit a differentiable 
inverse. The last condition requires JF(x) = detDF(x) to be nowhere zero, and so we 
are really searching for an algebraic characterization of invertible polynomial local 
diffeomorphisms.

A. Bialynicki-Birula and M. Rosenlicht proved in [1] the intriguing result that, just as 
in the trivial case of linear operators in finite dimensions (i.e. polynomial maps ℝn

→ ℝ
n 

of degree one), all injective polynomial self-maps of ℝn are surjective. The complex 
analogue of this result is the celebrated Ax-Grothendieck theorem [2].
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These developments raise the possibility that perhaps other elementary features 
of linear systems also carry over to systems of polynomials of arbitrary degrees.

With this in mind, and since a linear map L ∶ ℝ
n
→ ℝ

n is invertible if and only 
if detL ≠ 0 , it is natural to ask if, more generally, polynomial maps on ℝn with 
non-vanishing Jacobian determinants (i.e. polynomial local diffeomorphisms) are 
invertible. This was answered in the negative by Pinchuk in [3] (see also [4, 5]).

An equivalent statement for the invertibility of L is the finite-dimensional 
version of the classical “Fredholm alternative": Either Lx = y has a unique 
solution for every y ∈ ℝ

n , or the auxiliary n × n system Lx = 0 has a non-trivial 
solution.

It turns out that, unlike the condition detL ≠ 0 for invertibility, the Fredholm alternative 
does admit a version for non-singular arbitrary polynomial maps. The caveat is that the 
auxiliary system that controls invertibility is now of type (2n) × (2n):

Theorem 1.1 Let F ∶ ℝ
n
→ ℝ

n be a polynomial map with |JF| > 0 . Then either the 
system F(x) = y has a unique solution for every y ∈ ℝ

n , or the auxiliary system

has a non-trivial solution. Otherwise said, the local diffeomorphism F is invertible if 
and only if the only solution of the above system in ℝn ×ℝ

n is x = y = 0.

Matrix inversion can be computationally onerous. In this regard, 
the version of Theorem  1.1 given below, obtained by setting 
[DF(x)−1]∗x = z = −[DF(y)−1DF(x)]∗y , may be more useful:

Corollary 1.2 A polynomial local diffeomorphism F ∶ ℝ
n
→ ℝ

n is invertible if and 
only if x = y = z = 0 is the only solution of the homogeneous polynomial system

Remark 1.3 

(a) Note that (1.1) is equivalent to 

 It follows from the theorem that this system has a non-trivial solution in all 
counterexamples to the strong real Jacobian conjecture (for instance, the ones 
in [3–5]).

(b) Why systems come into play? Naively, the injectivity question can be understood 
conceptually as a matter of uniqueness in infinitely many problems: one is tasked with 
showing that for y fixed—and yet arbitrary, F(x) = F(y) has precisely one solution. 

(1.1)
F(x)−F(y) = 0

[DF(x)−1]∗x+[DF(y)−1]∗y = 0

(1.2)
F(x) − F(y) = 0

DF(x)∗z − x = 0

DF(x)∗z + y = 0.

(1.3)
F(x) − F(y) = 0

x + [DF(y)−1DF(x)]∗y = 0.
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Theorem 1.1 introduces a device that reduces the injectivity issue to the examination 
of uniqueness in only one problem, rather than infinitely many. The trade-off is that 
one has to work in a space having twice the dimension of the original one.

(c) Unlike sufficiency, to be established in Sect. 2, the necessity half of the theorem 
is utterly trivial: injectivity implies that (1.3) reduces to x − y = 0, x + y = 0.

The main application of Theorem 1.1 is to the study of the Jacobian conjecture 
in algebraic geometry [6–8]. The latter can be formulated, equivalently, over ℂ or ℝ:

(JC) ∀n ∈ ℕ , if G ∶ ℂ
n
→ ℂ

n is a polynomial map with detDG = 1 , then G is 
invertible.

(RJC) ∀n ∈ ℕ , if F ∶ ℝ
n
→ ℝ

n is a polynomial map with detDF = 1 , then F is 
invertible.

To be clear, the complex Jacobian conjecture in dimension n implies the real 
version in dimension n (by complexification), whereas the real version in dimension 
2n implies the complex one in dimension n (by realification).

We also point out that (RJC) fails if detDF = 1 is replaced by detDF ≥ 1 [4].
The conjecture below is about Systems:

Conjecture (SJC) ∀n ∈ ℕ , if F ∶ ℝ
n
→ ℝ

n is a polynomial map with detDF = 1 , 
then (x, y) = (0, 0) is the only solution in ℝn ×ℝ

n of the polynomial system (1.1).

