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Abstract
The aim of this paper is to study the algebraic structure of the space R(Γn,m) of rep-
resentations of the torus knot groups, Γn,m = ⟨x, y ∶ xn = ym⟩ , into the linear special 
group SL(2,ℂ).
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representation
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1 Introduction

Knot theory is understood as the study of the equivalence classes of embeddings of 
the circle S1 or the disjoint union of m copies of S1 into S3 , considered up to ambi-
ent isotopy of S3 . A torus knot is a knot isotopic to one that lies on the boundary 
�(V) of an unknoted solid torus V ⊂ S3 . A knot K ⊂ S3 is said to be hyperbolic if 
S3 ⧵ K = ℍ

3∕Γ , where ℍ3 is the hyperbolic 3–space and Γ is a discrete, torsion-free 
subgroup of Iso+(ℍ3) , isomorphic to the fundamental group �1(S3 ⧵ K) of the knot 
complement S3 ⧵ K.
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R. Riley studied the geometry of knot complements throughout representa-
tion theory in which he considered SL(2,ℂ)-representations and used the theory of 
Haken manifolds to prove that the complement of the figure-eight knot is homeo-
morphic to ℍ3∕Γ , where Γ is a Kleinian subgroup of PSL(2,ℂ) , see [36] and [35]. 
Following this line, Riley also proved that many other knots are hyperbolic and he 
conjectured that the knots that are neither torus knots nor satellite knots are hyper-
bolic knots, see [37]. Riley’s work prepared the setting for Thurston’s geometriza-
tion conjecture. In the 80’s W. Thurston in [42] showed that every knot in S3 is either 
a torus knot, a satellite knot or a hyperbolic knot.

It is well known that torus knots complements do not support an unique hyper-
bolic geometry, because it is not possible to get faithful representations of those 
groups that admit a presentation of the form ⟨x, y ∶ xn = ym⟩ into PSL(2,ℂ) with 
Kleinian groups as their image. Despite that, in this paper we study representations 
of torus knot groups into SL(2,ℂ) , and among other things, we give a simple proof 
of the fact that the image of any SL(2,ℂ)-representation � of �1(S3⧵Kn,m) has tor-
sion elements. Thus, a natural question arose, what type of topological space ℍ3∕Γ 
is, where Γ = �(�1(S

3 ⧵ Kn,m)) . On the other hand, the complement of a torus knot 
S3 ⧵ Kn,m can be decomposed into pieces M1,⋯ ,Mk such that each of them have 
one of the eight types of geometric structure, this decomposition is studied from 
an irreducible decomposition of the SL(2,ℂ)-representation affine space R(Γn,m) of 
Γn,m ∶= �1(S

3 ⧵ Kn,m) , in this way it is of great interest to get a complete charac-
terization of these irreducible components of R(Γn,m) . We know that the structure 
of the representation variety R(Γn,m) and the character variety X(Γn,m) have been 
widely studied and determined in many references, for example, in [28], Muñoz 
and Porti give a geometric description of the character variety X(Γn,m) of Γn,m into 
SL(2,ℂ) , GL(2,ℂ) and PGL(2,ℂ) , in [16], Liriano computes the dimension of R(Γ) , 
where Γ is an one-relator group with presentation 

⟨
x1,⋯ , xn, y ∣ w(x1,⋯ , xn) = yk

⟩
 , 

w(x1,⋯ , xn) is a word in the free group F(x1,⋯ , xn) and k ≥ 2 , thereby, he proves 
that the dimension of R(Γn,m) is 4, see [16, Theorem 0.4], also in [17], he provides 
a formula to compute the number of four-dimensional irreducible components of 
R(Γn,m) ; following this line J. Martín-Morales and A. M. Oller-Marcen, in [22], give 
a complete description of the character variety X(Γn,m) and they prove that it is pos-
sible, in most cases, to recover n,  m from X(Γn,m) . Moreover, in [23], they com-
pute the total number of irreducible components of R(Γn,m) and their corresponding 
dimension, extending, in this way, the work of S. Liriano. It is appropriate to empha-
size here that they do not get such number from an explicit decomposition, but 
instead, by using a topological result and a well known irreducible decomposition 
of the character variety X(Γn,m) . Thus, as we note, there are a lot of important results 
in this line. In addition, in this paper, we give a description of the matrices and the 
explicit changes of basis of the representation variety R(Γn,m) . We also yield a com-
plete characterization of reducible and irreducible SL(2,ℂ)-representations of torus 
knot groups; see also [29] and [30], and several results in order to compute, explic-
itly, non-abelian representations of torus knot groups. We also prove that the abelian 
representations in R(Γn,m) define an affine algebraic set that is a closed subset of 
the variety representation V(Jn,m) of Γn,m , endowed with the Zariski topology. Thus, 
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the non-abelian representations in R(Γn,m) correspond to open subsets of V(Jn,m). We 
denote by A(Γn,m) the abelian representations and by N(Γn,m) the non-abelian rep-
resentations, then, R(Γn,m) = A(Γn,m) ∪ N(Γn,m) . We decompose these two subsets 
as a disjoint union of open sets. On the other hand, we obtain a decomposition of 
R(Γn,m) into closed subsets just by taking closures. Since, A(Γn,m) is a closed set, 
we have that R(Γn,m) = A(Γn,m) ∪ N(Γn,m) . It is well known that every abelian rep-
resentation of Γn,m in SL(2,ℂ) is reducible. Because N(Γn,m) = NI(Γn,m) ∪ NR(Γn,m) , 
where NI(Γn,m) and NR(Γn,m) denote the set of non-abelian irreducible and reduc-
ible representations, respectively, of Γn,m , and NR(Γn,m) ⊂ NI(Γn,m) , we conclude that 
R(Γn,m) = A(Γn,m) ∪ NI(Γn,m) ,, see [24] for more details. We also find the irreducible 
components of R(Γn,m) and some of their ideals. We prove that the closed subset 
A(Γn,m) is irreducible. Since the set of non-abelian representations in R(Γn,m) can be 
decomposed as a disjoint union of the set of reducible non-abelian representations 
and the set of irreducible non-abelian representations, we also study the irreducible 
components of each of these subsets. In the last section we use that decomposition 
in order to present a complete description of the character variety X(Γn,m) of the 
group of torus knots.

2  Definitions and motivation

The set of Möbius transformations f (z) = az+b

cz+d
 , where a, b, c, d ∈ ℂ and ad − bc ≠ 0 , 

acting on ℂ∞ = ℂ ∪∞ is denoted by M
ℂ
(ℂ∞) . This set is a group under composi-

tion of transformations. On the other hand, let the matrix group of 2 × 2 non singular 
matrices with determinant one be denoted by

Then, we have the homomorphism � ∶ SL(2,ℂ) → M
ℂ
(ℂ∞) , where

has kernel {±I} , and provides a natural identification between M
ℂ
(ℂ∞) and 

PSL(2,ℂ) ∶= SL(2,ℂ)∕±I.
In this paper, the trace and transposed of the matrix A are denoted by tr(A) and 

At, respectively. The following definition comes from the correspondence between 
SL(2,ℂ) and the group of Möbius transformations PSL(2,ℂ) . A complete classifica-
tion of matrices in SL(2,ℂ) according to the value of the square of their trace can be 
found in [2, Theorem 4.3.4].

