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Abstract
We give two characterisations of when a map-germ admits a 1-parameter stable 
unfolding, one related to the K

e
-codimension and another related to the normal form 

of a versal unfolding. We then prove that there are infinitely many finitely deter-
mined map-germs of multiplicity 4 from �3 to �3 which do not admit a 1-parameter 
stable unfolding.
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1  Introduction

In classification problems of map-germs and in the study of their algebraic or topo-
logical invariants, having a 1-parameter stable unfolding is a desirable property.

Definition 1.1  Let f ∶ (�n, 0) → (�p, 0) be a smooth map-germ. A 1-parameter sta-
ble unfolding (OPSU) of f is a smooth map-germ F ∶ (�n+1, 0) → (�p+1, 0) of the 
form F(x, �) = (f�(x), �) , with f0 = f  , which is stable as a map-germ.

Notice that a germ may have arbitrarily high Ae-codimension but still admit an 
OPSU. For example, the germs fk(x, y) = (x, y3 + xk+1y) in Rieger’s list [15] have Ae

-codimension k but admit the OPSU Fk(x, y, �) = (x, y3 + xk+1y + �y, �) , which is a 
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cuspidal edge in �3 . Many papers throughout the literature need the hypothesis of 
a germ admitting an OPSU in their main theorems. For example, in [11] it is the 
class of germs in which a method to calculate liftable vector fields is applicable, in 
Theorem 2.19 in [5] it is related to the Mond conjecture and in [6] it is necessary 
for a characterisation of which map-germs are augmentations. However, it is not 
fully understood when a map-germ admits an OPSU or not. There are obvious con-
straints given by the maximum possible multiplicity of stable germs in one dimen-
sion above, i.e. multiplicity 6 germs from �3 to �3 cannot have OPSU since there 
is no stable germ of multiplicity 6 in ℂ4 to ℂ4 . Amongst explicitly given classifica-
tions of corank 1 simple germs most germs seem to admit OPSU, for example, in 
Marar and Tari’s classification of simple corank 1 germs from �3 to �3 [9] all admit 
OPSU. However, this is not true in general, for example (x, y4 + x2y) in Rieger’s list 
is simple but does not admit an OPSU. Also, the germs Hk(x, y) = (x, y3, y3k−1 + xy) 
in Mond’s list [10] are simple of corank 1 and do not admit OPSU.

In this note we prove two characterisations of when germs admit an OPSU. The 
first one related to the Ke-codimension is well known but we have not found a proof 
of it in the literature, so we include it for the sake of completeness. The second one 
is related to the form of a versal unfolding and we believe it can be useful in several 
different contexts. Our results are in fact more general and related to the existence 
of stable unfoldings, the statements for OPSUs come as corollaries. We then turn 
our attention to the case of corank 1 map-germs from �3 to �3 . Any multiplicity 
2 germ in these dimensions is stable, any multiplicity 3 germ will be of the form 
(x, y, z3 + h(x, y, z)) with h ∈ �3 and it admits an OPSU (x, y, z3 + h(x, y, z) + �z, �) . 
By [9] all simple multiplicity 4 germs admit an OPSU too. We prove that there are 
infinitely many non-equivalent finitely determined map-germs of multiplicity 4 
which do not admit an OPSU.

2 � Preliminaries

Let � be either ℂ or ℝ . Denote by Od the local ring of germs of smooth functions in d 
variables over � , and denote its maximal ideal by �d . We write �d = Od ×

d
⋯ ×Od . 

If f ∶ (�n, 0) → (�p, 0) is a smooth (holomorphic or C∞ in ℂ and ℝ , respectively) 
map-germ, then we define �(f ) = On ×

p
⋯ ×On.

Recall that if Diff(�d, 0) is the group of germs of diffeomorphisms in �d , 
then the group A = Diff(�n, 0) × Diff(�p, 0) acts on the set of map-germs 
f ∶ (�n, 0) → (�p, 0) via the natural compositions. The equivalence relation defined 
by the orbits of this action is called A -equivalence. We can assign to each f the fol-
lowing spaces:

TAef = tf (�n) + �f (�p),

NAef =
�(f )

tf (�n) + �f (�p)
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where tf acts as the composition with the differential df, and �f  acts as the pre-
composition with f. These spaces are respectively called the Ae-tangent space to f 
and the Ae-normal space to f.

