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Abstract
This paper is devoted to a complete parametric study of Liouvillian solutions of the 
general trace-free second order differential equation with a Laurent polynomial coef-
ficient. This family of equations, for fixed orders at 0 and ∞ of the Laurent polyno-
mial, is seen as an affine algebraic variety. We prove that the set of Picard-Vessiot 
integrable differential equations in the family is an enumerable union of algebraic 
subvarieties. We compute explicitly the algebraic equations of its components. We 
give some applications to well known subfamilies, such as the doubly confluent and 
biconfluent Heun equations, and to the theory of algebraically solvable potentials 
of Shrödinger equations. Also, as an auxiliary tool, we improve a previously known 
criterium for a second order linear differential equations to admit a polynomial 
solution.
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1 Introduction

There is no general agreement about the meaning of the term “explicit solution” for 
ordinary differential equations. Some authors allow certain special functions, some 
others consider only elementary functions. This paper is written inside the frame-
work of the differential Galois theory of linear differential equations, also known 
as Picard-Vessiot theory. Therefore, our notion of explicit solution is that of Liou-
villian function. In the particular case of linear differential equations with rational 
coefficients, solutions that can be expressed in terms of elementary functions and 
indefinite integrals (integration by quadratures) are always Liouvillian functions. It 
is also well known that a second order linear differential equation with rational coef-
ficients admits a Liovillian solution if and only it is Picard-Vessiot integrable. Pre-
vious theoretical results on Picard-Vessiot theory by M. F. Singer [17] ensure that 
given a finite dimensional family of linear differential equations, the subfamily of 
Picard-Vessiot integrable equations admits a canonical description as union of alge-
braic subvarities. Our objective is to give an explicit description of the subfamily 
of integrable Picard-Vessiot equations inside the family of second order trace-free 
linear differential equations with Laurent polynomial coefficient, and the Liouvillian 
solutions attached to those integrable equations. Picard-Vessiot integrability of equa-
tions of some subfamilies of the families studied here, corresponding to confluences 
of hypergeometric and Heun equations, were already studied in detail by A. Duval 
and Loday-Richaud in [11].

We consider the family of second order trace-free linear differential equations,

where L(x) ∈ ℂ[x, x−1] is a monic Laurent polynomial

with �
−r ≠ 0 . We say that L(x) is of type (r, m). The space �

(r,m) of monic Laurent 
polynomials of type (r, m) is an affine algebraic variety 𝕄

(r,m) ≃ ℂ∗
× ℂr+m−1 . The 

purpose of this paper is to classify Picard-Vessiot integrable equations in the family 
(1) and to study how their Liouvillian solutions depend algebraically on the coef-
ficients of L(x) when it moves in the space �

(r,m) . We thus introduce the spectral set.

Definition 1 The spectral set �
(r,m) ⊂ �

(r,m) is the set of monic Laurent polynomi-
als of type (r, m) such that its corresponding Eq. (1) is Picard-Vessiot integrable (or 
equivalently, has a Liouvillian solution).

(1)
d2y

dx2
= L(x)y, L(x) ∈ ℂ[x, x−1]

L(x) =
�
−r

xr
+…+ �0 +…+ �m−1x

m−1
+ xm
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For the formal definition of the Galois group, Picard-Vessiot integrability, and 
Kovacic algorithm, we refer the readers to the original article [14] of J. Kovacic. 
Nevertheless, we included an appendix with the parts of the algorithm that are 
relevant to our results.

The Picard-Vessiot integrability analysis of Eq. (1) is done in two steps. The-
oretically, Kovacic algorithm admits three different cases of integrability. How-
ever, by means of the D’Alembert transform, we show that, after composing with 
a two-sheet covering map of the Riemann sphere, we can reduce the analysis to 
the first case. This reduces the problem to the existence of a polynomial solution 
of an attached auxiliary equation. To deal with this existence problem, we give an 
algebraic generalization (Theorem 4) of the asymptotic iteration method (AIM) 
due to Cifti, Hall and Saad [9]. Here we discover a universal family of differential 
polynomials in two variables (Table 1) that controls the existence of polynomial 
solutions for second order differential equations with coefficients in arbitrary dif-
ferential fields.

We arrive to a decomposition of the spectral sets as enumerable union of spec-
tral varieties (Theorems 1, 2, 3 and Propositions 2, 3, 4) whose equations can be 
given explicitly by means of universal polynomials Δd and auxiliary equations 
( A1 , A2 , A3 ). These results are summarized in the following:

Theorem 5  For any (r,m) ∈ ℤ2
>0

  we have a decomposition of the spectral set

 as a enumerable union of spectral varieties. Moreover:

(a) If L(x) ∈ �
(d)

(r,m)
 with r ≠ 2 then the differential equation (1) has a solution of the 

form: 

 where P(x) is a monic polynomial of degree d, and �(x) is a Laurent 
polynomial.

�
(r,m) =

⋃
d≥0

�
(d)

(r,m)

y(x) = x�P(x)e∫ �(x)dx

Table 1  First universal differential polynomials Δd

Δ0 −�

Δ1 �� � − ��� − �2

Δ2 − ����� + �2� �� − 2���� � − 3�� �� + 2(��)2� + 3���2 + �3 − ���� � + ��� ��

− 2(� �)2 + �� ��

Δ3 3���� ��� + 3������ � − 10��� ��� − 3����� �� − 6�� ��� � + 2��� ��� + 10����� �

− �����2� − 3���2� �� − 3�2���� � − 4�2� ��� + 4�����2 − 3(� ��)2 − �4 + �3� ���

− �����2 − 3(��)2� �� + 3(���)2� − 4� ���2 − ����� �� + ���� ��� + 2� �� ��� − 6(��)3�

− 11(��)2�2 − 6���3 − 3�3(� �)2 + 6��(� �)2 + 8� (� �)2 − 2������� − ������ �

+ 6(��)2�� � + 6��2� � + 6������� + 14����� �
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(b) If L(x) ∈ �
(d)

(r,m)
 with r = 2 then the differential equation (1) has a solution of the 

form: 

 where P(x) is a monic polynomial of degree d, and �(x) is a Laurent 
polynomial.

Section 4 presents some applications that involve the analysis of biconfluent Heun 
equation and doubly confluent Heun equation, as well Schrödinger Equations with 
Mie potentials (Laurent polynomial potentials, exponential potentials) and Inverse 
Square Root potentials, see [1, 7, 8]. Finally, our results allow us to state that there 
are no new algebraically solvable Laurent polynomial potentials for the Shcrödinger 
equation beyond those previously known (Corollary 1) corresponding to m = 2 and 
r = 0, 1, 2.

1.1  A note on the general case

The assumption of having a trace-free differential equation with a monic Laurent 
polynomial is done with the purpose of presenting clearer computations and formu-
lae. In fact, our analysis does apply to the more general case of differential equations 
of the form,

• First, we can always reduce Eq. (2) to trace-free form by means of the so called 
D’Alembert transform. Namely, we look for a suitable scaling y = f (x)ỹ of the 
dependent variable, so that the second derivative of the new unknown function 
is: 

 Here, the term in dỹ
dx̃

 vanish if we take f to be a solution of the differential equa-
tion f � = −

1

2
L1(x̃)f  which easily yields, 

 and a trace-free differential equation, 

y(x) = x�P(
√
x)e∫ �(

√
x)dx

(2)
d2ỹ

dx̃2
= L0(x)ỹ + L1(x)

dỹ

dx
, L0(x̃), L1(x̃) ∈ ℂ[x̃, x̃−1].

d2y

dx̃2
=

(
f ��(x̃)

f (x̃)
+ L0(x̃)

)
y + (2f �(x̃) + f (x̃)L1(x̃))

dỹ

dx̃
.

f (x̃) = exp

(
−

1

2 ∫ L1(x̃)dx̃

)

d2y

dx̃
=

(
L1(x̃)

2

4
−

1

2

dL1(x̃)

dx̃
+ L0(x̃)

)
y,
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 depending on a Laurent polynomial whose coefficients are polynomials of 
degrees one and two in the coefficients of L0(x̃) and L1(x̃).

• Second, the trace-free differential equation above with non necessarily monic 
Laurent polynomial, 

 can be transformed into Eq. (6) by scaling the independent variable x = m+2
√
amx̃ . 

We fall in the monic case, and the coefficients of the new Laurent polynomial are 
polynomials in a

−r , … , am−1 , m+2
√
am.

• Third, the assumption of r ⋅ m > 0 is not necessary. If r = 0 then we fall in the 
simpler polynomial case that has been studied exhaustively by the authors in 
[2] as a previous step for the analysis of the Laurent polynomial case. If m = 0 
then we may just consider z = 1

x
 as a new independent variable and fall into the 

m ⋅ r > 0 case.

2  Kovacic algorithm analysis

The most relevant fact about Kovacic algorithm is that the Galois group of Eq. (1) 
with fixed L(x) is an algebraic subgroup of SL2(ℂ) , and the equation is integrable if 
and only if such group is conjugated to a subgroup of the Borel subgroup

the dihedral group

or it is finite and not contained in the former. These correspond to the so-called first 
three cases of Kovacic algorithm [14], the fourth being the non-integrable case. In 
what follows, for practical purposes related with the application of the algorithm, we 
split the set ℤ2

>0
 into four different disjoint subsets, corresponding to different orders 

of Laurent polynomials at 0 and ∞ that allow different possibilities for Liouvillian 
solutions of Eq. (1).