Definition 1 [2] Given a matrix A in SL(2,ℂ) such that A ≠ I , it is said to be a para-
bolic matrix if tr2(A) = 4 , A is said to be an elliptic matrix if tr2(A) ∈ [0, 4) , the 
matrix is said to be a hyperbolic matrix if tr2(A) ∈ (4,∞) , and A is a strictly loxo-
dromic matrix if tr2(A) ∉ [0,∞).

SL(2,ℂ) =

{(
a b

c d

)

∣ a, b, c, d ∈ ℂ, ad − bc = 1

}

.

A =

(
a b

c d

)

⟼ �A ∶ �A(z) =
az + b

cz + d
,
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Let G be a group. A representation of G on SL(2,ℂ) is a group homomorphism 
� ∶ G → SL(2,ℂ) . Two representations � ∶ G → SL(2,ℂ) and �� ∶ G → SL(2,ℂ) 
are said to be equivalent if there exists P ∈ SL(2,ℂ) such that, for every g ∈ G , 
�(g) = P��(g)P−1.

Consider a finitely generated group G with finite presentation given by 
G = ⟨x1, x2,… , xn ∶ r1, r2,… , rm⟩ . Then any representation � ∶ G → SL(2,ℂ) is 
completely determined by the n-tuple (�(x1),⋯ ,�(xn)) ∈ SL(2,ℂ)n subject to the 
relations rj(�(x1),⋯ ,�(xn)) = I , for all j = 1,⋯ ,m . Thereby, we define the sub-
set V(G) of SL(2,ℂ)n as

Thus, using the natural embedding of SL(2,ℂ) into ℂ4 , V(G) can be endowed with 
the structure of an affine algebraic set (the zero set of polynomials in ℂ4n ). That is, 
V(G) is in bijection to the zero set in ℂ4n of the polynomials given by the matrix 
entries of the group relations rj and by the determinant equal to one. Therefore, there 
exists a natural 1-1 correspondence between the set R(G),   of representations of G 
on SL(2,ℂ), and the points of V(G) in which each representation � ∶ G → SL(2,ℂ) 
is identified with the point (�(x1),⋯ ,�(xn)) . From this correspondence, we refer to 
R(G) as the space of representations of G in SL(2,ℂ) and also the algebraic variety. 
The space R(G) is well-defined in the following sense, for two finite sets of genera-
tors of G, the unique bijection between the corresponding spaces of representations 
which preserves the above identification is an isomorphism of algebraic sets, see [8], 
thereby, R(G) is well-defined up to isomorphism.

Definition 2 A representation � ∶ G → SL(2,ℂ) is called reducible if there exists a 
nontrivial subspace V of ℂ2 , such that for each g ∈ G, 𝜑(g)(V) ⊂ V  . Otherwise, we 
say that � is irreducible.

By definition, a representation � ∶ G → SL(2,ℂ) is reducible if all the matri-
ces �(g) , g ∈ G , have a common one-dimensional eigenspace. A representation 
is abelian if its image is an abelian subgroup of SL(2,ℂ) , and non-abelian other-
wise. From [8, Lemma  1.2.1], every abelian representation � ∶ G → SL(2,ℂ) is 
reducible.

The character of a representation � ∈ R(G) is the function �� ∶ G → ℂ , such 
that ��(g) = tr(�(g)) , the set of all characters �� , � ∈ R(G) , is denoted by �(G) . For 
each g ∈ G , let �g ∶ R(G) → ℂ , with �g(�) = tr(�(g)) . Let T be the ring generated 
by all the functions �g , for g ∈ G . It was proved in [8, Proposition  1.4.1] that if 
h1,⋯ , hn are generators of G, then T is generated by the set of all functions �hi1hi2⋯hik

 , 
where i1,⋯ , ik are distinct numbers in {1,⋯ , n} . Let g1,⋯ , gs be a set of elements 
of G such that, �g1 ,⋯ , �gs generate T. Define the map t ∶ R(G) → ℂ

s , by

and let X(G) = t(R(G)) . The proof of the following theorem can be found in [4, The-
orem A] and [8, Corollary 1.4.5].

V(G) =
{
(A1,⋯An) ∈ SL(2,ℂ)n ∣ rj(A1,⋯An) = I,∀j = 1,⋯ ,m

}
.

t(�) = (�g1 (�),⋯ , �gs (�)) = (tr(�(g1)),⋯ , tr(�(gs)))
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Theorem 1 X(G) is a closed algebraic set.

We also have that the function Λ:�(G) → X(G) , given by Λ(��) = t(�) = (tr(�(g1)),⋯ , tr(�(gs))) 
is an injective function. In fact, let �,� ∈ R(G) be two representations of G such that 
t(�) = t(�) , then �gi(�) = �gi(�) , for i = 1, 2, ..., s . Now, let f ∈ T . Since �g1 ,⋯ , �gs is 
a generating set of the ring T, then f =

∑
�n1,n2,...,ns�

n1
g1
⋯ �

ns
gs

 , where n1, ..., ns are integer 
numbers and �n1,n2,...,ns are complex numbers, such that �n1,n2,...,ns = 0 except for a finite 
number of them. Given that �gi(�) = �gi(�) , for i = 1, 2, ..., s , then

Due to the fact that, for every g ∈ G , �g ∈ T ,

we have, �� = �� . Thereby, we identify the points of X(G) with the correspond-
ing character, and so, X(G) is called the space of characters of the group G and 
t(�) = �� , � ∈ R(G) . The space X(G) does not depend, up to canonical-isomor-
phism, of the generating set of the ring T, so X(G) is well-defined. See [8] for more 
details.

Proposition 2 [8, Proposition 1.5.2] If � and �′ are irreducible representations of G 
in SL(2,ℂ) . Then, � and �′ are equivalent if and only if �� = ���.

A subset K of S3 is called a knot if there is an orientation-preserving embedding 
� ∶ S1 → S3 , such that K = �(S1) . Two knots K and K′ are said to be equivalent is there 
exists an orientation-preserving homeomorphism � ∶ S3 → S3 , such that �(K) = K� . 
A knot K ⊂ S3 is usually represented by a diagram in the plane or S2 , called knot dia-
gram, which is the projection of it in some plane of S3 , such that their intersections are 
transverse and no more than two points of K have the same projection.

A torus knot is a knot isotopic to a simple, closed curve D that lies on the bound-
ary �(V) of an unknoted solid torus V ⊂ S3 . Since V is a solid torus, there are two 
simple closed curves � (a meridian) and � (a longitude) on the border �(V) of V such 
that D = m� + n� , where m and n are positive integer numbers. In this case, we say 
that the torus knot is of type (n, m) and denoted by Kn,m . When m and n are relative 
prime numbers, then Kn,m has one component, see [3] and [7].

Let K be a knot in S3 , then the fundamental group �1(S3 ⧵ K) of the knot com-
plement S3∖K or shortly called the knot group of K has a Wirtinger presentation 
�1(S

3⧵K) = ⟨x1, x2,⋯ , xm ∣ r1, r2,⋯ , rm⟩ , see [3, 26] and [40] for more details.
It is well known, see [25], that the group of the torus knot Kn,m has the presenta-

tion Γn,m = ⟨x, y ∣ xn = ym⟩ . In this way, the ring T is generated by �x, �y, �xy . This is 
because �xy = �yx . Therefore, the character variety of Γn,m has the form:

In the last section we present a more explicit description of such algebraic variety.

f (�) =
∑

�n1,n2,...,ns�
n1
g1
(�)⋯ �ns

gs
(�) =

∑
�n1,n2,...,ns�

n1
g1
(�)⋯ �ns

gs
(�) = f (�).