If K  is the subgroup of Diff(�n+p, 0) given by diffeomorphisms of the form:

with �(x, 0) = 0 for all x, then K  acts on map-germs f ∶ (�n, 0) → (�p, 0) such that 
for each Φ ∈ K :

The induced equivalence relation is called K -equivalence or contact equivalence, 
and we can also assign to each f the following spaces:

where f ∗�p is the ideal generated by the components of f over On . These are called 
the Ke-tangent space to f and the Ke-normal space to f.

We define the Ae-codimension of f as the dimension over � of NAef  , and we 
denote it by Ae −cod(f ) . A map-germ is said to be A -finite if it has finite Ae

-codimension. Being stable is equivalent to having Ae-codimension equal to 0. 
The Ke-codimension is defined similarly, and if it is finite we say that f has finite 
singularity type.

Being A -finite is equivalent to being finitely A -determined. We recall that, 
in the analytic case, this means that for any A -finite map-germ f there exists a 
d ∈ ℕ such that, if the Taylor expansion of another map-germ g coincides with 
the expansion of f up to degree d, then both map-germs are A -equivalent.

The multiplicity of f is the dimension over � of On

f ∗�p

 and it is constant along 
the K -orbit. Finally, recall:

Definition 2.1  A smooth f ∶ (�n, 0) → (�p, 0) is A -simple if there exist a finite 
number of A -equivalence classes such that, if the versal unfolding of f admits 
a representative F ∶ U → V  with U ⊆ �

n × �
d,V ⊆ �

p × �
d , of the form 

F(x, �) = (f�(x), �) , for each (y, �) ∈ V  the map-germ f� ∶ (�n, f −1
�

(y)) → (�p, y) lies 
in one of those classes.

We refer to [12] for more details on all these definitions.

3 � Minimal stable unfoldings

In [8], Mather gave a method to obtain stable mappings as unfoldings of rank 0 map-
germs and proved that any stable germ can be obtained by that method. This method 
provided a recipe to construct a stable unfolding for any given map-germ of finite Ke

Φ(x, y) = (�(x),�(x, y))

Φ ⋅ f (�(x)) = �(x, f (x))

TKef = tf (�n) + f ∗�p�(f ),

NKef =
�(f )

tf (�n) + f ∗�p�(f )
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-codimension. The procedure can be summarized as follows: if f ∶ (�n, 0) → (�p, 0) 
is of rank r and has finite Ke-codimension, then it can be seen as the unfolding 
of some rank 0 map-germ, f0 ∶ (�n−r, 0) → (�p−r, 0) of the same codimension 
Ke-cod(f0) = m < ∞ . Since f0 is of rank 0, TKef0 ⊆ �n−r𝜃(f0) . Therefore, one can 
find �1,… , �m−p+r ∈ �(f0) such that:

Mather’s method now ensures that the unfolding:

is stable. Here the �i are seen as vector fields in �(f ) via the natural inclusion. For 
detailed explanations and proofs on the results that support this method, we suggest 
reading Sect. 7.2 of [12].

This procedure has a minor inconvenience, namely that the number of parameters 
required to obtain the stable unfolding might be excessive. The following example 
shows a naïve approach to this situation, but hints at what might happen when one is 
working with a more intricate map-germ:

Example 3.1  Let f (x, y) = (x, y4 + xy) . We want to apply Mather’s method in order 
to obtain a stable unfolding. Here, f can be seen as an unfolding of f0(y) = y4 . Now:

Hence a stable unfolding of f is:

Clearly the term u1y is redundant, in the sense that we only needed to add the term 
u2y

2 in order to obtain a stable unfolding (see the stable map-germs from �3
→ �

3 
in page 210 in [4], for example).

It is widely known that to avoid this problem of repetition one must take out of 
the computation those elements that, once seen as vector fields in �(f ) , lie on the 
same class in NKef  as some constant vector field. For instance, in our example, the 
vector field (0, y) lies in the same class as (−1, 0) in NKef  , since (1, y) is in TKef .