Definition 2 We say that a pair (r,m) ∈ ℤ2
>0

 is of class: 

(1) r ∈ {1} ∪ {2k + 4 ∶ k ∈ ℤ, k ≥ 0} and m is even;
(2) r = 2 and m is odd;
(3) r = 2 and m is even;

(
L1(x̃)

2

4
−

1

2

dL1(x̃)

dx̃
+ L0(x̃)

)
=

a
−r

x̃r
+…+ amx̃

m, a
−r ≠ 0,

B2 =

{[
� �

0 �−1

]
∶ � ∈ ℂ

∗, � ∈ ℂ

}
,

D∞

=

{[
� 0

0 �−1

]
∶ � ∈ ℂ

∗

}
∪

{[
0 − �

�−1 0

]
∶ � ∈ ℂ

∗

}
,
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(4) not in classes (1), (2) or (3).

So that, we have a disjoint partition ℤ2
>0

= C1 ∪ C2 ∪ C3 ∪ C4.
Lemma 1 Let us assume that Eq. (1) with some fixed L(x) ∈ �

(r,m) is Picard-Vessiot 
integrable. The following statements hold. 

(a) If (r,m) ∈ C1 then the Galois group is conjugated to a subgroup of B
2
.

(b) If (r,m) ∈ C2 then the Galois group is conjugated to a subgroup of D∞.
(c) If (r,m) ∈ C3 then the Galois group is conjugated to a subgroup of B2 or D∞

(d) (r,m) ∉ C4.

Proof This lemma is a consequence of the necessary conditions in Kovacic algo-
rithm (Theorem 6 in A). The order of L(x) at x = ∞ is −m , a negative integer. Thus, 
case 3 of Kovacic algorithm is discarded. Thus, the remaining possibilities are: the 
Galois group is either conjugated to a subgroup of B2 or to a subgroup of D∞ . Let 
us assume that the Galois group is conjugated to a subgroup of B2 then, necessary 
conditions for case 1 must be satisfied. Therefore, L(x) is either of type (1, 2p) or 
(2q, 2p) with q > 1 , i.e., (r,m) ∈ C1 ∪ C3.

On the other hand, let us suppose that the Galois group of Eq. (1) is conjugated 
to a subgroup of D∞ , in this case L(x) is of type (2, m) or (2q + 1,m) with q > 0 . 
The first case (r,m) = (2,m) clearly corresponds to (r,m) ∈ C2 ∪ C3 . The second 
case (r,m) = (2q + 1,m) with q > 0 is discarded at step 2 of case 2 of the algorithm, 
which requires the quantity d =

1

2
(−m − 2q − 1) to be a non-negative integer.   ◻

Let us introduce the following notation: 

(a) �
(r,m) ⊂ �

(r,m) is the set of Laurent polynomials L(x) ∈ �
(r,m) such that the Galois 

group of Eq. (1) is conjugated to a subgroup of B2.
(b) �

(r,m) ⊂ �
(r,m) is the set of Laurent polynomials L(x) ∈ �

(r,m) such that the Galois 
group of Eq. (1) is conjugated to a subgroup of D∞.

Remark 1 From Lemma 1 we have: 

(a) If (r,m) ∈ C1 then �
(r,m) = �

(r,m)

(b) If (r,m) ∈ C2 then �
(r,m) = �

(r,m).
(c) If (r,m) ∈ C3 then �

(r,m) = �
(r,m) ∪ �

(r,m)

(d) If (r,m) ∈ C4 then �
(r,m) = �



644 São Paulo Journal of Mathematical Sciences (2023) 17:638–670

1 3

2.1  Characterization of �(1,2p).

Let us consider the case with r = 1 and m = 2p even. In such case we have a unique 
decomposition:

where A(x) is a monic polynomial of degree p and the quadratic residue B(x) is a 
polynomial of degree p − 1 . We also have in mind that the map

is an invertible polynomial map.

Theorem  1 The differential equation (1) with coefficient L(x) ∈ �
(1,2p) as in (3) 

is Picard-Vessiot integrable, that is, L(x) ∈ �
(1,2p) , if and only for a choice of sign 

s
∞
= ±1 the following conditions hold: 

1. The quantity 

 is a non negative integer.
2. There exist a polynomial P(x) of degree d such that: 

In such case, the Liouvillian solution

is an eigenvector of the Galois group.

Proof We are in case C1 and, by Lemma 1, if the equation is Picard-Vessiot integra-
ble then it corresponds to case 1 of Kovacic algorithm. Step 1 of case 1 gives us 
conditions {c1,∞3},

in addition, regarding to x1 , we got that

For each choice of the sign s
∞
∈ {+1,−1} we consider the complex num-

ber d(s
∞
) =

1

2
(s

∞
bp−1 − p) − 1 . If none of them is a non-negative integer then 

(3)L(x) =
a

x
+ B(x) + A(x)2

𝕄
(1,m) = ℂ

∗

× ℂ
2p

→ ℂ
∗

× ℂ
2p, (�

−1,�0,… ,�m−1) ↦ (a, a0,… , ap−1, b0,… , bp−1)

d =

s
∞
bp−1 − p − 2

2

P��

(x) + 2

(
s
∞
A(x) +

1

x

)
P�

(x) +

(
s
∞
A�

(x) − B(x) +
2s

∞
A(x) − a

x

)
P(x) = 0. A1

y = xP(x)e∫ s
∞
A(x)dx

[

√
L]0 = 0, �±

0
= 1.

[

√
L]

∞
= A(x), �±

∞
=

1

2
(±bp−1 − p).
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we can discard case 1 and the Galois group is SL2(ℂ) . Otherwise we proceed to 
step 2 of case 1 for each suitable value of d = d(s

∞
) . We set the rational function 

� = s
∞
A(x) +

1

x
 and search for a monic polynomial P of degree d, which satisfy the 

auxiliary differential equation,

This last equation can be written in terms of the decomposition showed in Eq. (3), 
obtaning Eq. ( A1 ) of the statement. If a pair (�,P) described as above can be found, 
Eq. (1) is Picard-Vessiot integrable. Moreover, Kovacic algorithm provides us the 
solution given in the statement.   ◻

2.2  Characterization of �(2,2p).

Let us consider the case with r = 2 and m even. We have a unique decomposition:

where A(x) is a monic polynomial of degree p and quadratic residue B(x) is a poly-
nomial of degree p − 1 . As in the above case, the map

is an invertible polynomial map.

Theorem  2 The Galois group of Eq. (1) with fixed L(x) ∈ �
(2,2p) is conjugated to 

a subgroup of B2 , that is, L(x) ∈ �
(2,2p) , if and only if for a combination of signs 

s
∞
= ±1 and s0 = ±1 the following conditions hold: 

1. The quantity 

 is a non negative integer.
2. There exist a polynomial P(x) of degree d such that: 

 with 

P��

+ 2�P�

+ (��

+ �2
− L)P = 0.

(4)L(x) =
b

x2
+

a

x
+ B(x) + A(x)2

𝕄
(2,m) = ℂ

∗

× ℂ
2p+1

→ ℂ
∗

× ℂ
2p+1,

(�
−2,�−1,�0,… ,�m−1) ↦ (b, a, a0,… , ap−1, b0,… , bp−1)

d =

s
∞
bp−1 − s0

√
1 + 4b − p − 1

2

P
��
(x) + 2

(
s
∞
A(x) +

�

x

)
P
�
(x) +

(
s
∞
A
�
(x) − B(x) +

2s
∞
�A(x) − a

x

)
P(x) = 0. A2
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In such case, the Liouvillian solution

is an eigenvector of the Galois group.

Proof This proof is similar to the proof of Theorem 1. By Lemma 1 we are in case 
(r,m) ∈ C2 . We proceed to step 1 of case 1 of Kovacic algorithm with conditions 
{c2,∞3},

For each choice of s0 = ±1 and s
∞
= ±1 we consider the complex number:

If none of them is a non-negative integer then we discard case 1. Otherwise, for each 
non-negative integer value of d = d(s0, s∞) we set the rational function

and proceed to the step 2 of case 1 of Kovacic algorithm. We search for a monic 
polynomial P of degree d, which satisfy the auxiliary differential equation,

And, using Eq. (4) we arrive to the expression of Eq. ( A2 ). If a pair (�,P) described 
as above can be found, Eq. (1) is Picard-Vessiot integrable. In addition, Kovacic 
algorithm provides us the solution given in the statement.   ◻

2.3  Characterization of �(2q,2p).

For Q(x) ∈ �
(2q,2p) with q > 1 we look for a decomposition that takes into account 

the quadratic residues at zero and infinity simultaneously.

with,

� =

1 + s0

√
1 + 4b

2
=

s
∞
bp−1 − p − 2d

2
.

y = x�P(x)e∫ s
∞
A(x)dx

[

√
L]0 = 0, �±

0
=

1

2
(1 ±

√
1 + 4b),

[

√
L]

∞
= A(x), �±

∞
=

1

2
(±bp−1 − p).

d(s0, s∞) =
1

2
(s

∞
bp−1 − p) −

1

2
(1 + s0

√
1 + 4b).

� = s
∞
A(x) +

1

2

1 + s0

√
1 + 4b

x
= s

∞
A(x) +

�

x

P��

+ 2�P�

+ (��

+ �2
− L)P = 0.