��(g) = �g(�) = �g(�) = �� (g),

X(Γn,m) = {(�x(�), �y(�), �xy(�)) ∈ ℂ
3 ∣ � ∈ R(Γn,m)}.
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Lemma 1 With the above notation. The generators x and y are torsion free. There-
fore, the center Z(Γn,m) of the group Γn,m of the knot Kn,m is not trivial.

Proof Suppose that there is a positive integer p such that yp = 1 . Then yp ∈ ⟨r⟩ , 
where r = xny−m . Because, ⟨r⟩ = {wrw−1 ∣ w ∈ F} , F is the free group on the set 
{x, y} , then yp =

∏k

i=1
wir

�iw−1
i

 . Let us denote ly(w) and lx(w) the sum of the super-
scripts of the occurrences of the letters x and y, respectively, in the word w ∈ F . So,

On the other hand,

Then, 
k∑

i=1

�i = 0 . Thereby, p = 0 . In a similar way, we prove that x is torsion free.

Since ⟨ym⟩ ⊂ Z(Γn,m) and ⟨ym⟩ ≠ {1} , then Z(Γn,m) is not trivial.

3  Toroidal knot representations

In this section we prove some important properties about representations of 
torus knots groups. These results are necessaries for the understanding of the last 
section.

Lemma 2 Let us consider the infinite sequence of polynomials in ℤ[x] , {�k(x)}
∞
k=0

 , 
where �0(x) = 1 , �1(x) = x and �k(x) = x�k−1(x) − �k−2(x), for k > 1 . Let A be a 
matrix in SL(2,ℂ) and � = tr(A). Then, for each positive integer k > 1,

Proof We prove this by induction on the number k. If k = 2, then

Thus, the lemma holds, when k = 2. Now suppose that

We have that

p = ly(y
p) = ly

(
k∏

i=1

wir
�iw−1

i

)

= ly(r)

k∑

i=1

�i.

0 = lx(y
p) = lx

(
k∏

i=1

wir
�iw−1

i

)

= lx(r)

k∑

i=1

�i = n

k∑

i=1

�i.

Ak = �k−1(�)A − �k−2(�)I.

A2 = �A − det(A)I = �2−1(�)A − �2−2(�)I.

Ak = �k−1(�)A − �k−2(�)I.
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Therefore, the lemma holds. 

Theorem 3 For each pair of positive integers m and n, with n,m > 1, the set R(Γn,m) 
of representations over SL(2,ℂ) can be endowed with the structure of an affine alge-
braic set. Indeed, there exists a bijective function from R(Γn,m) to the algebraic set

where A = (aij) , B = (bij) are matrices in SL(2,ℂ) and I = (�ij) is the identity matrix. 
Moreover, � = tr(A) and � = tr(B) are polynomials in the diagonal entries of the 
matrices A and B, respectively.

Proof We map each representation � ∈ R(Γn,m) to a 8-tuple 
(�(x),�(y)) = (A,B) ∈ ℂ

8 of matrices, consisting of the image of the generators, 
and embed SL(2,ℂ) in ℂ4 by using the entries of the matrices. Then R(Γn,m) is in 
bijection with the zero set in ℂ8 of the polynomials given by the matrix entries of 
the group relation xn = ym and by the determinant equal to one. That is, An = Bm , 
detA = 1 and detB = 1 . On the other hand, by Lemma 2, we have that:

Thus, An = Bm, if and only if, �n−1(�)A − �m−1(�)B − (�m−2(�) − �n−2(�))I = 0, if 
and only if �n−1(�)aij − �m−1(�)bij − (�n−2(�) − �m−2(�))�ij = 0 for i, j = 1, 2

From Theorem  3, the ideal Jn,m corresponding to R(Γn,m), can be generated by 
x11x22 − x12x21 − 1, y11y22 − y12y21 − 1, �n−1(x11 + x22)xij − �m−1(y11 + y22)yij − (�n−2

(x11 + x22) − �m−2(y11 + y22))�ij for i, j = 1, 2 in the ring of polynomials 
ℂ[x11, x12, x21, x22, y11, y12, y21, y22]. Thus we can identify the affine algebraic set V(Jn,m) 
with R(Γn,m), the set of all representations of Γn,m into SL(2,ℂ).

Abelian representations in R(Γn,m) also define affine algebraic sets, more-
over they correspond to a closed subset of V(Jn,m), with the Zariski topology. 
Thus, the non-abelian representations in R(Γn,m) correspond to an open subset 
of V(Jn,m). We denote the abelian representations by A(Γn,m) and the non-abelian 
ones by N(Γn,m) . Then, R(Γn,m) = A(Γn,m) ∪ N(Γn,m) . We study these two subsets 
in a more detailed way. We can obtain a decomposition of R(Γn,m) into closed 
subsets just by taking closures, but the unions are no longer disjoint. That is, 
R(Γn,m) = A(Γn,m) ∪ N(Γn,m).

Ak+1 = �k−1(�)A
2 − �k−2(�)A

= �k−1(�)(�A − I) − �k−2(�)A

= (��k−1(�) − �k−2(�))A − �k−1(�)I

= �k(�)A − �k−1(�)I.

{

(A,B) ∶
�n−1(�)aij − �m−1(�)bij − (�n−2(�) − �m−2(�))�ij = 0, i, j = 1, 2

a11a22 − a12a21 − 1 = 0, b11b22 − b12b21 − 1 = 0

}

An = �n−1(�)A − �n−2(�)I and Bm = �m−1(�)B − �m−2(�)I.
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4  Decomposition of R(0
n,m) as irreducible closed subsets

This section is devoted to find the irreducible components of R(Γn,m) and some 
of their ideals. We prove that the closed subset A(Γn,m) is irreducible. Then, since 
the set of non-abelian representations in R(Γn,m) can be decomposed as a disjoint 
union of the set of reducible non-abelian representations and the set of irreduci-
ble non-abelian representations, in this section we also study the irreducible com-
ponents of each of these subsets.

First we have that A(Γn,m) ≅ R((Γn,m)ab). Moreover, if gcd(n,m) = 1 , then 
(Γn,m)ab is a cyclic group isomorphic to ℤ , see [26] Proposition 4.2. for an alge-
braic proof. Thus,

Any one of the structures in (1) is isomorphic to SL(2,ℂ) as it will be proved in the 
following proposition.

Proposition 4 Let n, m be two positive integers such that n,m > 1 and gcd(n,m) = 1. 
Then the map f ∶ SL(2,ℂ) → A(Γn,m), defined by

is a bijective morphism of algebraic sets. Thereby, A(Γn,m) is an irreducible affine 
algebraic variety of dimension 3.

