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Abstract
The purpose of this paper is two-fold: we systematically introduce the notion of 
Cheeger deformations on fiber bundles with compact structure groups, and recover 
in a very simple and unified fashion several results that either already appear in the 
literature or are known by experts, though are not explicitly written elsewhere. We 
re-prove: Schwachhöfer–Tuschmann Theorem on bi-quotients, many results due to 
Fukaya and Yamaguchi, as well as, naturally extend the work of Searle–Solórzano–
Wilhelm on regularization properties of Cheeger deformations, among others. In 
this sense, this paper should be understood as a survey intended to demonstrate the 
power of Cheeger deformations. Even though some of the results here appearing 
may not be known as stated in the presented form, they were already expected, being 
our contribution to the standardization and spread of the technique via a unique 
language.
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1 Introduction

The metric deformation known as Cheeger deformations was firstly introduced on 
[2]. Its main goal was to produce metrics with non-negative sectional curvature on 
manifolds with symmetries. Since then, Cheeger deformations were used in [9, 11] 
to produce new examples of manifolds with non-negative and positive sectional cur-
vature; in [13, 19, 20] to study curvature properties on homogeneous spaces such as 
biquotients, on [21] to lift positive Ricci curvature from a metric quotient M/G to 
M, and in [4, 5, 11] to provide examples of manifolds with non-negative sectional 
and/or positive Ricci curvatures. Other interesting results along the same lines are 
in [1, 8, 12, 19]. Here we introduce an analogous metric deformation, defined on a 
specific class of metrics on fiber bundles with compact structure groups, naturally 
supported on Cheeger deformations. Throughout the manuscript we provide other 
references, including results on the existence metrics of almost non-negative sec-
tional curvature.

Recall that from any fiber bundle F ↪ M → B with compact structure group G 
can be decoupled a principal G-bundle P → B and a manifold F with an effective 
G-action. Here, M can be recovered via a submersion � ∶ P × F → M with fiber G. 
The idea of our deformation consists of inducing a one parameter family of metrics 
on M via � after making Cheeger deformation on P . That is, if g is a Riemannian 
metric on P for which G acts via isometries, given any G-invariant metric gF on F 
we look to the metric ht on M obtained from gt + gF in P × F , see Definition 1 for 
further details.

All the long we mostly follow the approach in [25] and [16], introducing useful 
tensors to standardize the analysis of this deformation, such as nowadays well estab-
lished the basics on Cheeger deformations. As a very useful formula we shall obtain:

Let h obtained via � ∶ (P × F, g + gF) → (M, h) and let gt be a Cheeger deforma-
tion of g . Then, for every pair X̃ = X + XF + U∗ , Ỹ = Y + YF + V∗ of tangent vectors 
to M, appropriately decomposed, it holds that

where �̃�t is the unreduced sectional curvature of the metric ht computed in an appro-
priate reparametrization of the plane X̃ ∧ Ỹ  , �t is the unreduced sectional curvature 
of gt and KgF

 is the unreduced sectional curvature of gF . Moreover, z̃t is a non-nega-
tive term.

We stress it out that it is not of the author’s knowledge whether Eq. (1) already 
appears elsewhere in such a general manner. However, when collapsing the fiber F 
to a single point, it naturally yields to the well known expression of the sectional 
curvature of a Cheeger deformation computed at some reparameterized planes, see 
[25, Proposition 1.3, p.2] or Eq. (5).

Taking advantage of Eq. (1), we re-prove in a very general picture results on 
almost non-negative sectional curvature appearing in [7]. Such results as stated were 
either already known (see [25]) or expected to be true, though not explicitly written 
elsewhere.

(1)
�̃�t
(
X̃, Ỹ

)
= 𝜅t

(
X+U∨, Y+V∨

)
+KgF

(
XF −

(
P−1
F
PU

)∗
, YF −

(
P−1
F
PV

)∗)
+ z̃t

(
X̃, Ỹ

)
,
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Theorem  1.1 (Fukaya–Yamaguchi) Let F ↪ M → B be a bundle with compact 
structure group G, fiber F and base B. Assume that M is an associate bundle to 
� ∶ (P, g) → B such that: 

(1) Kg ≥ 0;
(2) F has a G-invariant metric gF of non-negative sectional curvature.