(5)L(x) = R(x)2 + B(x) + A(x)2,



647

1 3

São Paulo Journal of Mathematical Sciences (2023) 17:638–670 

In this case R(x) is not uniquely determined, as both R(x) and its reciprocal −R(x) 
can be used in the decomposition. The coefficients of R(x) are polynomials in some 
of the coefficients of L(x) and r

−q =

√
�
−2q . Coefficients of B(x) and A(x) are poly-

nomials in some of the coefficients of L(x). What we have is that the map,

is a two-sheet cover, with the advantage that elements (R(x),B(x),A(x)) ∈ �̃
(2q,2p) 

correspond to a specific decomposition. Let us denote by �̃
(2q,2p) = 𝜋−1

(2q,2p)
(�

(2q,2p)) 
the pullback of the spectral set.

From now, let us fix a decomposition as in Eq. (5) and work with the differential 
equation,

For each choice of s0 = ±1 and s
∞
= ±1 let us define the following quantities and 

functions:

Note that changing the sign of s0 is equivalent to changing the choice of R(x) in the 
decomposition.

Theorem 3 The differential equation (6) with coefficient is Picard-Vessiot integra-
ble, that is, (R(x),B(x),A(x)) ∈ �̃

(2q,2p) , if and only if for a combination of signs 
s0 = ±1 and s

∞
= ±1 the following conditions hold: 

1. d is a non negative integer.
2. There exist a polynomial P(x) of degree d such that: 

R(x) =
r
−q

xq
+…+

r
−2

x2
,

B(x) =
b
−(q+1)

xq+1
+…+ bp−1x

p−1,

A(x) =a0 +…+ ap−1x
p−1

+ xp.

𝜋2q,2p ∶ �̃�
(2q,2p) = ℂ

∗

× ℂ
2(p+q)−1

→ 𝕄
(2q,2p)

(r
−q,… , r

−2, b−(q+1),… , bp−1, a0,… , ap−1) → L(x)

(6)y�� = (R(x)2 + B(x) + A(x)2)y

(7)

d =

s
∞
bp−1 − p − q

2
−

s0b−(q+1)

2r
−q

,

� =

s0b−(q+1)

2r
−q

+

q

2
=

s
∞
bp−1 − p

2
− d,

�(x) = s
∞
A(x) + s0R(x).
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In such case, the Liouvillian solution

is an eigenvector of the Galois group.

Proof By Lemma 1, if the Eq. (6) is Picard-Vessiot integrable then it corresponds to 
case 1 of Kovacic algorithm. We proceed to step 1 of case 1 obtaining a case of type 
{c3,∞3}.

A necessary integrability condition, given in step 2 of case 1, is that some of the 
quantities d (as defined in Eq. (7)), corresponding to some choice of signs s0 = ±1 
and s

∞
= ±1 , is a non-negative integer. If not, the Galois group of Eq. (6) is 

SL2(ℂ) . Otherwise, for each suitable choice of signs we set the rational function 

� = s
∞
A(x) + s0R(x) +

1

2

s0
b
−(q+1)

r
−q

+q

x
= �(x) +

�

x
 and search for a monic polynomial P 

of degree d, which satisfy the auxiliary differential equation,

This equation assumes the form of Eq. ( A3 ) when we substitute the decomposition 
given in (5). If a pair (�,P) described as above can be found then Eq. (6) is Picard-
Vessiot integrable. In addition, Kovacic algorithm provides us the solution given in 
the statement.   ◻

2.4  Characterization of �(2,m) in terms of �(2,2m+2)

Let us take differential equation (1) with L(x) ∈ �
(2,m) . It implies that the associated 

Riccati equation,

has an algebraic solution u(x) of degree 1 (case �
(2,m) ) or 2 (case �

(2,m) ). Let us 
assume that L(x) ∈ �

(2,m) . Le us discuss some of the geometric properties of the 
solutions of the Riccati equation. It is well known (see [10] Proposition VIII.1.1) 

P��

(x) + 2
(
�(x) +

�

x

)
P�

(x) +

(
��

(x) − B(x) +
�(2�(x) + � − 1)

x

)
P(x) = 0. A3

y = x�P(x)e∫ �(x)dx

[

√
L]0 = R(x), �±

0
=

1

2

�
±

b
−(q+1)

r
−q

+ q

�
.

[

√
L]

∞
= A(x), �±

∞
=

1

2

�
±bp−1 − p

�
.

P��

+ 2�P�

+ (��

+ �2
− L)P = 0.

u =

y�

y
, u� = u2 + L(x)
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that given an initial condition (x0, u0) ∈ ℂ∗
× ℂ̄ and any simply connected open sub-

set U of ℂ∗ there is a solution u with u(x0) = u0 and meromorphic in U . This implies 
that the solutions of the Riccati equation may have poles but not ramification points 
outside of the singular locus {0,∞} . If we compose the algebraic solution with the 
ramified cover,

we obtain that the two determinations of the algebraic function u split in two rational 
functions of w with poles only in 0 and ∞ . In other words, the Riccati equation has a 
solution which is a rational function on 

√
x.

Therefore, if we apply the change of variable x = w2 in Eq. (1) we arrive to dif-
ferential equation:

whose associated Riccati equation has a Laurent polynomial solution. We may then 
transform the equation into a reduced form with the same associated Riccati equa-
tion by taking,

obtaining,

This trace free equation has a Laurent polynomial coefficient whose leading term 
w2m+2 has a coefficient 4. We scale the independent variable by taking w̃ =

m+2
√
2w 

obtaining:

that can be seen as a differential equation in the family �
(2,2m+2).

Lemma 2 
Proof Let part from any L(x) ∈ �

(2,m) and let us follow the change of variables and 
reduction from Eq. (1) to Eq. (10). It is clear that if the second equation has a Liou-
villian solution, then we obtain a Liouvillian solution of (1). But, because of the 
above discussion, if the second equation is Picard-Vessiot integrable, it must be in 
�
(2,2m+2) .   ◻

ℂ̄ → ℂ̄, w ↦ x = w2

(8)
d2y

dw2
−

1

w

dy

dw
− 4w2L(w)y = 0.

ỹ =
y√
w

(9)
d2ỹ

dw2
=

(
3

4w2
+ 4w2L(w2

)

)
ỹ.

(10)
d2ỹ

dw̃2
=

�
3

4w̃2
+

m+2
√
22mw̃2L

�
w̃2

m+2
√
22

��
ỹ,

L(x) ∈ �
(2,m) ⟺

3

4x2
+

m+2
√
22mx2L

�
x2

m+2
√
22

�
∈ �

(2,2m+2)
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Finally let us note that the D’Alembert transform and reductions process is 
a polynomial map in the coefficients of the involved Laurent polynomials. We 
define:

It is clearly an affine embedding.

Proposition 1 �
(2,m) = f −1

(2,2p)
(�

(2,2m+2)).

Proof It is a direct consequence of Lemma 2.   ◻

3  Asymptotic iteration method for auxiliary equations

From Theorems 1, 2 and 3 we have that in order to characterize the spectral sets �
(1,2p) , 

�2,2p and �
(2q,2p) we need to determine in which cases the auxiliary differential equa-

tions ( A1 ), ( A2 ) and ( A3 ) admit a polynomial solution. With this purpose we use an 
adapted version of the asymptotic iteration method or AIM, that was introduced by H. 
Ciftci et al in [9] and previously applied to a related problem in [2].

3.1  General considerations about the asymptotic iteration method

Let us consider ℚ{�, �} the ring of differential polynomials in two differential indeter-
minates � , � . Let us consider a differential equation,

We also set: �0(�, �) = �, s0(�, �) = � . By derivation of Eq. (11) we obtain a 
sequence of differential equations,

where {�j(�, �)}j∈ℕ and {sj(�, �)}j∈ℕ are sequences of differential polynomials in � 
and � defined by the recurrence (cf. (21) in [2]),

and a sequence of obstructions,

fm,r ∶ �r,m ↪ �2(r−1),2(m+1), L(x) ↦
3

4x2
+

m+2
√
22mx2L

�
x2

m+2
√
22

�

(�
−r,… ,�m−1) ↦

�
m+2
√
22r�

−r, 0,… ,
3

4
+

m+2
√
24�

−2, 0,… ,
�m−1

m+2
√
22(m−1)

, 0

�
.

(11)y�� = �y� + �y

(12)y(j+2) = �j(�, �)y
�

+ sj(�, �)y

(13)�j+1 = ��
j
+ sj + ��j, sj+1 = s�

j
+ ��j.

Δj(�, �) = sj(�, �)�j−1(�, �) − �j(�, �)sj−1(�, �).
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Another way of looking at this sequence {Δn}n∈ℕ is to consider the recurrence law 
(13) as the iteration of a ℚ-linear operator in ℚ{�, �}2 . Note that:

it follows:

This sequence, {Δn(�, �)}n∈ℕ is a sequence of universal differential polynomials in 
two variables that test whether a linear second order homogeneous linear differential 
equation has a polynomial solution. The following is a differential algebraic refine-
ment of a known result (the original result, [9, Theorem 2] included some spurious 
hypothesis and was stated for smooth functions in an open interval, it was later 
translated into differential algebraic terms [2, Theorem 4.1] but it was stated in a 
weaker form than here). In order to state it, let us consider an algebraically closed 
field C of characteristic zero and a differential field extension (K, �) of 

(
C(x),

d

dx

)
 

whose field of constants is C . As usual, we write f ′ for �f  . We consider a differential 
equation,

where f and g are elements of K.

Theorem 4 Differential equation (15) has a polynomial solution in C[x] of degree at 
most n if and only if Δn(f , g) = 0.