Proof Let X, Y be two matrices in SL(2,ℂ). Assume that (Xm,Xn) = (Ym, Yn), that 
is, Xm = Ym and Xn = Yn. By Bezout‘s identity there exist integer numbers r and 
s such that 1 = rm + sn. Thus, X = Xrm+sn = XrmXsn = YrmYsn = Yrm+sn = Y . 
So, f is an injective function. On the other hand, since gcd(n,m) = 1 and hence 
⟨x, y ∶ xn = ym, 1 = [x, y]⟩ is a cyclic group, it follows that for each pair of matrices 
A, B in SL(2,ℂ) such that AB = BA and An = Bm , there exists X ∈ SL(2,ℂ) such that 
A = Xm and B = Xn . Therefore, the function f is onto. 

Let n and m be two positive integers greater than or equal to 2. The following 
lemma will be useful to prove the non existence of non-abelian representations of 
Γn,m in SL(2,ℂ) such that the images under it of x and y in SL(2,ℂ) are both para-
bolic matrices.

Lemma 3 Let B =

(
a b

c d

)

∈ SL(2,ℂ) be a parabolic matrix. If Bm =

(
1 k

0 1

)

 , for 

some k ≠ 0 and m ≥ 2 , then B =

(
1

k

m

0 1

)

 or B =

(
−1 −

k

m

0 − 1

)

.

Proof Let B =

(
a b

c d

)

∈ SL(2,ℂ) be a parabolic matrix, that is tr2(B) = 4.

(1)A(Γn,m) ≅ R((Γn,m)ab) ≅ R(ℤ).

f (X) ∶= (Xm,Xn), for each X ∈ SL(2,ℂ),
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Assume that Bm =

(
1 k

0 1

)

 . Since BmB−1 = Bm−1 = B−1Bm and 

B−1 =

(
d − b

−c a

)

, then

It follows that

Thus, we obtain that c = 0, −b + ak = −b + dk and hence

Now, we can prove by induction in m that

Thus, am = 1 and k = mam−1b . Given that det(B) = 1 , it follows that a2 = 1 , that is, 
a ∈ {1,−1}. Therefore, if m is odd, then a = 1 and b =

k

m
 . Besides, if m is even, then 

either a = 1 or a = −1 , so b =
k

m
 or b = −

k

m
 , respectively. In any case, 

B =

(
±1 ±

k

m

0 ± 1

)

 . 

Theorem  5 If � ∶ Γn,m → SL(2,ℂ) is a non-abelian representation and A = �(x) , 
B = �(y) , then A and B both are not parabolic matrices.

Proof Assume that tr2(A) = tr2(B) = 4 . Then there exists a non singular matrix P 

such that P−1AP =

(
1 1

0 1

)

 , see [2].

Thus P−1AnP =

(
1 n

0 1

)

 , and hence P−1BmP =

(
1 n

0 1

)

.

From Lemma 3, P−1BP =

(
a �

0 a

)

 , where a ∈ {1,−1} and n = ±m�.

Since the matrices 
(
1 1

0 1

)

 and 
(
a �

0 a

)

 commute, then A and B commute, which 

contradicts the fact that � is a non-abelian representation. 

Theorem  6 There are not non-abelian representations � ∶ Γn,m → SL(2,ℂ) such 
that �(x) or �(y) are parabolic matrices.

(
1 k

0 1

)(
d − b

−c a

)

=

(
d − b

−c a

)(
1 k

0 1

)

.

(
d − ck − b + ak

−c a

)

=

(
d − b + dk

−c a − ck

)

.

B =

(
a b

0 a

)

.

Bm =

(
am mam−1b

0 am

)

.
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Proof We reason by contradiction, let us assume that there exists a non-abelian rep-
resentation � ∶ Γn,m → SL(2,ℂ) such that A ∶= �(x) is a parabolic matrix. From 
Theorem  5, the matrix B ∶= �(y) is not parabolic. Then there exist non singular 
matrices P and Q such that

and

see [2].

Since An = Bm , then 
(
1 n

0 1

)

 and 
(
um 0

0 u−m

)

 are conjugates, and hence 

(um + u−m)2 = 4. Thus, u4m + 2u2m + 1 = 4u2m . By factoring we have that 
(u2m − 1)2 = 0 and u2m = 1 . From this, it follows that B2m = I , and hence A2n = I , 
which is a contradiction.

Similarly we can prove that there does not exist a non-abelian representation � of 
Γn,m in SL(2,ℂ) such that B ∶= �(y) is a parabolic matrix.

Corollary 1 Let � ∶ Γn,m → SL(2,ℂ) be a non-abelian representation of Γn,m in 
SL(2,ℂ). Then, �(x) and �(y) are not parabolic matrices.

Proof From Theorem 5, �(x) and �(y) both are not parabolic matrices. Thus, from 
Theorem 6 the result holds.

Theorem  7 There exist non-abelian representations of Γn,m in SL(2,ℂ) , for each 
n,m ≥ 2.

Proof We consider three cases
Case 1: n = 2 and m = 2 . Let us consider

defined by �(x) = A =

(
0 1

1 0

)

 and �(y) = B =

(
−1 − 1

0 1

)

 . We have that A2 = B2 , 

then � is a representation. On the other hand, AB ≠ BA , thus � is non abelian.
Case 2: n = 2 and m = 3 or n = 3 and m = 2. Let us consider

defined by �(x) = A =

(
0 − 1

1 0

)

 and �(y) = B =

(
0 − 1

1 1

)

 . We have that 

A2 = B3 , then � is a representation. On the other hand, AB ≠ BA , thus � is non 
abelian.

P−1AP =

(
1 1

0 1

)

Q−1BQ =

(
u 0

0 u−1

)

,

� ∶
⟨
x, y ∶ x2 = y2

⟩
→ SL(2,ℂ),

� ∶
⟨
x, y ∶ x2 = y3

⟩
→ SL(2,ℂ),
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Similarly we can prove that there exist non-abelian representations of 
G3,2 =

⟨
x, y ∶ x3 = y2

⟩
 in SL(2,ℂ).

Case 3: n and m are positive integers n,m ≥ 3.

Let �n = e
2p�

n
i and �m = e

2q�

m
i be two primitive roots of the unity, with �n ≠ ±1 

and �m ≠ ±1 . Let us take 

 Then An and Bm ∈ SL(2,ℂ) . Now, taking P =

(
0 − 1

1 1

)

, Q =

(
0 − 1

1 0

)

 and 

� ∶ ⟨x, y ∶ xn = ym⟩ → SL(2,ℂ) , defined by

we obtain that � is a representation. Now,

if and only if, �2
n
= 1 or �2

m
= 1 . Therefore � is a non abelian representation.

The equalities �2
n
= 1 or �2

m
= 1 described in the previous proof hold when-

ever m ∈ {1,−1, 2,−2} . Moreover, we observe that tr2(An) = 4 cos2(
2p�

n
) and 

tr2(Bm) = 4 cos2(
2q�

m
) . Hence, An and Bm are parabolic matrices if and only if 

n,m ∈ {1,−1, 2,−2} . Furthermore, tr(PAnP
−1) = tr(An) and tr(ABmQ

−1) = tr(Bm). 
Thus, PAnP

−1 and ABmQ
−1 are parabolic matrices if and only if 

n,m ∈ {1,−1, 2,−2}. On the other hand, if n = 2 or m = 2, then PAnP
−1 = ±I or 

QBmQ
−1 = ±I. So that, case 1 can not be included in case 2.