We have not been able to find in the literature a published proof of this detail. The 
following discussion aims to provide a formal proof for future reference.

In order to do this consider the following quotient, which is just a version of the 
Ke-normal space with the constant vector fields added into the zero class:

�n−r�(f0)

TKef0
= Sp

�
{�1,… , �m−p+r}

(

f (x) +

m−p+r∑

i=1

ui�i, u1,… , um−p+r

)

�1�(f0)

TKef0
= Sp

�
{y, y2}

F(x, y, u1, u2) =
(
x, y4 + xy + u1y + u2y

2, u1, u2
)
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This space was studied in depth by Ruas in her thesis [13], using it to provide cri-
teria for determining when an A -orbit is open on its K -orbit. As we will see, it is 
also the right tool to use when trying to build a stable unfolding with the minimal 
number of parameters.

Definition 3.2  We will say that a d-parameter stable unfolding F of f is a minimal 
stable unfolding if no other stable unfolding exists with less than d parameters.

Denote by �

�X1

,… ,
�

�Xp

 the constant vector fields in �(f ) . Then we can also denote 
the constant vector fields of �(F) by �

�X1

,… ,
�

�Xp

,
�

�U1

,… ,
�

�Ud

 . The following result 
can be found as Lemma 5.5 in [12]:

Lemma 3.3  For any unfolding F(x, u) = (fu(x), u) of f, there is an isomorphism 
� ∶ NKeF → NKef  that takes the class of �

�Xi

 to the class in NKef  of �

�Xi

 for each 

i = 1,… , p , and the class of �

�Uj

 to the class in NKef  of Ḟj =
𝜕fu

𝜕uj

||
||u=0

 for each 

j = 1,… , d.

Denote by c(f) the number of constant vector fields �

�Xj

 which do not belong to 
TKef .

Theorem 3.4  Let f ∶ (�n, 0) → (�p, 0) be a smooth map-germ with finite Ke-codi-
mension. Then, d ∶= dim

�
N(f ) = Ke −cod(f ) − c(f ) . Moreover, if the classes of 

�1,… , �d ∈ �(f ) form a �-basis of the quotient N(f), then:

is a minimal stable unfolding of f. In particular, f admits an OPSU if and only if 
dim

�
N(f ) = 1.

Proof  The following argument is similar to the one found in Proposition 7.1 from 
[12], but taking into account that f is not of rank 0.

Notice that the only elements in �f (�p) that do not belong to f ∗�p�(f ) are those 

from the subspace Sp
�

{
�

�X1

,… ,
�

�Xp

}
 . Therefore N(f) is effectively NKef  but add-

ing all the constants into the zero class. Hence, the first equality is clear.
This also means that NKef  is contained in the linear space generated over � by 

the classes of �

�X1

,… ,
�

�Xp

 , �1,… , �d . As a remark, since f is of arbitrary rank, the 

class of some �

�Xi

 might be zero over NKef  , and so these classes might not form a 

N(f ) =
�(f )

tf (�n) + f ∗�p�(f ) + �f (�p)

F(x, u) =

(

f (x) +

d∑

i=1

ui�i, u1,… , ud

)
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system of generators. Now, by Lemma 3.3, we have that NKeF is contained in the 
linear space generated over � by the classes of �

�X1

,… ,
�

�Xp

,
�

�U1

,… ,
�

�Ud

 . Again, 

some of the �

�Xi

 might be in the zero class, but we still have:

Hence, F is stable (see Theorem  4.1 from [12]). No stable unfolding with less 
parameters can exist, since the image of the �

�U1

,… ,
�

�Ud

 via the isomorphism must 
project to a basis of N(f) for the unfolding to be stable.

	�  ◻

The Ke-codimension is constant in a K -orbit, so one could be inclined to think 
that having an OPSU depends only on the K -orbit (i.e. on the multiplicity). How-
ever, c(f) is not, as the following example shows (see also Sect. 4).

Example 3.5  In Rieger’s classification [15] amongst the multiplicity 4 germs, 
(x, y4 + xy) and (x, y4 + xy2 + y2k+1) ( k > 1 ) admit OPSUs, and (x, y4 + x2y + y5) and 
(x, y4 + x2y) don’t. It can be seen that c(f ) = 2 for the first two, but for the last two 
(1, 0) ∈ TKef  and c(f ) = 1.