Proof For the first part of the proof we follow the same argument that [9, Theo-
rem 2]. Let us assume that Eq. (15) admits a polynomial solution P(x) ≠ 0 of degree 
at most n. Note that from derivation of Eq. (15) we obtain equations with coeffi-
cients in K,

By taking y = P(x) we obtain:

if P(x) ≠ 0 then we have

[
�j+1
sj+1

]
=

(
d

dx
+

[
� 1

� 0

])[
�j
sj

]

(14)Δn(�, �) = det

{(
d

dx
+

[
� 1

� 0

])n[
� 1

� 0

]}

(15)y�� = fy� + gy

(16)
{

y(n+1) = �n−1(f , g)y
�
+ sn−1(f , g)y

y(n+2) = �n(f , g)y
�
+ sn(f , g)y.

[
�n−1(f , g) sn−1(f , g)

�n(f , g) sn(f , g)

][
P(x)

P�
(x)

]
=

[
0

0

]
,

Δn(f , g) = det

[
�n−1(f , g) sn−1(f , g)

�n(f , g) sn(f , g)

]
= 0.
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Now, let us assume Δn(f , g) = 0 . The key point of the proof is that any homogene-
ous linear differential equation with coefficients in K of order r has a vector space 
of solutions of dimension r in a suitable extension of K . We have two different 
possibilities: 

(a) If �n−1(f , g) = 0 and sn−1(f , g) = 0 then Eq. (16) yield y(n+1) = 0 . This implies 
that solutions of Eq. (1) are polynomials of degree at most n

(b) In any other case then there is a unique h ∈ K such that h�n−1(f , g) = �n(f , y) and 
hsn−1(f , g) = sn(f , g) . By substitution in Eq. (16) we obtain 

 The general solution of this equation is (n + 2)-vector space over C containing 
the space of all polynomials of degree at most n as an hyperplane. The space 
of solutions of Eq. (15) is a 2-subspace of such (n + 2)-vector space. It must 
intersect the hyperplane of polynomials at least along a line. Thus, it contains a 
polynomial of degree at most n.

  ◻

3.2  Asymptotic iteration method for auxiliary equations ( A1 ), ( A2 ) and ( A3)

Here we complete the integrability analysis of equation (1) by applying the asymp-
totic iteration method to auxiliary equations. We need to introduce the spectral vari-
eties, some subsets of the spectral set that turn out to be algebraic varieties.

Definition 3 Let us call �(d±)

(1,2p)
 to the set of L(x) ∈ �

(1,2p) such that the corresponding 
auxiliary equation ( A1 ) with s

∞
= ±1 has a polynomial solution of degree d. Let us 

also set,

Definition 4 Let us call �(d±)

(2,2p)
 to the set of L(x) ∈ �

(2,2p) such that the corresponding 
auxiliary equation ( A2 ) with s

∞
= ±1 and some choice of s0 has a polynomial solu-

tion of degree d. Let us also set,

Definition 5 Let us set �(d±)

(2,m)
= f −1

(2,m)
(�

(d±)

(2,2m+2)
) and �(d)

(2,m)
= f −1

(2,m)
(�

(d)

(2,2m+2)
).

Definition 6 Let us call �̃(d±±)

(2q,2p)
 to the set of (R(x),B(x),A(x)) ∈ �̃

(2q,2p) such that the 
corresponding auxiliary equation ( A3 ) with s

∞
= ±1 , s0 = ±1 has a polynomial 

solution of degree d. Let us also set,

y(n+2) = hy(n+1).

�
(d)

(1,2p)
= �

(d+)

(1,d)
∪ �

(d−)

(1,d)
.

�
(d)

(2,2p)
= �

(d+)

(2,p)
∪ �

(d−)

(2,2p)
.
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Definition 7 Let us call �(d±±)

(2q,2p)
= 𝜋−1

(2q,2p)
(�̃

(d±±)

(2q,2p)
) and �(d)

(2q,2p)
= 𝜋−1

(2q,2p)
(�̃

(d)

(2q,2p)
).

By the above definitions we have that, for any (r,m) ∈ ℤ2
+
 the spectral set decom-

poses as enumerable union of strata,

By application of the asymptotic iteration method we will see that these strata �(d)

(r,m)
 

are algebraic varieties, that we call spectral varieties, and compute their equations.

Proposition 2 L(x) ∈ �
(d±)

(1,2p)
 with s

∞
= ±1 if and only if, 

(a) ±bp−1 = 2d + p + 2.

(b) Δd

(
−s

∞
A(x) −

1

x
,−s

∞
A�
(x) + B(x) +

2s
∞
A(x)−a

x

)
∈ ℂ[x, x−1] vanishes.

Proof It follows automatically from Theorem  1 by application of Theorem (4) to 
( A1 ). Note that condition (a) implies that the degree of the polynomial solution of 
( A1 ) is not strictly smaller than d.   ◻

Remark 2 Note that given a choice of the sign s
∞

 then

Therefore, the coefficients of Δd

(
−s

∞
A(x) −

1

x
,−s

∞
A�
(x) + B(x) + s

∞

2A(x)−a

x

)
 are 

regular functions in �
(1,2p) and, together with equation ±bp−1 = 2d + p + 2 , deter-

mine the spectral variety �(d±)

(1,2p)
.

Now, we apply the asymptotic iteration method to Eq. ( A2 ) in order to give 
necessary and sufficient conditions for the existence of a polynomial solution of 
degree d. Given L(x) ∈ �

(2,2p) we consider its decomposition as in Eq. (4).

Proposition 3 L(x) ∈ �
(d±)

(2,2p)
 , with s

∞
= ±1 , if and only if, 

(a) s
∞
bp−1 = 2d + s0

√
1 + 4b + p + 1 (this determines the choice of the square root, 

that is, the sign s0 , and therefore �).
(b) Δd

(
−s

∞
A(x) −

�

x
,−s

∞
A�
(x) + B(x) −

2s
∞
�A(x)−a

x

)
∈ ℂ[x, x−1] vanishes.

�̃
(d)

(2q,2p)
= �̃

(d++)

(2q,2p)
∪ �̃

(d+−)

(2q,2p)
∪ �̃

(d−+)

(2q,2p)
∪ �̃

(d−−)

(2q,2p)
.

�
(r,m) =

⋃
d≥0

�
(d)

(r,m)
.

Δd

(
−s

∞
A(x) −

1

x
,−s

∞
A�

(x) + B(x) +
2s

∞
A(x) − a

x

)
∈ ℚ[�

−1,… ,�2p, x, x
−1
].
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Proof It follows automatically from Theorem 2 by application of Theorem 4 to Eq. 
( A2 ). Note that condition (a) implies that the degree of the polynomial solution of 
Eq. ( A1 ) is not strictly smaller than d.   ◻

Remark 3 Note that given a choice of the sign s
∞

 then

Therefore, the coefficients of Δd

(
−s

∞
A(x) −

�

x
,−s

∞
A�
(x) + B(x) −

2s
∞
�A(x)−a

x

)
 are 

regular functions in �
(1,2p) and, together with equation

determine the spectral variety �(d±)

(1,2p)
.

Finally, we apply the asymptotic iteration method to Eq. ( A3 ). Given 
(R(x),B(x),A(x)) ∈ �̃

(2q,2p) and a choice of the signs s
∞
= ±1 and s0 = ±1 in Eq. 

( A3 ) let us recall:

Proposition 4 (R(x),B(x),A(x)) ∈ �̃
(d±±)

(2q,2p)
 if and only if 

(a) d =

s
∞
bp−1−p−q

2
−

s0b−(q+1)

2r
−q

.

(b) Δd

(
−�(x) −

�

x
,−��

(x) + B(x) −
�(2�(x)+�−1)

x

)
∈ ℂ[x, x−1] vanishes.

Δd

(
−s

∞
A(x) −

�

x
,−s

∞
A�

(x) + B(x) −
2s

∞
�A(x) − a

x

)
∈ ℚ[�

−1,… ,�2p, x, x
−1
].

(s
∞
bp−1 − 2d − p − 1)2 = 1 + 4b,

� =

s0b−(q+1)

2rq
+

q

2
=

s
∞
bp−1 − p

2
− d, �(x) = s

∞
A(x) + s0R(x).

Table 2  First universal differential polynomials Δd for s
∞
= 1 in family (19)

d Δ
d

1 �2 + 4

2 −�3 − 20 �

3 �4 + 60 �2 + 288

4 −�
(
�4 + 140 �2 + 2848

)
5 �6 + 280 �4 + 15280 �2 + 86400

6 −�
(
�6 + 504 �4 + 59184 �2 + 1316736

)
7 �8 + 840 �6 + 185520 �4 + 10460800 �2 + 67737600

8 −�
(
�8 + 1320 �6 + 500016 �4 + 58002560 �2 + 1416075264

)
9 �10 + 1980 �8 + 1202256 �6 + 252901440 �4 + 15116419584 �2 + 109734912000

10 −�
(
�10 + 2860 �8 + 2642640 �6 + 925038400 �4 + 110532006400 �2 + 2941885440000

)
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Proof It follows automatically from Theorem 3 by application of Theorem 4 to Eq. 
( A2 ). Note that condition (a) implies that the degree of the polynomial solution of 
Eq. ( A1 ) is not strictly smaller than d.   ◻

Remark 4 Note that given a choice of the signs s0 and s
∞

 then

The coefficients of Δd(�(x),B(x), �) as a Laurent polynomial in x are regular func-
tions in �̃

(2q,2p) and its zero locus is the spectral variety �̃(d±±)

(2p,2q)
.