From Theorem 1.1 and (JC) ⟺ (RJC) , one obtains:

Theorem 1.4 The Jacobian conjecture holds if and only if (SJC) is true.

(SJC) deals with a fairly explicit object, namely a polynomial system. This stands 
in sharp contrast with the abstract criteria in [7, Thm. (2.1)], stating that any of the 
assertions below is equivalent to version (JC) of the Jacobian conjecture: 

 (i) ℂ(X) is Galois over ℂ(F).
 (ii) ℂ[X] is a projective ℂ[F]-module.
 (iii) The integral closure of ℂ[F] in ℂ[X] is unramified over ℂ[F].

The idea for the proof of Theorem 1.1 comes from differential geometry. It is often 
the case that the solution of a geometric minimization problem yields a canonical 
representative of some class. For instance, there is a unique closed geodesic that 
minimizes length in each non-trivial free homotopy class of loops in a compact 
Riemannian manifold of negative curvature. An illustrative example is the “waist" of 
a truncated catenoid.

In our setting, the strategy is a simple one. Given a non-injective local 
diffeomorphism F ∶ ℝ

n
→ ℝ

n , we look for an “optimal" pair (x, y) off the diagonal 
D of ℝn ×ℝ

n that realizes lack of injectivity. Specifically, we take the infimum of the 
quantity |x|2 + |y|2 over those points (x, y) ∈ (ℝn ×ℝ

n) − D for which F(x) = F(y) , 
and then analyze a minimizer whose existence follows from general compactness 
arguments and the inverse function theorem.
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This note is similar in the spirit of [9], a work that is also informed by geometry and 
ODE’s, two subjects to which Jorge Sotomayor made significant contributions. Both 
papers extend to the non-linear realm particular aspects of linear algebra.

2  A variational approach to injectivity

As injective polynomial maps ℝn
→ ℝ

n are surjective [1], Theorem 1.1 follows from

Theorem  2.1 A local diffeomorphism F ∶ ℝ
n
→ ℝ

n of class C1 is injective if and 
only if x = y = 0 is the only solution of

It was observed already that if F is injective the system ΣF above reduces 
to x − y = 0, 2[DF(x)−1]∗x = 0 . For the converse, assume by contradic-
tion that ΣF has only the null solution but F is not injective. Select x0, y0 ∈ ℝ

n , 
x0 ≠ y0 , such that F(x0) = F(y0) . Let J ⊂ (0,∞) be defined by the condition 
that a positive number r belongs to J if and only if there exist x, y ∈ ℝ

n such that 
x ≠ y, F(x) = F(y), r =

√
�x�2 + �y�2. In particular, r0 =

√
�x0�2 + �y0�2 ∈ J.

We let � be the infimum of the (supposedly non-empty) set J and proceed to show 
that neither of the alternatives � = 0 , 𝛼 > 0 , can occur. Choose a sequence rj ∈ J , 
rj ≤ r0 , with limj→∞ rj = � , with corresponding xj, yj ∈ ℝ

n such that

Passing to subsequences, if necessary, we may assume that (xj) and (yj) , which are 
bounded in view of (2.2), converge to points x, y in ℝn . By continuity, (2.2) implies

Next, we will see that the remaining piece of information from (2.2) is also pre-
served in the limit, namely that x ≠ y . If not, since F is non-singular, by the inverse 
function theorem we can choose a neighborhood U of the common value x = y for 
which F|U is injective. As lim xj = x = y = lim yj, we can pick j sufficiently large so 
that the distinct points xj, yj belong to U. But since F|U is injective one must have 
F(xj) ≠ F(xj) , a contradiction to (2.2).

Thus, one obtains an enhanced version of (2.3):

An immediate consequence of (2.4) is that the alternative � = 0 cannot occur. 
Assume therefore that 𝛼 > 0 and consider

(2.1)
F(x)−F(y) = 0

[DF(x)−1]∗x+[DF(y)−1]∗y = 0.

(2.2)xj ≠ yj, F(xj) = F(yj), rj =

√
|xj|2 + |yj|2 ≤ r0.

(2.3)F(x) = F(y), � =
√

|x|2 + |y|2.