We finish the section by giving a normal form of the versal unfolding of map-
germs that admit stable unfolding, involving N(f). Part of the argument in the fol-
lowing proof can be found as the first step in the proof of Theorem 5.1 from Ruas’ 
thesis ( [13]), which was later published in [14]. It is used there to obtain a sufficient 
condition (equivalent in the article) for the A -orbit of a germ with finite singular-
ity type to be open on its K -orbit. The extra hypothesis of finite Ae-codimension 
allows to prove another result:

Proposition 3.6  If f ∶ (�n, 0) → (�p, 0) has finite Ae-codimension k, and 
N(f ) = Sp

�
{�1,… , �d} for some �i ∈ �(f ) , then:

for some pj
i
∈ �p . In particular, f admits an OPSU if and only if it admits a versal 

unfolding of the form:

for some p2,… , pk ∈ �p.

TKeF + Sp
�

{
�

�X1

,… ,
�

�Xp

,
�

�U1

,… ,
�

�Ud

}

= �(F)

NAef = Sp
�

{

�1,… , �d,

d∑

i=1

p1
i
(f (x))�i,… ,

d∑

i=1

pk−d
i

(f (x))�i

}

(

f (x) +

(

�1 +

k∑

i=2

�ipi(f (x))

)

�1(x), �

)
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Proof  First notice that:

Hence, since �1,… , �d are a �-basis of N(f), they must form a �-independent set 
over NAef  . Since Ae −cod(f ) = k < ∞ , there must exist some �d+1,… , �k that com-
plete a basis of NAef .

We can also use the Malgrange Preparation Theorem (see the proofs men-
tioned above from [13, 14]) to see that NAef  is generated by �1,… , �d as an Op

-module via f. Therefore, each �d+1,… , �k must be in the class of some element in 
f ∗�pSp�{�1,… , �d} over NAef  , giving a basis in the required form.

In particular, if d = 1 there must exist p2,… , pk ∈ �p so that �i(x) = pi(f (x))�1(x) 
for each i = 2,… , k , and so a versal unfolding in the required form can be con-
structed. The converse is also true, since finding a versal unfolding of this form 
implies that NAef = Sp

�
{�1, p2(f (x))�1,… , pk(f (x))�1} . As pi(f (x))�1 ∈ f ∗�p�(f ) 

for each i = 2,… , k , we have that dim
�
N(f ) = dim

�

(
Sp

�
{�1(x)}

)
= 1 and so by 

Theorem 3.4 f admits an OPSU of the form (f (x) + ��1(x), �) . 	�  ◻

In spite of not knowing explicitly who the pi are, this result can be of great inter-
est when dealing with equivalence of unfoldings.

Example 3.7  Suppose you are given a germ and its versal unfolding, for example 
P2 ∶ (x, y, z5 + xz, z3 + yz) in Houston and Kirk’s list [7] and its versal unfold-
ing (x, y, z5 + xz + �1z

2 + �2xz
2, z3 + yz, �1, �2) . An advanced reader might real-

ise that P2 is a 1-parameter unfolding of H2 in Mond’s list [10], which has Ae

-codimension 2, so the versal unfolding of H2 should be an OPSU of P2 . How-
ever, with less background on existing classifications, knowing whether P2 
admits an OPSU or not is a priori not direct. Now, the versal unfolding can 
be written as (P2, �1, �2) + (�1 + �2x)(0, 0, z

2, 0, 0, 0) , and by the above result, 
this implies that (P2, �) + �(0, 0, z2, 0, 0) = (x, y, z5 + xz + �z2, z3 + yz, �)
(x, y, z5 + xz + �z2, z3 + yz, �) is an OPSU.

4 � Corank 1 multiplicity 4 germs from �3 to �3

All simple germs of multiplicity 4 in Marar and Tari’s list [9] admit an OPSU. In 
fact the germs 4k

1
∶ (x, y, z4 + xz + ykz2) and 4k

2
∶ (x, y, z4 + (y2 + xk)z + xz2) are aug-

mentations and any augmentation admits an OPSU (see [1] for details on augmenta-
tions and their simplicity). It is natural to ask whether there are any other finitely 
determined germs in this K -orbit which do not admit OPSU.