Remark 5 The projection 𝜋
(2q,2p)(�̃

(d±±)

(2q,2p)
) = �

(d±±)

(2q,2p)
 is then an algebraic subvariety of 

�
(2p,2q).

3.3  Decomposition of the spectral set

Theorem 5 For any (r,m) ∈ ℤ2
>0

 we have a decomposition of the spectral set

as an enumerable union of spectral varieties. Moreover: 

(a) If L(x) ∈ �
(d)

(r,m)
 with r ≠ 2 then the differential equation (1) has a solution of the 

form: 

Δd

(
�(x) +

�

x
,��

(x) − B(x) +
�(2�(x) + � − 1)

x

)
∈ ℚ[r−1

j
, bj, aj, r

−1
−q
, x, x−1].

�
(r,m) =

⋃
d≥0

�
(d)

(r,m)

Table 3  First universal differential polynomials Δd for s
∞
= −1 in family (19)

d Δ
d

1 �2 − 4

2 −�3 + 44 �

3 �4 − 180 �2 + 1440

4 −�
(
�4 − 500 �2 + 23584

)
5 �6 − 1120 �4 + 173200 �2 − 1814400

6 −�
(
�6 − 2184 �4 + 833328 �2 − 42947712

)
7 �8 − 3864 �6 + 3064368 �4 − 467834752 �2 + 5811886080

8 −�
(
�8 − 6360 �6 + 9338160 �4 − 3293590400 �2 + 184026470400

)
9 �10 − 9900 �8 + 24753168 �6 − 17322465600 �4 + 2702445037056 �2 − 38109367296000
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 where P(x) is a monic polynomial of degree d, and �(x) is a Laurent 
polynomial.

(b) If L(x) ∈ �
(d)

(r,m)
 with r = 2 then the differential equation (1) has a solution of the 

form: 

 where P(x) is a monic polynomial of degree d, and �(x) is a Laurent 
polynomial.

Proof Case (a) with r = 1 and even m follows directly from Proposition 2. Case (a) 
with r > 2 and even m follows directly from Proposition 4 and the fact that �̃

(r,m) is a 
2-covering space of �

(r,m) and the algebraic varieties �̃±±

(r,m)
 projects onto algebraic 

varieties �±±

(r,m)
 . Finally, case (a) with odd m is trivial as the spectral set is empty. 

Finally, case (b) for (2, m) follows from 3 applied to �
(2,2m+2) and then D’Alembert 

transform.   ◻

4  Applications

First, we consider biconfluent Heun and doubly confluent differential equations, 
whose solutions are relevant special functions, see [16]. Then, we analyze one dimen-
sional stationary Schrödinger equations with potentials in ℂ[x, x−1] , ℂ[e�x, e−�x] and 

y(x) = x�P(x)e∫ �(x)dx

y(x) = x�P(
√
x)e∫ �(

√
x)dx

Table 4  Obstructions Δd for the case s
∞
= 1

d Δ
d

0 J
2
(
J
2
+ 4

)
1 1

256
J
8
+

1

16
J
6
+

3

16
J
4
−

1

2
J
2
− 6

2 J
2
(
J
10
+ 36 J8 + 368 J6 + 448 J4 − 15360 J2 − 102400

)
3 1

65536
J
16
+

1

1024
J
14
+

43

2048
J
12
+

39

256
J
10
−

175

256
J
8
−

299

16
J
6
−

369

4
J
4
+ 108J2 + 1260

Table 5  Obstructions Δd for the case s
∞
= −1

d Δ
d

0 J
2
(
J
2
− 4

)
1 1

256
J
8
−

1

16
J
6
+

3

16
J
4
−

1

2
J
2
+ 6

2 J
2
(
J
10
− 36 J8 + 368 J6 − 1472 J4 + 15360 J2 − 102400

)
3 1

65536
J
16
−

1

1024
J
14
+

43

2048
J
12
−

49

256
J
10
+

385

256
J
8
−

299

16
J
6
+

387

4
J
4
− 108J2 + 1260
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ℂ[
√
x,
√
x−1] , which are relevant in mathematical physics and that can be written in 

terms of biconfluent and doubly confluent Heun differential equations. Our approach 
recovers and extends the results of Duval et. al. in [11] about these equations, which in 
their normal form are particular cases of the following differential equation:

4.1  Biconfluent Heun equation

Consider the reduced form of biconfluent Heun equation, which is given by

We see that Eq. (17) corresponds to Eq. (18) when k = 1 , a2 = 1 , a1 = � , 
a0 =

�2

4
− � , a

−1 =
�

2
 and a

−2 =
�2−1

4
 . A galoisian analysis of Eq. (18) was developed 

by Duval et al. in [11], where the authors obtained a description of the spectral vari-
ety by treating the auxiliary equation by the method of undetermined coefficients. 
Using our approach we apply Theorem 4, after a coefficient decomposition as pre-
sented in Eq. (5).

Through our approach for Eq. (18), the AIM method help us to obtain in an 
explicit way the vanishing condition of the determinant provided in [11], which is 
equivalent to the vanishing of the universal polynomial Δd . We provide a criteria 
for the existence of the solution and we use d = 1, 2 to illustrate the method. Solu-
tions are given in pairs and the Galois group is diagonalizable. That is, we obtain the 
same universal differential polynomial for cases s

∞
= 1 , s0 = 1 and s

∞
= 1 , s0 = −1 

as follows.
For d = 1:

For d = 2:

In a similar way, we obtain the same universal differential polynomials for cases 
s
∞
= −1 , s0 = −1 and s

∞
= −1 , s0 = 1 as follows.

For d = 1:

(17)y�� −
(
a2x

2
+ a1x + a0 +

a
−1

x
+

a
−2

x2
+⋯

a
−2k

x2k

)
y = 0.

(18)y�� −

((
x +

�

2

)2

− � +
�

2x
+

�2
− 1

4x2

)
y = 0

1

4
�2�2 ± ��2 ∓

1

2
��� ± 2� +

3

4
�2 − �� +

1

4
�2 + 2

9��2

8
−

23�2�

8
−

3

8
�2�2� + 4�2� ∓

9

4
��2� ±

3

8
���2 ∓ 4��

±

1

8
�3�3 +

9�2�3

8
±

23��3

8
−

1

8
�3 +

15�3

8
± 18�� + 14� − 6�
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For d = 2:

4.1.1  The case x2 + ˇ

x

Setting � =
�2

4
 , � = ±1 and � = 0 in Eq. (18) we have:

Thus we obtain the equations of �d±

(1,2)
 restricted to this one-parametric family in 

Tables 2 and 3.

4.1.2  A 4‑parametric Hill equation

Following [8] we consider the Hill differential equation

Through the change of variable (z, f (z)) ↦ (x, y) = (ez, e
z

2 f (ez)) Eq. (20) turns into:

We observe that Eq. (21) is a biconfluent Heun equation in the reduced form, Eq. 
(18) being � = −k3 , � = k2 +

k2
3

4
 , � = −2k1 and �2

= −4k0.
By Theorem  2 we obtain the arithmetic condition 

� ∶= 1 + s0�
2
= −(s

∞
� + 2d + 1) over the parameters of Eq. (21). Then, in order 

to achieve Picard-Vessiot integrability we should obtain polynomial solutions of the 
auxiliary equation defined as follows.

By the use of Asymptotic Iteration Method to Eq. (22) we get the conditions for the 
existence of such solutions. We compute these conditions for d = 1 and signs selec-
tion s

∞
= 1 , s0 = 1,

1

4
�2�2 ∓ ��2 ∓

1

2
��� ± 2� +

3

4
�2 + �� +

1

4
�2 − 2

−

9 � �2

8
−

23 �2�

8
+ 6 � + 14 � −

3

8
�2�2� + 4 �2� ±

9

4
��2� ±

3

8
�� �2

∓18 � � ∓ 4 �� −
15 �3

8
−

1

8
�3 ∓

1

8
�3�3 −

9 �2�3

8
±

23 ��3

8

(19)y�� −

(
x2 +

�

x

)
y = 0

(20)f ��(z) + (−e4z + k3e
3z
+ k2e

2z
+ k1e

z
+ k0)f (z) = 0.

(21)y�� =

((
x −

k3

2

)2

−

(
k2 +

k2
3

4

)
−

k1

x
−

1∕4 + k0

x2

)
y,

(22)

P��

d
(x) + 2

(
s
∞

(
x +

�

2

)
+

�

2x

)
P�

d
(x) +

(
s
∞
+ � + s

∞

(x +
�

2
)(� − a)

x

)
Pd(x) = 0
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conditions for others small d are easily computable but extremely large.

4.1.3  A case with coefficients in ℂ[
√
x ,
√
x−1].

In [13], see also [7, 15] and references therein, was presented the following differen-
tial equation

Setting the change of variables (x, y) ↦ (z, u) = (

�√
4k0x, z

−1∕2y) to transforms Eq. 
(24) into the following differential equation.

