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Abstract
In this note we show how conjectures and current problems on determinants and 
eigenvalues of highly structured tridiagonal matrices can be solved using very clas-
sical results.
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In [4, p. 432], Z. Hu and P. B. Zhang conjectured that

The authors were only able to calculate the determinant in two cases: in the case 
when z0 = 0 and in the case when z1 = 0 . In [1], Chen et al. prove the above con-
jecture in connection with the characteristic polynomial of a finite-dimensional Lie 
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algebra. In [3], the finite-dimensional Lie algebra is explored for the same purpose. 
However, this approach masks the simplicity of the problem being addressed, pro-
ducing long proofs of simple results. Indeed, these determinants are implicitly con-
tained in the elementary lore of the “Theory of Determinants”, which finds its roots 
in a note published in Nouvelles Annales de Mathématiques in 1854 by J. J. Syl-
vester. For the reader’s convenience, we reproduce below in their entirety (see [5, 
pp. 544–545]) two theorems from “A treatise on the Theory of Determinants” by T. 
Muir, in the edition revised and enlarged by W. H. Metzler, from which (1) trivially 
follows:

“576. The continuant

(This is Δn = (a − (n − 1)c)(a − (n − 2)c − b)(a − (n − 3)c − 2b)⋯ (a − (n − 1)b).)
“577. The foregoing leads to the theorem that the value of the continuant Δn 

is not altered by adding to its matrix the matrix of the continuant

We have never seen the above result applied in the literature. However such results 
are extremely flexible and useful. By Theorem 576, we see at once that Zn = Δn for 
a = z0 , b = −

√
z2
1
+ z2z3 and c = −b . For these values of a, b and c, add to the cor-

responding matrix of the determinant Δn the matrix of the determinant Dn with 
x = z1 to get a matrix whose transpose is similar to the matrix of the determinant Zn , 
and so Hu–Zhan’s conjecture follows, because these operations, according to Theo-
rem 577, have not altered Δn . Indeed,
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Naturally, according to [2, Lemma 7.2, p. 32], and taking into account the relation 
between the elements of the sub-diagonals of the considered matrices (regardless of 
the value by which they appear multiplied), we can make a direct connection with 
��(2, � ) . But, when calculating this and other related determinants that fall into what 
might be called Sylvester’s type determinants, we only need a little trick to trans-
form known results into new results. The reader can look for other recent results in 
the literature that can be easily proved with the help of Muir’s theorems. Clearly, it 
is not our goal to cite them here, because it would not make this note stronger, only 
longer.
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