Example 1 There exist representations of G�,2 =
⟨
z, h ∶ z� = h2

⟩
 in SL(2,ℂ) , with � 

an odd positive integer. Moreover, G�,2 ≅ G(�, 1) , where G(�, 1) is the group of the 
2-bridge knot S(�, 1) , see [26, Theorem 6.6].

As we can see, representations of groups of toroidal knots are not faithful.

Lemma 4 Let A, B be two matrices in SL(2,ℂ) , with � = tr(A) and � = tr(B) . If 
An = Bm and AB ≠ BA . Then, �n−1(�) = 0, �m−1(�) = 0 , �n−2(�) = �m−2(�) = ±1 , 
An = Bm = ±I.

Proof We have that:

An =

(
�n0

0�−1
n

)

and Bm =

(
�m0

0�−1
m

)

.

�(x) = PAnP
−1 =

⎛
⎜
⎜
⎝

1

�n

0

�2
n
−1

�n

�n

⎞
⎟
⎟
⎠

and �(y) = QBmQ
−1 =

�
�−1
m

0

0 �m

�

,

⎛
⎜
⎜
⎝

1

�n

0

�2
n
−1

�n

�n

⎞
⎟
⎟
⎠

�
�−1
m

0

0 �m

�

=

�
�−1
m

0

0 �m

�⎛
⎜
⎜
⎝

1

�n

0

�2
n
−1

�n

�n

⎞
⎟
⎟
⎠

,
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so

Thus, �n−1(�) = 0. Similarly, we can prove that �m−1(�) = 0. By substituting 
�n−1(�) and �m−1(�) in (2), we obtain that �n−2(�) = �m−2(�), and consequently, 
by taking determinants in (2), (−�n−2(�))

2 = 1 and (−�m−2(�))
2 = 1. Thus, 

�n−2(�) = �m−2(�) = ±1 and hence An = Bm = ±I.

A direct consequence of the previous lemma is the following corollary.

Corollary 2 Let � ∶ Γn,m → SL(2,ℂ) be a non-abelian representation of Γn,m in 
SL(2,ℂ) . If A = �(x) and B = �(y) , then A and B have finite order.

The following notation will be useful in order to simplify the proof and certain 
definitions given in the rest of this paper. For c ∈ ℂ, with c ≠ 0, we denote by 

D(c) ∶=

(
c 0

0 c−1

)

 and J(c) ∶=
(
c 1

0 c−1

)

,

Lemma 5 Let A be a matrix in SL(2,ℂ) and n be a positive integer such that 
An = ±I. Then there exists a non singular matrix P ∈ SL(2,ℂ) and a complex num-
ber u ∈ ℂ such that A = PD(u)P−1 and un = ±1.

Proof If A = I or A = −I, the result holds. Let us assume that A ≠ I and 
A ≠ −I. It is well known that the characteristic polynomial of the matrix A is 
chA(x) = x2 − tr(A)x + det(A). Thus, according to the number of different eigenval-
ues of A,  we have the following cases:

Case 1: If chA(x) = (x − u)2, for some u ∈ ℂ. Then, tr(A) = 2u, det(A) = u2 = 1 , 
and hence u−1 = u. Given that A ≠ I and A ≠ −I, its minimal polynomial must be 
equal to chA(x) and, from the canonical Jordan form, the matrix A is similar to a 

matrix in Jordan canonical form 
(
u 1

0 u

)

=

(
u 1

0 u−1

)

= J(u) i.e. there exists a 

matrix P ∈ SL(2,ℂ) such that A = PJ(u)P−1. We have that

and, by induction, that J(u)n =

(
un �n−1(u + u−1)

0 u−n

)

 and �n−1(u + u−1) =

u−n(u + u3 + u5 +⋯ + u2n−1). Thus, un = ±1 and u−n(u + u3 + u5 +⋯ + u2n−1) = 0. 
Then u + u3 + u5 +⋯ + u2n−1 = 0 which contradicts u2 = 1 and u ≠ 0. Therefore, 
this case is not possible.

(2)An = �n−1(�)A − �n−2(�)I and Bm = �m−1(�)B − �m−2(�)I,

�n−1(�)BA = BAn + �n−2(�)B

= BBm + �n−2(�)B

= AnB + �n−2(�)B

= (An + �n−2(�)I)B

= �n−1(�)AB.

J(u)n = (P−1AP)n = P−1AnP = ±P−1IP = ±I
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Case 2: If chA(x) = (x − r1)(x − r2), for some r1 ≠ r2 in ℂ. Then, tr(A) = r1 + r2 
and det(A) = r1r2 = 1. Thus, A is a diagonalizable matrix, and hence the matrix A is 
similar to a matrix in Jordan canonical form D(u),  with u = r1 and u−1 = r2 i.e. there 
exists a matrix P ∈ SL(2,ℂ) such that A = PD(u)P−1. We have, that

and D(u)n =
(
un 0

0 u−n

)

. Therefore, un = ±1.

Lemma 6 Let u ∈ ℂ be a complex number such that u ≠ 0, u2 ≠ 1 and let 

A =

(
a b

c u + u−1 − a

)

∈ SL(2,ℂ) be a matrix. Then, 

1. bc = 0 if and only if a = u or a =
1

u
.

2. P−1AP = D(u), where P ∈ SL(2,ℂ) and 

(a) If a ≠ u, then 

(b) If a = u, then 

Proof First, we prove (1). We have that det(A) = 1 i.e. a
(
−a + u +

1

u

)
− bc = 1 i.e. 

a
(
−au + u2 + 1

)
− ubc = u i.e. (a − u)(1 − au) = ubc. Thus, it follows that bc = 0 if 

and only if a = u or a =
1

u
.

Let us assume that a ≠ u. In order to prove Equation (3), we consider the matrix 
P defined by

for each y ∈ ℂ − {0}. First we observe that bc + (a − u)2 ≠ 0 and, hence, 
P ∈ SL(2,ℂ). In fact, by contradiction, let us assume that bc + (a − u)2 = 0 i.e. 

D(u)n = (P−1AP)n = ±P−1AnP = P−1IP = ±I

(3)P =

⎛
⎜
⎜
⎝

b(a−u)

(bc+(a−u)2)y
y

−(a−u)2

(bc+(a−u)2)y
c

a−u
y

⎞
⎟
⎟
⎠

, y ∈ ℂ − {0}

(4)P =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

�
w−1 −buw

u2−1

0 w

�

if c = 0 and w ∈ ℂ − {0}

�
w−1 0
cu

(u2−1)w
w

�

if b = 0 and w ∈ ℂ − {0}.

P ∶=

⎛
⎜
⎜
⎝

b(a−u)

(bc+(a−u)2)y
y

−(a−u)2

(bc+(a−u)2)y
c

a−u
y

⎞
⎟
⎟
⎠

,
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bc = −(a − u)2 . It is well known that chA(x) = x2 − (u + u−1)x + 1 = (x − u)(x − u−1) 
and chA(A) = 0. Then, (A − uI)(A − u−1I) = 0 i.e.

which implies (au−1)(a−u)+bcu

u
= 0 and from this, (au − 1)(a − u) + bcu = 0. 

Since, bc = −(a − u)2, it follows that (au − 1)(a − u) − (a − u)2u = 0 i.e. 
(a − u)((a − u)u + (au − 1)) = 0 and then (a − u)(u2 − 1) = 0, which is a contradic-
tion, because u2 ≠ 1 and a − u ≠ 0.