We see that Eq. (17) corresponds to Eq. (25) when k = 1 , a2 = 1 , a1 = J , 
a0 = a

−1 = 0 and a
−2 =

3

4
 . We recall that Eq. (25) corresponds to the reduced 

form of biconfluent Heun equation (18) with � = ±2 , � = J , � = J2∕4 and � = 0 . 
Applying theorem 2 we find out that a necessary condition to obtain integrability is 
� ∶=

1+2s0

2
=

−1

8
s
∞
J2 −

1

2
− d . On the other hand, sufficient condition comes from 

the polynomial solutions of the auxiliary equation

(23)

�
k6
3
+ 8k2k

4
3
+ 16k2

2
k2
3
+ 16k4

3
+ 64k2k

2
3
+ 48k2

3
+ 256

√
−k0 + 128 = 0

−k6
3
− 8k2k

4
3
− 16k2

2
k2
3
− 16k4

3
− 64k2k

2
3
− 16k2

3
+ 128k1 + 128k2 + 384 = 0.

(24)y�� −

�
k1√
x
+ k0

�
y = 0

(25)u�� =

��
z +

J

2

�2

−

J2

4
+

3

4z2

�
u, J =

√
2k1k

−3∕4

0
.

(26)P��

d
+ 2

(
�(z) +

�

z

)
P�

d
+

(
��

(z) +
J2

4
+

2��(z)

x

)
P(z) = 0

Table 6  Relations between parameters in equation (34), solutions yn,d
Case � z n ∼ d yn,d

s
∞
= s0 = 1 2d + 2m + 2 + n z = −

2xn+1

n+1

n + 1|d
x
m+1

L

2m+1

n+1

d

n+1

(
−

2xn+1

n+1

)
e

x
n+1

n+1

s
∞
= 1, s0 = −1 2d − 2m + n z = −

2xn+1

n+1

n + 1|d
x
−m

L
−

2m+1

n+1

d

n+1

(
−

2xn+1

n+1

)
e

x
n+1

n+1

s
∞
= s0 = −1 −(2d − 2m + n) z =

2xn+1

n+1

n + 1|d
x
−m

L
−

2m+1

n+1

d

n+1

(
2xn+1

n+1

)
e
−
x
n+1

n+1

s
∞
= −1, s0 = 1 −(2d + 2m + 2 + n) z =

2xn+1

n+1

n + 1|d
x
m+1

L

2m+1

n+1

d

n+1

(
2xn+1

n+1

)
e
−
x
n+1

n+1
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where �(z) = s
∞
(z +

J

2
) . The existence of such polynomials solutions is guaranteed 

by the vanishing of the obstruction Δd

(
−2(�(z) +

�

z
),−��

(z) −
J2

4
−

2��(z)

x

)
 . These 

obstructions are the same for cases s
∞
= 1 , s0 = 1 and s

∞
= 1 , s0 = −1 ; s

∞
= −1 , 

s0 = 1 and s
∞
= −1 , s0 = −1 likewise. In tables 4 and 5 we present some computa-

tions for smalls values of parameter d:

4.2  Doubly confluent Heun equation

Following Duval et. al. (see [11, pp. 236]) we consider the reduced form of dou-
bly confluent Heun equation given by

We see that Eq. (17) corresponds to Eq. (27) when k = 2 , a2 = a1 = 0 , a0 =
�2

4
 , 

a
−1 = −� , a

−2 = −� , a
−3 = −� and a

−4 =
�2

4
 . Instead of using the galoisian approach 

given by Duval et. al in [11], we set the change of variables 

(x, y) ↦ (z, u) = (

�√
�

x
, z3∕2y) to transforms Eq. (27) into the following differential 

equation.

Now, we can use our approach to apply Theorem  4 to Eq. (28), which corre-
sponds to Eq. (17) being k = 3 , a2 = 1 , a1 = a

−1 = a
−3 = a

−5 = 0 , a0 = −4�∕�̃ , 
a
−2 = −(4� − 3∕4) , a

−4 = −4�̃� and a
−6 = �̃6.

By theorem 4 we obtain a necessary condition � ∶= −s02
�

�̃2
+

3

2
=

−s
∞
4�−�̃

2�̃
− d 

over the parameters of equation (28). Then, by means of asymptotic iteration 
method we search for polynomial solutions of the auxiliary equation

where �(z) = s
∞
z + s0

�̃3

z3
 and B(z) = −

4�

�̃
−

4�−
3

4

z2
−

4�̃�

z4
 . In order to illustrate this 

process we compute the polynomial system which solutions are the suitable selec-
tion for � , � , � and � that vanishes Δ1

(
−2(�(z) +

�

z
),−��

(z) + B(z) −
�(2�(z)+�−1)

z

)
 

for each combination of signs s
∞

 and s0:
for s

∞
= 1 and s0 = 1 we obtain the equation of the intersection of �(1++)

(6,2)
 with 

the family (28)

(27)y�� −

(
�2

4
−

�

x
−

�

x2
−

�

x3
+

�2

4x4

)
y = 0

(28)u�� =

�
z2 −

4�

�̃
−

4� −
3

4

z2
−

4�̃�

z4
+

�̃6

z6

�
u, �̃ =

√
�.

(29)P��

d
+ 2

(
�(z) +

�

z

)
P�

d
+

(
��

(z) − B(z) +
�(2�(z) + � − 1)

z

)
Pd = 0



661

1 3

São Paulo Journal of Mathematical Sciences (2023) 17:638–670 

the solution of this system is the union of four algebraic curves:

for s
∞
= 1 and s0 = −1 we obtain the equation of the intersection of �(1+−)

(6,2)
 with fam-

ily (28)

the solution of this system is the union of four algebraic curves:

Further computation shows that for family Eq. (18) the intersections with �(1++)

(6,2)
 and 

with �(1−+)

(6,2)
 coincide. The same happens for the intersections with �(1+−)

(6,2)
 and �(1−−)

(6,2)
 . 

This implies that two of the auxiliary equations have polynomial solutions simulta-
neously, there are two linearly independent solutions that are eigenvectors of the 
Galois group which is then diagonalizable.

4.3  Perturbed canonical equation

Another interesting example is the differential equation

(30)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

256 �2 + 224 � + 33 = 0

16 � � + 15 �̃ + 23 � = 0

16 �̃ � − 9 �̃ − 16 � = 0

16 �2 − 272 � � − 87 � = 0

�̃ � + 16 � � + 6 � = 0

�̃2
− 16 � � − 7 � = 0

(31)

{
�̃2

= 4� , �2 =
9

16
�̃2, � = −

3

16

}
,

{
�̃2

= −4� , �2 = −

25

16
�̃2, � = −

11

16

}

(32)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

256 �2 + 224 � + 33 = 0

16 � � + 15 �̃ + 23 � = 0

16 �̃ � − 9 �̃ − 16 � = 0

16 �2 + 272 � � + 87 � = 0

�̃ � − 16 � � − 6 � = 0

�̃2
+ 16 � � + 7 � = 0

(33)

{
�̃2

= −4� , �2 = −

9

16
�̃2, � = −

3

16

}
,

{
�̃2

= 4� , �2 =
25

16
�̃2, � = −

11

16

}

(34)y�� =

(
xn + �xn−1 +

m(m + 1)

x2

)
y,
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which was deeply analyzed in [2] for m = 0 . Now, by application of theorem 2 we 
can determine an arithmetic condition on the parameters that needs to be fulfilled, 
that is

This condition implies that we have four different cases to consider related to the 
selection of signs s0 and s

∞
 . Let us take for example case s0 = s

∞
= 1 , so we have 

the following auxiliary equation

Through the change of variables L(z) = Pd(x) and z = −
2xn+1

n+1
 , the equation (36) turns 

into:

This last equation is a generalized Laguerre equation and its solutions are confluent 
hypergeometric function of the first kind 1F1

(
−

d

n+1
,
2m+1

n+1
+ 1,−

2xn+1

n+1

)
 . Thus, equa-

tion (34) will be Picard-Vessiot integrable if d ≡ 0 mod (n + 1) and a solution is 
given by

In general, the change of independent variable z = −s
∞

2xn+1

n+1
 transform the corre-

sponding auxiliary equation into a generalized Laguerre equation. In the table 6 we 
summarize some relations of the parameters in equation (34) that must be satisfied 
in order to obtain integrability for each selection of signs.

4.4  Algebraically solvable potentials for Schrödinger equation

There is some interest in understanding Liouvillian solutions for Schrödinger equa-
tions with Mie type potentials that come from Supersymmetric Quantum Mechan-
ics, Atomic and Molecular Physics, among others, see [1, 6–8, 12, 18]. Algebrai-
cally solvable potentials correspond to those that have an infinite discrete spectrum 
and Liouvillian eigenfunctions. The following is an extension of Corollary 5.3 in 
[5], see also Corollary 2.2.3 in [3, 4].

Corollary 1 Assume that V(x) ∈ �
(r,m) is an algebraically solvable potential with 

m > 0 . Then, m = 2 and r ∈ {0, 1, 2}.

Proof It follows directly that:

(35)� = s
∞
(2d + n + 1 + s0(2m + 1)).

(36)P��

d
+ 2

(
xn +

m + 1

x

)
P�

d
− 2dxn−1Pd = 0.

(37)zL��(z) +
(
2m + 1

n + 1
+ 1 − z

)
L�(z) +

d

n + 1
L(z) = 0.

(38)yn,d(x) = xm+1L
2m+1

n+1

d

n+1

(
−

2xn+1

n+1

)
e
xn+1

n+1 .
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• (r,m) = (2, 1) by applying of part (a) in Theorem 2, or
• (r,m) = (2, 2) by applying of Theorem 3, part (a) due to the relation with E or 

part (b) due to it is valid ∀� ∈ ℤ , or
• (r,m) = (2, 0) by the applying of part (a) due to the relation with E and part (b) 

in Theorem 4. Thus, we obtain that q = 0 , otherwise we will have quasi-solvabil-
ity in the potential (finite number of points in the algebraic curve in the spectral 
variety).