(2.4)x ≠ y, F(x) = F(y), � =
√

|x|2 + |y|2.
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As the map F is of class C1 , � can be regarded as a continuous vector field on 
ℝ

2n = ℝ
n ×ℝ

n , and as such it has local trajectories by Peano’s theorem on 
existence of solutions of systems of ordinary differential equations with continuous 
coefficients. Let therefore � ∶ [0, �1) → ℝ

n ×ℝ
n , �(t) = (x(t), y(t)) , be a solution, for 

some 𝜖1 > 0 , of the problem

One has d
dt

(
F(x(t)) − F(y(t))

)
= DF(x)

dx

dt
− DF(y)

dy

dt
= DF(x)�1 − DF(y)�2 = 0, and 

so, for t ∈ (0, �1),

From (2.5) and (2.6),

We claim that the previous inequality is strict at (x, y) , i.e.

Indeed, by (2.8) if (2.9) fails one must have �1(x, y) = 0 and, by (2.5),

Multiplying (2.10) by [DF(x)−1]∗ one obtains [DF(x)−1]∗x + [DF(y)−1]∗y = 0 . From 
the second relation in (2.4) one then sees that (x, y) is a solution of (1.1) and so, by 
the main hypothesis of the theorem, x = y = 0 . But then (2.4) implies � = 0 , a case 
that had been discarded already, and therefore (2.9) must hold.

Next, using (2.4) and (2.9) one can find �2 ∈ (0, �1) such that, for all t ∈ (0, �2),

(2.5)

� = (�1, �2) ∶ ℝ
n ×ℝ

n
→ ℝ

n ×ℝ
n,

�1(x, y) = −
(
x + [DF(y)−1DF(x)]∗y

)
,

�2(x, y) = DF(y)−1DF(x)�1(x, y).

(2.6)

dx

dt
= �1(x, y),

x(0) = x

dy

dt
= �2(x, y)

y(0) = y.

(2.7)F(x(t)) − F(y(t)) = F(x(0)) − F(y(0)) = F(x) − F(y) = 0.

(2.8)

d

dt

1

2
(�x�2 + �y�2) = ⟨x, dx

dt
⟩ + ⟨y, dy

dt
⟩ =

⟨x, dx
dt
⟩ + ⟨y,DF(y)−1DF(x)dx

dt
⟩ =

⟨x + [DF(y)−1DF(x)]∗y,
dx

dt
⟩ =

− ��1(x, y)�2 ≤ 0.

(2.9)
d

dt
(|x|2 + |y|2)||t=0 < 0.

(2.10)x + [DF(y)−1DF(x)]∗y = 0.
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It follows from (2.7), the first relation in (2.4), and the continuity of � , that if 
�3 ∈ (0, �2) is sufficiently small then F(x(t)) = F(y(t)) and x(t) ≠ y(t) for all t ∈ (0, �3)

.
The last relations imply, for t ∈ (0, �3) , and after taking square roots in (2.11), 

that

contradicting the definition of � . It follows that J = � , x0 = y0 , and so F is injective.

3  An explicit algebraic criterion in (JC)

In this section we show that Theorem  1.1 has a counterpart for local 
biholomorphisms (see Remark 1.3 a) and Theorems 3.1, 3.2 below), leading to a 
direct criterion for (JC) to hold, without having to go through its real version (RJC). 
Here, A∗ stands for the adjoint of the complex matrix A, i.e. its conjugate-transpose.

Theorem  3.1 A local biholomorphism F ∶ ℂ
n
→ ℂ

n is injective if and only if 
x = y = 0 is the only solution in ℂn of the system

From [1] one obtains

Theorem 3.2 A polynomial map F ∶ ℂ
n
→ ℂ

n , detDF = 1 , is invertible if and only 
if x = y = 0 is the only solution in ℂn of system (3.1).

Remark 3.3 Unlike the real case, in Theorem 3.2 the system is no longer polynomial 
in the (complex) coordinates of x and y, since it clearly involves their conjugates as 
well. Notice that Corollary 1.2 also admits a complex version.

The proof of Theorem 3.1 follows closely that of Theorem 1.1, but for the benefit 
of the reader primarily interested in the version (JC) of the Jacobian conjecture - and 
not on the invertibility of local diffeomorphisms - we go over the arguments again, 
in a slightly modified way.

If F is injective, (3.1) reduces to x − y = 0, x + y = 0 and the conclusion follows. 
Assume now, by contradiction, that the only solution of (3.1) is the null one but F is 
not injective, say F(x0) = F(y0) , x0 ≠ y0.

(2.11)|x(t)|2 + |y(t)|2 < |x(0)|2 + |y(0)|2 = |x|2 + |y|2 = 𝛼2.