Then M admits a sequence of Riemannian metrics {gn} such that secgn ≥ −
1

n
, 

diam (M, gn) ≤
1

n
.

A Fukaya–Yamaguchi type result on the existence of almost non-negative Ricci 
curvature, namely:

Theorem 1.2 Let F ↪ M → B be a fiber bundle with compact structure group G and 
total space M. Also assume that F carries a metric gF of non-negative Ricci curva-
ture and B carries a metric g� with Ric(g�) ≥ −�2 . Then M carries a metric h� with 
Ric(h�) ≥ −�2.

Both Theorems 1.1 and 1.2 should follow from the computations in [19], though 
these follow very directly from our techniques. We also reinforce that Theorem 1.2 
was first conjectured to be true in [7, Conjecture 0.14, p.257], see also [3, 22, 24]. 
Notably as well is the fact that this kind of result is of interest in the field of Metric 
Geometry, though we do not touch this area here, being the above-mentioned theo-
rem proofs of concept to the deformation here developed. Other very useful refer-
ences related to these subjects are: [15, 23].

All the analyses coming out from Eq. (1) allows us to recover in a very simple 
fashion classical results in bi-quotients, such as:

Theorem 1.3 (Schwachhöfer–Tuschmann) Any bi-quotient G//K from a compact Lie 
group G admits a metric with positive Ricci curvature and almost non-negative sec-
tional curvature simultaneously if, and only if, G//K has finite fundamental group.

Finally, we obtained two further applications. Recall for instance that in [18] 
Searle–Solórzano–Wilhelm show that Cheeger deformations work as a strong regu-
larization process: appropriate scaling of the family of metrics on Cheeger defor-
mations imply Cp-convergence, for any p ≥ 0 a priori fixed, to metrics with totally 
geodesic fibers. We apply this idea here to prove:

Theorem 1.4 Let � ∶ F ↪ M → B be a fiber bundle with compact total space and 
compact structure group G. Assume that h is a Riemannian submersion metric on 
M obtained via the submersion � ∶ (P × F, g + gF) → M , where P is the associ-
ated principal bundle to � and g, gF are, respectively, G-invariant metrics on P and 
F. Then, for any integer p ≥ 0 , after an appropriate re-scaling the fibers of � , the 
metric deformation ht (Definition 1, Sect. 3), converges in the Cp-topology to a Rie-
mannian submersion metric with totally geodesic fibers.
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Theorem 1.4 was already expected to be true but more importantly, this regulariza-
tion nature of Cheeger deformations already appears in the proof of all the mentioned 
results in this intro. As it is also clear, the sectional curvature formulae (1) may lead to 
new conjectures in which concerns the existence of metrics with positive sectional cur-
vature on the total space of some fiber bundles.

Recall, for instance, the fiber dimension Petersen–Wilhelm conjecture:

Conjecture A (Petersen–Wilhelm Fiber dimension conjecture).   If F ↪ M → B is a 
Riemannian submersion from a positively curved closed manifold M, then

In Sect. 5 we make some comments on this conjecture in the case of fiber bundles 
with the structure group being S3, SO(3) . More precisely, we conjecture:

Conjecture B (Principal bundle Strong Petersen–Wilhelm conjecture).  Any 
S3, SO(3) principal bundle over a positively curved manifold admits a metric with 
positive sectional curvature if, and only if, such a submersion is fat.

Assuming the validity of Conjecture B it shall be straightforward to check that: 
Any S2 ↪ M → B fat bundle with structure group SO(3) admits a metric of non-
negative sectional and positive vertizontal curvature. In particular, dimB ≥ 4.