Now, by expanding the indicated operations on the left hand, we have that

Since det

(
a b

c u + u−1 − a

)

= 1, it follows that a
(
u +

1

u
− a

)
− bc = 1 i.e. 

au2 + a − a2u − bcu − u = 0. Thus,

and

Therefore, Equation (3) holds.

Let us assume that a = u. Then A =

(
a b

c u−1

)

. Given that, det
(
a b

c u−1

)

= 1, it 

follows that a
(

1

u

)
− bc = 1 i.e. −bc = 0. Now, we can prove directly the equations in 

(4) by expanding their right sides and then simplifying.

Finally, if P =

(
x y

z w

)

 , then any solution of the equation system AP − PD(u) = 0, 

detP = 1, is equal to one of the forms given in Lemma 6, depending on a ≠ u or 
a = u.

Lemma 7 Let u ∈ ℂ be a complex number such that u ≠ 0, u2 ≠ 1 and let 

A =

(
a b

c u + u−1 − a

)

∈ SL(2,ℂ) be a matrix. Then P−1AP = J(u), where 

(
a − u b

c u−1 − a

)(
a − u−1 b

c u − a

)

=

(
(au−1)(a−u)+bcu

u
0

0
bcu+(1−au)(u−a)

u

)

=

(
0 0

0 0

)

AP − PD(u) =

(

0 u(ay(a−u)+bcy)−y(−u+a)
u(−u+a)

au3−2a2u2−bcu2−u2+a3u+2au+abcu−a2

uy(bc+(−u+a)2) 0

)

.

u(ay(a − u) + bcy) − y(−u + a)

u(−u + a)
= 0

au3 − 2a2u2 − bcu2 − u2 + a3u + 2au + abcu − a2

uy
(
bc + (−u + a)2

) = 0.
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1. If a ≠ u, then P =

⎛
⎜
⎜
⎜
⎝

−bz

a−u

(a−u)2−bz2

−(bc+(a−u)2)z

z
−(a−u)(c+z2)

(bc+(a−u)2)z

⎞
⎟
⎟
⎟
⎠

, for each z ∈ ℂ − {0}.

2. If a = u then 

Proof The proof of this lemma is similar to the one of Lemma 6.

Theorem  8 Let � ∈ R(Γn,m) be a representation of Γn,m in SL(2,ℂ). Then � is 
reducible and a non-abelian representation if and only if there exist a matrix 
M ∈ SL(2,ℂ) and complex numbers u, v ∈ ℂ such that un = ±1 and vm = ±1 and 
�(x) = MJ(u)M−1, �(y) = MD(v)M−1, u2 ≠ 1 and v2 ≠ 1.

Proof Let � ∈ R(Γn,m) be a representation of Γn,m in SL(2,ℂ). Let us assume that � is 

reducible and non-abelian. Since � is reducible, �(x) = Q

(
u a12
0 u−1

)

Q−1 and 

�(y) = Q

(
v b12
0 v−1

)

Q−1 for some matrix Q ∈ SL(2,ℂ) and u, v, a12, b12 ∈ ℂ, with 

u, v ≠ 0. Now, given that � is non-abelian, by Lemma 4 we have that (�(x))n = ±I 
and (�(y))m = ±I, and hence, by Lemma 5, u is a n-th root of unity and v is a m-th 
root of unity or un = −1 and vm = −1 . Then, using (4) and (5),

and

Thus, taking w =

√
u

u2−1
ua12

u2−1
−

vb12

v2−1

, we have that

(5)P =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

�
1

w

u(1−bw2)

(u2−1)w

0 w

�

if c = 0 and w ∈ ℂ − {0}

⎛
⎜
⎜
⎝

x
ux

(u2−1)

cux

(u2−1)

(u2−1)
2
+cu2x2

x(u2−1)
2

⎞
⎟
⎟
⎠

if b = 0 and x ∈ ℂ − {0}.

(
u a12
0 u−1

)

=

(
w−1 u(1−a12w2)

(u2−1)w

0 w

)

J(u)

(
w−1 u(1−a12w2)

(u2−1)w

0 w

)−1

, w ∈ ℂ − {0}

(
v b12
0 v−1

)

=

(
w−1 −b12vw

v2−1

0 w

)

D(v)

(
w−1 −b12vw

v2−1

0 w

)−1

, w ∈ ℂ − {0}.

(
u a12
0 u−1

)

= PJ(u)P−1 and

(
v b12
0 v−1

)

= PD(v)P−1
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for some matrix P ∈ SL(2,ℂ). Therefore, �(x) = QPJ(u)P−1Q−1 and 
�(y) = QPD(v)P−1Q−1.

Reciprocally, if �(x) = MJ(u)M−1, �(y) = MD(v)M−1, for some matrix 
M ∈ SL(2,ℂ) , an n-th root of unity u and an m-th root of unity v,   or un = −1 and 
vm = −1, with u2 ≠ 1 and v2 ≠ 1 , then �(x) and �(y) have a common eigenvector. 
Thus, the representation � ∈ R(Γn,m) is reducible. Now, since J(u)D(v) ≠ D(v)J(u) , 
it follows that � is non-abelian.

Let n,  m be two positive integers such that n,m > 1 and gcd(n,m) = 1. We 
define U(n,m) as the set of pairs (u, v) ∈ ℂ

2 such that u is a n-th root of unity and v 
is a m-th root of unity, or un = −1 and vm = −1; with u2 ≠ 1, v2 ≠ 1. Moreover, for 
each (u, v) ∈ U(n,m), we define

Then, Theorem 8 shows that V (n,m)

(u,v)
⊂ V(Jn,m) = R(Γn,m) and the subset of reducible 

non-abelian representations in R(Γn,m) corresponds bijectively to the subset 
⋃

V
(n,m)

(u,v)
⊂ V(Jn,m) where the union is taken over all (u, v) ∈ U(n,m).

We observe that (MJ(u)M−1,MD(v)M−1) = (NJ(u)N−1,ND(v)N−1) if and only if 
N−1M ∈ {−I, I}. In fact, MJ(u)M−1 = NJ(u)N−1 and MD(v)M−1 = ND(v)N−1 if and 
only if J(u) = M−1NJ(u)N−1M and D(v) = M−1ND(v)N−1M , by Lemmas 4 and 5, if 

and only if, N−1M =

(
1

w

u(1−w2)

(u2−1)w

0 w

)

=

( 1

w
0

0 w

)

 if and only if N−1M ∈ {−I, I}. There-

fore, each V (n,m)

(u,v)
 is birationally equivalent to SL(2,ℂ)

{−I,I}
= PSL(2,ℂ) and hence it is 

irreducible.

Example 2 Let � ∶ Γn,m → SL(2,ℂ) be a non-abelian representation such that 

�(x) = A =

(
1

u
0

1−u2

u
u

)

 and �(y) = B =

(
1

v

1−v2

v

0 v

)

 , where u is a n-th root of unity 

and v is a m-th root of unity, or un = −1 and vm = −1, with u2 ≠ 1 and v2 ≠ 1.

We have that A = PD(u)P−1 and B = QD(v)Q−1, with P =

(
0 1

−1 1

)

, 

Q =

(
1 1

−1 0

)

. We have that AB − BA ≠ 0. Then, � is an irreducible non abelian 

representation.