Theorem 4.1  There are infinitely many non A -equivalent finitely determined germs 
of multiplicity 4 in ℂ3 to ℂ3 which do not admit an OPSU.

N(f ) =
�(f )

TAef + f ∗�p�(f )
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Proof  Let H(d1, d2, d3) the set of all homogeneous polynomial mappings 
F = (f1, f2, f3) ∶ ℂ

3
→ ℂ

3 , such that degfi = di . By Theorem  1.1 in [3], if 
gcd(d1, d2, d3) = 1 and gcd(di, dj) ≤ 2 for 1 ≤ i ≤ j ≤ 3 , then there exists a non-
empty Zariski open subset U ⊂ H(d1, d2, d3) such that for every mapping F ∈ U the 
map germ (F, 0) is finitely A -determined. Taking (d1, d2, d3) = (1, 1, p) with p > 4 , 
we then have that there exists a finitely determined map-germ with homogeneous 
entries of those degrees in each component. By linear changes of coordinates in the 
source, this germ will be equivalent to (x, y,�p(x, y, z)) , where �p is a homogeneous 
polynomial of degree p in the variables x, y, z.

Now, by Lemma 1.2 in [2], if we add polynomials in each component of degrees 
strictly less than (1, 1, p), the resulting germ will be finitely determined. So we have 
that fp(x, y, z) = (x, y,�p(x, y, z)) + (0, 0, z4) = (x, y, z4 + �p(x, y, z)) is finitely deter-
mined. Notice that it has multiplicity 4 for any p.

Next, taking p1 ≠ p2 , we show that fp1 is not A -equivalent to fp2 . Notice that 
fp(x, y, z) can be written as

for 𝜙̃p,𝜙
1
p
,𝜙2

p
,𝜙3

p
 homogeneous polynomials of degrees p − 4, p − 1, p − 2 and 

p − 3 , respectively. Notice that (1 + 𝜙̃p(x, y, z)) is a unity. Any change of coordinates 
in the source will mantain some monomial of degree p. On the other hand, the only 
way to eliminate monomials of degree p with changes of coordinates in the target is 
with the change Z → Z − �(X, Y)Z , where (X, Y, Z) are the coordinates in the target 
and �(X, Y) is a polynomial of degree p − 4 . However, any monomial in �(X, Y)Z 
of degree p will have z4 and the monomials of degree p in fp have z, z2 or z3 , so there 
is no way of eliminating all the monomials of degree p by A -equivalence. Hence fp1 
is not A -equivalent to fp2 if p1 ≠ p2 . 	�  ◻

Example 4.2  In [9] a method to classificate corank 1 simple germs in the equi-
dimensional case due to du Plessis is given. Any such germ is A -equivalent to a 
germ of the form (x1,… , xn−1, x

n+1
n

+
∑n−1

i=1
Pi(x1,… , xn−1)x

i
n
) . Two such germs 

are A -equivalent if and only if the corresponding (P1,… ,Pn−1) are G -equiva-
lent, where G  is a subgroup of K  . The Ae-codimension of the germ is equal to 
the Ge-codimension of (P1,… ,Pn−1) , and following [9], for multiplicity 4 germs 
of type (x, y, z4 + P(x, y)z + Q(x, y)z2) , this is given by the codimension in O2

2
 of 

the space generated by {(3P, 2Q), (Px,Qx), (Py,Qy), (−4PQ2, 9P2) − Q2(3P, 2Q),
(−2PQQx, 3PPx), (−2PQQy, 3PPy)}.

The corresponding calculation shows that the germ (x, y, z4 + (x2 − y2)z + y2z2) 
has Ae-codimension 4 and is therefore finitely determined. However, by Theo-
rem 3.4 it does not admit an OPSU.
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4 + 𝜙1

p
(x, y)z + 𝜙2

p
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p
(x, y)z3)

= (x, y, (1 + 𝜙̃p(x, y, z))z
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p
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