√
�x(t)�2 + �y(t)�2 ∈ J

√
�x(t)�2 + �y(t)�2 < 𝛼,

(3.1)
F(x) − F(y) = 0

x + [DF(y)−1DF(x)]∗y = 0.
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Choose R >
√
�x0�2 + �y0�2 , let BR be the closed ball in ℂn × ℂ

n with center (0, 0) 
and radius R, and take D to be the diagonal of ℂn × ℂ

n . Consider

observing that this set is non-empty since it contains (x0, y0).
Next, we show that C is closed, hence compact. To this end, take a sequence (xn, yn) 

in C that converges in ℂn × ℂ
n to (a, b). Evidently, (a, b) ∈ BR , F(a) = F(b) , and so 

it remains to check that a ≠ b , If not, the inverse function theorem applied at a = b 
implies xn = yn for sufficiently large n, contradicting C ∩ D = �.

Let (x, y) be a point of absolute minimum for the function h(x, y) =
√
�x�2 + �y�2 on 

C . Observe that (x, y) lies in the interior of BR , since h(x, y) ≤ h(x0, y0) < R = h|𝜕BR.
Consider the local solutions, in the interior of BR , of the initial value problem 

corresponding to (2.6):

Since y� = DF(y)−1DF(x)x� , the derivative of F(x(t)) − F(y(t)) is zero and so

The computation analogous to (2.8), of the variation of h along the local solution, 
now needs to take real parts into account:

From this point on the argument proceeds as in Sect. 2. If the above inequality were 
strict at t = 0 , for t close to zero the quantity |x(t)|2 + |y(t)|2 would be strictly smaller 
than |x|2 + |y|2 , a contradiction to the fact that (x, y) is a point of global minimum for 
h.

Hence, the derivative in (2.8) is zero at t = 0 , leading to x + [DF(y)−1DF(x)]∗y = 0 . 
By the main hypothesis of the theorem this implies (x, y) = (0, 0) , contradicting 
C ∩ D = � . Thus, there is no (x0, y0) off the diagonal for which F(x0) = F(y0).

C = {(x, y) ∈ BR − D | F(x) = F(y)},

dx

dt
= −

(
x + [DF(y)−1DF(x)]∗y

)

x(0) = x

dy

dt
= −DF(y)−1DF(x)

(
x + [DF(y)−1DF(x)]∗y

)

y(0) = y.

F(x(t)) − F(y(t)) = F(x(0)) − F(y(0)) = F(x) − F(y) = 0.

d

dt

1

2
(�x�2 + �y�2) = Re⟨x, dx

dt
⟩ + Re⟨y, dy

dt
⟩

= Re⟨x, dx
dt
⟩ + Re⟨y,DF(y)−1DF(x)dx

dt
⟩

= Re⟨x + [DF(y)−1DF(x)]∗y,
dx

dt
⟩

= −��x + [DF(y)−1DF(x)]∗y��
2
≤ 0.
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4  Remarks on polynomial homeomorphisms

Since we dealt with the issue of differentiable dependence on y of the solutions x of 
a polynomial system F(x) = y , it is natural to look also into continuous dependence.

By the invariance of domain theorem (i.e., a continuous injective map F ∶ ℝ
n
→ ℝ

n 
is open, hence ℝn

F
−→F(ℝn) is a homeomorphism), existence and uniqueness of solu-

tions of F(x) = y already guarantees continuous dependence. Thus, the main prob-
lem in this circle of ideas is to characterize algebraically those polynomial maps 
F ∶ ℝ

n
→ ℝ

n that are homeomorphisms (instead of diffeomorphisms, as it was done in 
the present note).

Simply put, one can leave topology aside and try to characterize algebraically the 
polynomial maps on ℝn that are invertible.

An obvious necessary condition, arising from the fact that a homeomorphism 
either preserves or reverses orientation, is that the Jacobian determinant should be 
everywhere non-negative or non-positive, i.e. it does not change sign. Likewise, by 
the aforementioned invariance of domain theorem, another necessary condition is 
that F be an open map. In the smooth (resp. polynomial) case, openness is equivalent 
to discreteness (resp. finiteness) of fibers, plus the requirement that the Jacobian 
determinant does not change sign [10–12].

It is conceivable that besides these two conditions one needs just a single extra one 
in order to ensure invertibility, involving the solutions of a suitable polynomial system. 
However, as matters stand, it is not clear how to proceed because the passage from 
JF > 0 to JF ≥ 0 introduces several technical difficulties in our variational approach.
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