Example 3 Let � ∶ Γn,m → SL(2,ℂ) be a representation of Γn,m in SL(2,ℂ), such that

and

V
(n,m)

(u,v)
∶=

{
(MJ(u)M−1,MD(v)M−1) ∶ M ∈ SL(2,ℂ)

}
.

�(x) = A =

(
1

u
0

z u

)

=

(
0 1

−1
u

1−u2
z

)(
u 0

0
1

u

)( u

1−u2
z − 1

1 0

)

, z ≠ 0
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Where u is a n-th root of unity and v is a m-th root of unity, or un = −1 and vm = −1, 
with u2 ≠ 1 and v2 ≠ 1.

We have that � is irreducible if and only if

On the other hand,

Thus, � is a non abelian irreducible representation if and only if 
tz
(
tz +

(u1−1)(v2−1)

uv

)
≠ 0.

Theorem  9 Let � ∈ R(Γn,m) be a non-abelian representation of Γn,m in SL(2,ℂ). 
Then, � is irreducible if and only if there exist matrices P,Q ∈ SL(2,ℂ) and complex 
numbers u, v ∈ ℂ such that un = ±1 and vm = ±1, u2 ≠ 1, v2 ≠ 1, �(x) = PD(u)P−1, 
�(y) = QD(v)Q−1 and the matrices P and Q satisfy one of the following properties: 

1. P =

(
1 0

a21u

u2−1
1

)

, Q =

(
1 −

b12v

v2−1

0 1

)

 and 

2. P =

(
1 −

a12u

u2−1

0 1

)

, Q =

(
1 0

b21v

v2−1
1

)

 and 

3. P =

(
1

−a12u

u2−1

0 1

)

, Q =

( −b12v

v2−1
1

(b11−v)v

v2−1

b21

b11−v

)

 and 

4. P =

(
1 0

0 1

)

, Q =

( −b12v

v2−1
1

(b11−v)v

v2−1

b21

b11−v

)

 and R4 ∶= b12b21 ≠ 0

5. P =

(
1 0

a21u

u2−1
1

)

, Q =
⎛

⎜

⎜

⎝

−b12v
v2−1

1
(b11−v)v
v2−1

b21
b11−v

⎞

⎟

⎟

⎠

 and 

�(y) = B =

( 1

v
t

0 v

)

=

(
−

v

v2−1
t 1

−1 0

)(
v 0

0
1

v

)(
0 − 1

1 −
v

v2−1
t

)

, t ≠ 0.

tz

(

tz +
(u2 − 1)(v2 − 1)

uv

)

≠ 0.

AB − BA =

(
tz

(u2−1)t

u
(v2−1)z

v
− tz

)

.

R1 ∶= a21b12

(

a21b12 +
(u2 − 1)(v2 − 1)

uv

)

≠ 0

R2 ∶= b21a12

(

b21a12 +
(v2 − 1)(u2 − 1)

vu

)

≠ 0

R3 ∶= a12b12b21

(
u

u2 − 1
a12(b11 − v) − b12

)(

a12b21 +
u2 − 1

u
(b11 − v)

)

≠ 0
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6. P =

( −a12u

u2−1
1

(a11−u)u

u2−1

a21

a11−u

)

, Q =

(
1

−b12v

v2−1

0 1

)

 and 

7. P =

( −a12u

u2−1
1

(a11−u)u

u2−1

a211

a11−u

)

, Q =

(
1 0

0 1

)

 and R7 ∶= a12a21 ≠ 0

8. P =

( −a12u

u2−1
1

(a11−u)u

u2−1

a21

a11−u

)

, Q =

(
1 0

b21v

v2−1
1

)

 and 

9. P =

( −a12u

u2−1
1

(a11−u)u

u2−1

a21

a11−u

)

, Q =

( −b12v

v2−1
1

(b11−v)v

v2−1

b21

b11−v

)

,

Proof Let � ∈ R(Γn,m) be a representation of Γn,m in SL(2,ℂ). Let us assume that � 
is irreducible and non-abelian. Since � is non-abelian, by Lemma 4, we have that 
(�(x))n = ±I and (�(y))m = ±I, and hence, by Lemma 5, there exist P,Q ∈ SL(2,ℂ) 
and u, v ∈ ℂ, such that

and

with u a n-th root of unity and v a m-th root of unity or un = −1 and vm = −1 . More-
over, the matrices P and Q satisfy (3) or (4). For each pair P = (pij) and Q = (qij) of 
these matrices we define

where

R5 ∶= a21b12b21

(
u

u2 − 1
a21b12 + (b11 − v)

)(
b21 −

u

u2 − 1
a21(b11 − v)

)
≠ 0

R6 ∶= b12a12a21

(
v

v2 − 1
b12(a11 − u) − a12

)(

b12a21 +
v2 − 1

v
(a11 − u)

)

≠ 0

R8 ∶= b21a12a21

(
v

v2 − 1
b21a12 + (a11 − u)

)(
a21 −

v

v2 − 1
b21(a11 − u)

)
≠ 0

R9 ∶= a12a21b12b21
(
a21b12 + (a11 − u)(b11 − v)

)(
a12b21 + (a11 − u)(b11 − v)

)

(
a12(b11 − v) − b12(a11 − u)

)(
a21(b11 − v) − b21(a11 − u)

)
≠ 0.

�(x) =

(
a11 a12
a21 u + u−1 − a11

)

= PD(u)P−1

�(y) =

(
b11 b12
b21 v + v−1 − b11

)

= QD(v)Q−1,

R(P,Q) = R11(P,Q) ⋅ R12(P,Q) ⋅ R21(P,Q) ⋅ R22(P,Q),

Rjk(P,Q) ∶= det

(
p1j q1k
p2j q2k

)

= p1jq2k − p2jq1k, j, k = 1, 2.
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Thus, each column of P is linearly independent with each column of Q if and only if 
R(P,Q) ≠ 0. Given that � is irreducible, it follows that each column of P is linearly 
independent with each column of Q. On the other hand, by Lemma 6, we have that 
a12a21 = 0 if and only if (a11 − u)(1 − ua11) = 0. Similarly, b12b21 = 0 if and only 
if (b11 − v)(1 − vb11) = 0. Thus, taking into account the above and according to the 
different possibilities that result for a12 , a21 , b12 and b21, we can compute R(P, Q) 
for all possible matrices P and Q satisfying (3) or (4). Then, the only possibilities 
for P and Q in order to � be an irreducible representation correspond to one of the 
descriptions given in (1)- (9), in the statement of the theorem.

Reciprocally, suppose that �(x) = A = PD(u)P−1 and �(y) = B = QD(v)Q−1, 
where u is a n-th root of unity and v is a m-th root of unity or un = −1 and vm = −1 . 
Also, P and Q are matrices in SL(2,ℂ) that satisfy any of the properties (1) to (9). 
Then, R(P,Q) ≠ 0, and hence, each column of P is linearly independent with each 
column of Q. Thus, � is irreducible.

It is clear that the non-abelian irreducible representations form an open subset 
of V(Jn,m). Furthermore, we should note that each of the properties (1)-(9) defines a 
subset of V(Jn,m) which is a principal open set of some closed subset of V(Jn,m), with 
the Zariski topology. Thus, by Theorem  9 we have a decomposition of the set of 
irreducible non-abelian representations as an union of open principal sets.