Thus, we conclude the proof.   ◻

Remark 6 We can notice that Eq. (17) not only include the reduced forms of bicon-
fluent and doubly confluent Heun equations, also include some Schrödinger Equa-
tions with 3D algebraically solvable potentials and energy levels denoted by E such 
as follows:

• Harmonic Oscillator, see [5, §5.2, pp. 331–333], being k = 1 , a2 = 1 , 
a1 = b1 = 0 , a0 = −(2� + 3 + E) and b2 = �(� + 1).

• Coulomb, see [5, §5.2, pp. 333–336], being k = 1 , a2 = a1 = 0 , a0 = 1 − E , 
b1 = −2(� + 1) and b2 = �(� + 1).

• Algebraic form of Morse, see [5, §6.3, pp. 355–358], being k = 1 , a2 = a1 = 0 , 
a0 = 1 − E , b1 = −2(� + 1) and b2 = �(� + 1).

Concerning Eq. (20) and Eq. (24) we observe that they are Schrödinger equations 
with algebraically solvable potentials in where E = −k0 and their algebraic form, Eq. 
(21) and Eq. (25), fall in Eq. (17). The potential associated to Eq. (24), K1∕

√
x , is 

well known as inverse square root potential where E = (k1∕
√
2n)4∕3 in quantum 

mechanics. On the other hand, the potential associated to the Hill equation (20), 

−e4z + k3e
3z
+ k2e

2z
+ k1e

z , with E = −k0 =
(
s
∞
(n + 1) +

1

2

(
k2 +

k2
3

4

))2

 , is relevant 
to complex oscillation theory.

A Some elements of Kovacic Algorithm

In this appendix we review the elements of Kovacic algorithm that we use in the 
proofs. Since we are not making use of the complete algorithm we only review the 
parts that are relevant for the results exposed in this paper. We include the steps, and 
some explanations, but not the proofs. The interested reader may consult J. Kovac-
ic’s original paper [14]; we follow the same notation.

This algorithm assesses the Picard-Vessiot integrability and finds Liouvillian 
solutions, if they exist, of the linear differential equation

Picard-Vessiot integrability of equation (39) is governed by its associated Riccati 
equation

(39)��� = r�, r ∈ ℂ(x).
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If u is a solution of (40) then � = exp
(∫ u

)
 is a solution of (39). According to the 

properties of the associated Riccati equation we obtain the 4 cases of the algorithm: 

1. Case 1. The Riccati equation has a rational solution � ∈ ℂ(x) : the Galois group of 
(39) is conjugated to a subgroup of the Borel subgroup B2 . The algorithm returns 
a Liouvillian solution that is an eigenvalue of the Galois group.

2. Case 2. The Riccati equation has an algebraic solution of degree 2 over ℂ(x) : 
the Galois group of (39) is conjugated to a subgroup of the the infinite dihedral 
group D∞ not contained in the identity component of D∞ . The algorithm returns 
a pair of Liouvillian solutions whose logarithmic derivatives are conjugated by 
the action of the Galois group.

3. Case 3. The Riccati equation has an algebraic solution of degree greater than 2 
over ℂ(x) : the Galois group of (39) is the group of Tetrahedral, Octahedral or 
Icosahedral symmetries. The algorithm returns the minimal polynomial of the 
algebraic solutions.

4. Case 4. The Riccati equation has no algebraic solutions:the Galois group of (39) 
is SL2(ℂ) . There is no Liouvillian solutions.

The application of the algorithm proceeds in the following way. In case 1 we exam-
ine exhaustively all the possible candidates for rational solution of (40). If we find 
one, then we produce a Liouvillian solution of (39) and the algorithm stops. If not, 
we will go on to case 2. In case 2 we examine exhaustively all the possible candi-
dates for algebraic solutions of degree 2 of (40). As above, if we succeed we pro-
duce a solution of (39) and the algorithm stops. If not we proceed to case 3. In step 
three we use the particular knowledge about the remaining candidates for the Galois 
group and their semi-invariants. If we succeed then we produce algebraic solutions 
of (39). Else, we proceed to case 4 an claim the non-integrability of the equation.

Denote by Γ the set of finite poles of r, and define Γ�
= Γ ∪ {∞} . By the order of 

r at c ∈ Γ we mean the order of c as a pole of r, that we denote ◦(rc) . By the order of 
r at ∞ , ◦

(
r
∞

)
 , we mean the order of ∞ as a zero of r.1

There are some necessary conditions on the orders of r at its poles and ∞ that 
allow us to discard any of the cases before carrying out the steps of the computation. 
In the following theorem we summarized the necessary conditions that are relevant 
for our proof, all of them shown in [14, p. 8].

Theorem 6 The following conditions are necessary for the respective cases to hold. 

Case 1.  Every pole of r must have even order or else have order 1. The order of r 
at ∞ must be even or else be greater than 2.

(40)�� = r − �2 =
�√

r − �
��√

r + �
�
, � =

��

�
.

1 In the case of our results with L(x) ∈ ℂ[x, x1] whe have ◦(L(x)0) = r and ◦(L(x)
∞
) = −m.
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Case 2.  r must have at least one pole that either has odd order greater than 2 or 
else has order 2.

Case 3.  The order of a pole r cannot exceed 2 and the order of r at ∞ must be at 
least 2.

Let us continue with the description of some relevant steps of the algorithm, that 
we apply only in case the necessary conditions are satisfied.

A.1 Case 1. Step 1.

For each c ∈ Γ we define a pair of complex numbers �±

c
 and a rational function [

√
r]c 

as follows: 

(c1)  If ◦
(
rc
)
= 1 , then 

(c2)  If ◦
(
rc
)
= 2, and 

(c3)  If ◦
(
rc
)
= 2� ≥ 4 , then [

√
r]c is defined as the part of the Laurent series of 

√
r 

that spans from (x − c)−� to (x − c)−2 . Following [14, p. 9] we do not compute 
the Laurent series of 

√
r explicitly but rather we determine it by using unde-

termined coefficients using the fact that the difference: [
√
r]2

c
− r is a rational 

function with a pole of order ≤ � + 1 . We have then: 

For the point at the infinity ∞ ∈ Γ
� we also define �±

∞
 and [

√
r]

∞
 as follows: 

(∞1)  If ◦
(
r
∞

)
> 2 , then 

(∞2)  If ◦
(
r
∞

)
= 2, and r = ⋯ + bx2 +⋯ , then 

�√
r
�
c
= 0, �±

c
= 1.

r = b(x − c)−2 +⋯ , then

�√
r
�
c
= 0, �±

c
=

1 ±
√
1 + 4b

2
.

r = (a�(x − c)−� + ... + a2(x − c)−2)2 + b(x − c)−(�+1) +⋯ , then

�√
r
�
c
= av(x − c)−v + ... + a2(x − c)−2, �±

c
=

1

2

�
±

b

av
+ �

�
.

�√
r
�
∞

= 0, �+

∞
= 0, �−

∞
= 1.
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(∞3)  If ◦
(
r
∞

)
= −2� ≤ 0 then then [

√
r]

∞
 is defined as the polynomial of degree d 

that corresponds to the polynomial part of the Laurent series of 
√
r that at ∞ . 

As before we do not compute the Laurent series of 
√
r explicitly but rather 

we determine it by using undetermined coefficients and the fact that the dif-
ference: [

√
r]2

∞
− r should have a polynomial part of degree ≤ v , therefore: 

A.2 Case 1. Step 2.

Let us consider all possible assignations s ∶ Γ
�
→ {+,−} . So that any assignation 

correspond to a choice of sign s(c) for each pole c ∈ Γ
� . For each assignation s we 

obtain a complex number:

Each assignation s giving rise to a non-negative integer number ds requires an itera-
tion of step 3. If none of this numbers is a non-negative integer, we discard case 1, 
and move to case 2.

A.3 Case 1. Step 3.

The input for this step is a sign assignation s giving rise to a non-negative integer 
d = ds . We define the rational function.

We look for a monic polynomial Pm of degree m with

then then �1 = Pme
∫ � is a solution of the differential equation (39) and an eigenvec-

tor of its Galois group. If we run this step for all the assignations s with non-negative 
integer ms finding no polynomial solution, then case 1 does not hold.

�√
r
�
∞

= 0, �±

∞
=

1 ±
√
1 + 4b

2
.

r =
�
a�x

�
+ ... + a0

�2
+ bx�−1 +⋯ , then

�√
r
�
∞

= a�x
v
+ ... + a0, and �±

∞
=

1

2

�
±

b

a�
− �

�
.

ds = �s(∞)

∞
−

∑
c∈Γ

�s(c)
c

� = s(∞)

�√
r
�
∞

+

�
c∈Γ

�
s(c)

�√
r
�
c
+ �s(c)

c
(x − c)−1

�
.

P��

m
+ 2�P�

m
+ (��

+ �2
− r)Pm = 0.
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A.4 Case 2. Step 1

For each c ∈ Γ we define the Ec ⊂ ℤ as follows. 

(c1)  If ◦
(
rc
)
= 1 , then Ec = {4}

(c2)  If ◦
(
rc
)
= 2, and r = ⋯ + b(x − c)−2 +⋯ , then 

(c3)  If ◦
(
rc
)
= 𝜈 > 2 , then Ec = {�} We also define the set E

∞
 as follows:

(∞1)  If ◦
(
r
∞

)
> 2 , then E

∞
= {0, 2, 4}

(∞2)  If ◦
(
r
∞

)
= 2, and r = ⋯ + bx−2 , then 

(∞3)  If ◦
(
r
∞

)
= 𝜈 < 2 , then E

∞
= {�}

A.5 Case 2. Step 2.

Let us consider all the assignations,

such that for all c ∈ Γ we have e(c) ∈ Ec . For each assignation we have an associated 
complex number:

Only the assignations e giving rise to a non-negative integer de should be retained 
and passed to step 3. If none of this numbers is a non-negative integer then we dis-
card case 2.

A.6 From case 2, step 2 on.

The rest of steps of the algorithm are not used in this paper. The case 2, step 3 cor-
responds to some explicit computation that, in this paper is bypassed by the double 
covering map of the sphere. Case 3, corresponding to groups of symmetries of regu-
lar polyhedrons, is also not relevant for our computations. We send the interested 
reader to the original paper [14].

Ec =

�
2 + k

√
1 + 4b ∶ k = 0,±2

�
.

E
∞
=

�
2 + k

√
1 + 4b ∶ k = 0,±2

�
.

e ∶ Γ →

⋃
c∈Γ�

Ec

de =
1

2

(
e
∞
−

∑
c∈Γ�

ec

)
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Let us consider a family of second order differential equations of the form

where L(x) is a monic Laurent polynomial whose coefficients are polynomials in 
some variables a1,… , ak . We also assume that the coefficient of lower degree of L 
does not vanish. Now, it follows the description of the algorithm. 

 Input:  L, n.
 Output:  The polynomial equations of the variety �nin the 

variables a1,… ak.

Step 1  Determine if the type of the Laurent polynomial is  
(1, 2q), (2, 2q), (2p, 2q) or neither of them.

Step 2  Move to Case 1, Case 2, Case 3, or Case 4 
accordingly.

Case 1, (1, 2q)  :

(i)  Decompose the Laurent polynomial as in Eq. (3).
(ii)  Determine the auxiliary equation for each choice 

of sign s
∞
= ±1.

(iii)  Compute the universal differential polynomial Δn

for each equation in the last step.
(iv)  Compute a system of generators of the ideal gen-

erated by the coefficients of Δn.
Output:  A set of polynomial equations of two components 

of �din the variables a1,… ak.

Case 2, (2, 2q)  :

(i)  Apply a change of variable x = w2obtaining a new 
differential equation (9) with new Laurent polyno-
mial L̃(x).

(ii)  Decompose the Laurent polynomial L̃(x)as in Eq. (4).
(iii)  For each choice of sign s

∞
= ±1determine the corre-

sponding auxiliary equations ( A2).
(iv)  Compute the universal differential polynomial Δn

for each equation in the last step.

d2y

dx
= L(x)y
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(v)  Compute a system of generators of the ideal gen-
erated by the coefficients of Δn.

Output  Polynomial equations of the two �din the variables 
a1,… ak.

Case 3, (2 p , 2 q)  :

(i)  Decompose the Laurent polynomial as in Eq. (5)
(ii)  Determine the auxiliary equation for each choice 

of sign s0 = ±1 , s
∞
= ±1.

(iii)  Compute the universal differential polynomial Δn

for each equation in the last step.
(iv)  Compute a system of generators of the ideal gen-

erated by the coefficients of Δn.
Output:  Polynomial equations of the four �din the vari-

ables a1,… ak.

Case 4  :

Output:  �d = �.

All parts of the algorithm are implementable in a sym-
bolic computation system. We have implemented success-
fully in Maple�� some parts that we used in the applica-
tions and AIM sections.

Acknowledgements The authors acknowledge the support of Universidad Nacional de Colombia. 
The initial stages of this research were funded by Colciencias project “Estructuras lineales en geomet-
ría y topología” 776-2017 code 57708 (Hermes UN 38300). P.A-H was supported in the final stage by 
the FONDOCYT grants 2022-1D2-09 and 2022-1D2-091 from the Dominican Goverment (MESCYT). 
D.B-S was supported by UNAL projects “Aproximaciones geométricas a la teoría de Galois diferencial” 
code 55302 and "Aplicaciones de la Teoría de Galois Diferencial" code 58403. The computations in this 
paper were performed by using  MapleTM. On behalf of all authors, the corresponding author states that 
there is no conflict of interest. We also acknowledge the contribution of the anonymous referees who 
make important suggestions that helped to improve the quality of this paper.

Funding Open Access funding provided by Colombia Consortium.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


670 São Paulo Journal of Mathematical Sciences (2023) 17:638–670

1 3

References

 1. Acosta-Humánez, M.F., Acosta-Humánez, P.B., Tuirán, E.: Generalized Lennard-Jones poten-
tials, SUSYQM and differential Galois theory. SIGMA. Symmetry, Integrability and Geometry: 
Methods and Applications 14:099 (2018)

 2. Acosta-Humánez, P. B., Blázquez-Sanz, D., Venegas-Gómez, H.: Liouvillian solutions for second 
order linear differential equations with polynomial coefficients. São Paulo Journal of Mathematical 
Sciences 15:617–636 (2020)

 3. Acosta-Humánez, P.B.: Galoisian approach to supersymmetric quantum mechanics. PhD thesis, 
Universitat Politècnica de Catalunya (2009) https:// www. tdx. cat/ handle/ 10803/ 22723

 4. Acosta-Humánez, P.B.: Galoisian approach to supersymmetric quantum mechanics. The integrabil-
ity analysis of the Schrödinger equation by means of differential Galois theory. VDM Verlag, Dr 
Müller, Saarbrücken, Deutschland (2010)

 5. Acosta-Humánez, P.B., Morales-Ruiz, J.J., Weil, J.-A.: Galoisian approach to integrability of 
schrödinger equation. Rep. Math. Phys. 67(3), 305–374 (2011)

 6. Bender, C., Dunne, G.: Quasi-exactly solvable systems and orthogonal polynomials. J. Math. Phys. 
37(1), 6–11 (1996)

 7. Bryenton, K., Cameron, A., Keegan, K., Saad, N., Strongman, P., Volodin, N.: On the solutions 
of second-order differential equations with polynomial coefficients: theory, algorithm, application. 
Algorithms 13(11), 286 (2020)

 8. Chiang, Y.-M., Yu, G.-F.: Galoisian approach to complex oscillation theory of some hill equations. 
Math. Scand. 124(1), 102–131 (2019)

 9. Ciftci, H., Hall, R., Saad, N.: Asymptotic iteration method for eigenvalue problems. J. Phys. A: 
Math. Gen. 36(47), 11807–11816 (2003)

 10. de Saint-Gervais, H.P. :  Uniformization of Riemann surfaces: Revisiting a hundred-year-old theo-
rem. European Mathematical Society Publishing House. (2016)

 11. Duval, A., Loday-Richaud, M.: Kovacic’s algorithm and its application to some families of special 
functions. Appl. Algebra Eng. Commun. Comput. 3(3), 211–246 (1992)

 12. Gibbons, J., Veselov, A.P.: On the rational monodromy-free potentials with sextic growth. J. Math. 
Phys. 50(1), 013513 (2009)

 13. Ishkhanyan, A.M.: Exact solution of the schrödinger equation for the inverse square root potential. 
EPL (Europhysics Letters) 112(1), 10006 (2015)

 14. Kovacic, J.: An algorithm for solving second order linear homogeneous differential equations. J. 
Symb. Comput. 2(1), 3–43 (1986)

 15. Li, Wen-Du., Dai, Wu-Sheng.: Exact solution of inverse-square-root potential v(r) = −
�√
r
 . Ann. 

Phys. 373, 207–215 (2016)
 16. Ronveaux, A., Arscott, F.M.: Heun’s differential equations. Oxford University Press (1995)
 17. Singer, M.F.: Moduli of linear differential equations on the riemann sphere with fixed galois groups. 

Pac. J. Math. 160(2), 343–395 (1993)
 18. Turbiner, A.V.: Quantum mechanics: problems intermediate between exactly solvable and com-

pletely unsolvable. Soviet Phys. JETP 10(2), 230–236 (1988)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://www.tdx.cat/handle/10803/22723

	Liouvillian solutions for second order linear differential equations with Laurent polynomial coefficient
	Abstract
	1 Introduction
	1.1 A note on the general case

	2 Kovacic algorithm analysis
	2.1 Characterization of .
	2.2 Characterization of .
	2.3 Characterization of .
	2.4 Characterization of  in terms of 

	3 Asymptotic iteration method for auxiliary equations
	3.1 General considerations about the asymptotic iteration method
	3.2 Asymptotic iteration method for auxiliary equations (  ), (  ) and ( )
	3.3 Decomposition of the spectral set

	4 Applications
	4.1 Biconfluent Heun equation
	4.1.1 The case 
	4.1.2 A 4-parametric Hill equation
	4.1.3 A case with coefficients in .

	4.2 Doubly confluent Heun equation
	4.3 Perturbed canonical equation
	4.4 Algebraically solvable potentials for Schrödinger equation

	A Some elements of Kovacic Algorithm
	A.1 Case 1. Step 1.
	A.2 Case 1. Step 2.
	A.3 Case 1. Step 3.
	A.4 Case 2. Step 1
	A.5 Case 2. Step 2.
	A.6 From case 2, step 2 on.

	B Algorithmic computation of spectral varieties
	Acknowledgements 
	References