5  Decomposition of X(0
n,m) as irreducible closed subsets

In this section, we use the results developed in the previous one in order to get a 
complete decomposition of the character variety X(Γn,m).

We have that �g(�) = tr(�(g)), for each � ∈ R(Γn,m) and g ∈ Γn,m. Then,

Now, since R(Γn,m) = A(Γn,m) ∪ N(Γn,m), we can decompose the character variety 
X(Γn,m) as follows:

where

and

Proposition 10 Let n,  m be two positive integers such that n,m > 1 and 
gcd(n,m) = 1. Then, XA(Γn,m) is isomorphic to the algebraic set of all triplets

X(Γn,m) =
{
(tr(�(x)), tr(�(y)), tr(�(xy))) ∈ ℂ

3 ∣ � ∈ R(Γn,m)
}
.

X(Γn,m) = XA(Γn,m) ∪ XN(Γn,m),

XA(Γn,m) = {(tr(�(x)), tr(�(y)), tr(�(xy))) ∈ ℂ
3 ∣ � ∈ A(Γn,m)}

XN(Γn,m) = {(tr(�(x)), tr(�(y)), tr(�(xy))) ∈ ℂ
3 ∣ � ∈ N(Γn,m)}.
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such that t = tr(X) and X ∈ SL(2,ℂ). Each �k(x) is the polynomial defined in (2).

Proof From Proposition 4, we have that the function f ∶ SL(2,ℂ) → A(Γn,m), 
defined by

is a bijective morphism of algebraic sets. Then,

On the other hand, by Lemma 2 it follows that Xm = �m−1(t)X − �m−2(t)I, 
Xm = �n−1(t)X − �n−2(t)I and Xm+n = �m+n−1(t)X − �m+n−2(t)I, where 
t ∶= tr(X). Thus, tr(Xm) = t�m−1(t) − 2�m−2(t), tr(Xn) = t�n−1(t) − 2�n−2(t) and 
tr(Xm+n) = t�m+n−1(t) − 2�m+n−2(t). Thereby, XA(Γn,m) has the desired form.

We denote by NR(Γn,m) the set of reducible non-abelian representations and by 
NI(Γn,m) the irreducible non-abelian ones. Then,

and hence,

where,

and

We study these two subsets in a more detailed form.
Let � ∈ R(Γn,m) be a representation. First, from Theorem  8, we have that 

� ∈ NR(Γn,m) if and only if there exists (u, v) ∈ U(n,m) , such that (�(x),�(y)) ∈ V
(n,m)

(u,v)
 . 

When, Γn,m = ⟨x, y ∣ xn = ym⟩,

Moreover, 
(
MJ(u)M−1,MD(v)M−1

)
=
(
NJ(u)N−1,ND(v)N−1

)
 if and only if 

N−1M ∈ {−I, I}.

Proposition 11 Let n,  m be two positive integers such that n,m > 1 and 
gcd(n,m) = 1. Then, XNR

(Γn,m) is equal to the algebraic set of all triplets

(t�m−1(t) − 2�m−2(t), t�n−1(t) − 2�n−2(t), t�m+n−1(t) − 2�m+n−2(t)) ∈ ℂ
3,

f (X) ∶= (Xm,Xn), for each X ∈ SL(2,ℂ),

XA(Γn,m) ≅ {(tr(Xm), tr(Xn), tr(Xm+n)) ∈ ℂ
3 ∣ X ∈ SL(2,ℂ)}.

N(Γn,m) = NR(Γn,m) ∪ NI(Γn,m)

XN(Γn,m) = XNR
(Γn,m) ∪ XNI

(Γn,m),

XNR
(Γn,m) ∶= {(tr(�(x)), tr(�(y)), tr(�(xy))) ∈ ℂ

3 ∣ � ∈ NR(Γn,m)}

XNI
(Γn,m) ∶= {(tr(�(x)), tr(�(y)), tr(�(xy))) ∈ ℂ

3 ∣ � ∈ NI(Γn,m)}.

V
(n,m)

(u,v)
∶=

{(
MJ(u)M−1,MD(v)M−1

)
∶ M ∈ SL(2,ℂ)

}
.
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such that (u, v) ∈ U(n,m). That is, u is a n-th root of unity and v is a m-th root of unity, 
or un = −1 and vm = −1; with u2 ≠ 1 and v2 ≠ 1, in both cases.

Proof Let (t1, t2, t3) ∈ XNR
(Γn,m). Then there exists � ∈ NR(Γn,m) such that 

(t1, t2, t3) = (tr(�(x)), tr(�(y)), tr(�(xy))). Now, there exist a matrix M ∈ SL(2,ℂ) 
and (u, v) ∈ U(n,m) such that (�(x),�(y)) =

(
MJ(u)M−1,MD(v)M−1

)
. Thus,

On the other hand, let (t1, t2, t3) ∈ ℂ
3 such that (t1, t2, t3) =

(
u2+1

u
,
v2+1

v
,
u2v2+1

uv

)
 

where, (u, v) ∈ U(n,m). Then, we define � ∈ R(Γn,m) by �(x) = J(u) and �(y) = D(v). 
It is straightforward to prove that (t1, t2, t3) = (tr(�(x)), tr(�(y)), tr(�(xy))) and 
� ∈ NR(Γn,m). Therefore, (t1, t2, t3) ∈ XNR

(Γn,m).

Proposition 12 Let n,  m be two positive integers such that n,m > 1 and 

gcd(n,m) = 1. Then, XNI
(Γn,m) =

9⋃

k=1

XNk
I
(Γn,m) , where XNk

I
(Γn,m) is equal to the alge-

braic set of all triplets

such that (u, v) ∈ U(n,m) and Rk(a11, a12, a21, b11, b12, b21, u, v) ≠ 0 , where each Rk is 
like in Theorem 9. Moreover, since u, v lie in a finite set, the closure of this set is 
given by

Proof Since NI(Γn,m) =

9⋃

k=1

Nk
I
(Γn,m) , where Nk

I
(Γn,m) is the component that corre-

spond to each one of the nine cases described in Theorem 9, then

where

(
u2 + 1

u
,
v2 + 1

v
,
u2v2 + 1

uv

)

∈ ℂ
3,

(t1, t2, t3) = (tr(J(u)), tr(D(v)), tr(J(u)D(v)) =

(
u2 + 1

u
,
v2 + 1

v
,
u2v2 + 1

uv

)

.

(
u2 + 1

u
,
v2 + 1

v
, a11b11 + a12b21 + a21b12 +

(
u2 + 1 − a11u

)(
v2 + 1 − vb11

)

uv

)

∈ ℂ
3,

{(
u2 + 1

u
,
v2 + 1

v
, 𝜆

)

∶ 𝜆 ∈ ℂ

}

⊂ ℂ
3.

XNI
(Γn,m) =

9⋃

k=1

XNk
I
(Γn,m),

XNk
I
(Γn,m) = {(tr(�(x)), tr(�(y), tr(�(xy))) ∣ � ∈ Nk

I
(Γn,m)},
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for k = 1, ..., 9 . From a direct calculation, we prove that tr(�(x)) = u + u−1 , 
tr(�(y)) = v + v−1 and tr(�(xy)) = a11b11 + a12b21 + a21b12 +

(u2+1−a11u)(v2+1−vb11)
uv

 . 
Thereby, the proposition holds.
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