1.1  Notation and conventions

We denote by Rg the Riemannian tensor of the metric g:

where ∇ stands for the Levi-Civita connection of g . We denote either by 
Kg(X, Y) = g(Rg(X, Y)Y ,X) or by Rg(X, Y), making it clear in the context, the unre-
duced sectional curvature of g . The Ricci tensor of g is defined by

where {e1, ..., en} is an orthonormal basis for g . The associated quadratic form is 
denoted by Ricg(X) = Ricg(X,X).

Whenever we say we have a Riemannian principal bundle we mean that the princi-
pal bundle is considered with a Riemannian submersion metric.

dimF < dimB.

Rg(X, Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z,

Ricg(X, Y) =

n∑

i=1

g(R(ei,X)Y , ei),
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2  (Classical) Cheeger deformations

We first recall the procedure known as Cheeger deformations. Though the main formu-
lae come from classical references, such as [25] and [16], we shall proceed differently 
in which concerns the presentation. The reason for that is to make more natural our 
definition of Cheeger deformation on fiber bundles.

Take the product manifold M × G with the product metric g + t−1Q , where G acts 
on M via isometries and Q is a bi-invariant metric on G. We therefore see ourselves 
with two possibilities of free (and commuting) actions:

In (2) the action ∙ stands to

while the action ⋆ is nothing but the associated bundle action on M × G , that is

Therefore, �((m, g)) ∶= m meanwhile ��((m, g)) ∶= g−1m . Since � and �′ define 
principal bundles, the metric g + t−1Q induces via � and �′ , respectively, the met-
rics g (the original one) and gt , a Cheeger deformation of g . Also note that although 
g1 = g , the horizontal space obtained via �′ has a different angular position in rela-
tion to the horizontal space obtained via � , what can be directly checked from the 
fact that g1(⋅, ⋅) = g(C1⋅, ⋅) = g((1 + P)−1⋅, ⋅).

Throughout the paper it is shall be denoted by �p the Q-orthogonal complement 
of �p , the Lie algebra of Gp . We recall that �p is isomorphic to the tangent space to 
the orbit Gp via action fields: for any U ∈ � the corresponding action field out of U is 
defined by the rule

It is straightforward to check that the map U ↦ U∗
p
 is a linear morphism whose ker-

nel is �p . This manner, any vector tangent to TpGp is said to be vertical, hence, such 
a space is named as the vertical space at p, being denoted by Vp . For each p ∈ M its 
orthogonal complement, denoted by Hp , is named horizontal space. A tangent vec-
tor X ∈ TpM can be uniquely decomposed as X = X + U∗

p
 , where X is horizontal and 

U ∈ �p.

G

•

G
�

M ×G

π

π′
M

M

(2)

(3)r ∙ (m, g) ∶= (m, rg),

(4)r ⋆ (m, g) ∶= (rm, rg).

U∗
p
=

d

dt

|||t=0e
tUp.
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To more feasible to understand the geometric properties of Cheeger deforma-
tions, next we shall define useful tensors associated with Cheeger deformations, 
see [25] for further clarifications. 

(1) The orbit tensor at p is the linear map P ∶ �p → �p defined by 

(2) For each t > 0 we define Pt ∶ �p → �p as 

(3) The metric tensor of gt , Ct ∶ TpM → TpM is defined as 

All the three tensors above are symmetric and positive definite. The next proposi-
tion shows how they are related to each other and to the original metric quantities.

Proposition 2.1 (Proposition 1.1 in [25]) The tensors above satisfy: 

(1) Pt =
(
P−1 + t1

)−1
= P(1 + tP)−1,

(2) If X = X + U∗ then Ct

(
X
)
= X +

(
(1 + tP)−1U

)∗.

It worth pointing it out that as first observed by Cheeger and playing a vital 
role in [16], the metric tensor C−1

t
 can be used to define a very informative repar-

ametrization of 2-planes to the computation of sectional curvature. Indeed, using 
this reparametrization we can observe that Cheeger deformations do not create 
‘new’ planes with zero sectional curvature, meaning that

Theorem  2.2 Let X = X + U∗, Y = Y + V∗ be tangent vectors. Then 
�t

(
X,Y

)
∶= Rgt

(
C−1
t
X,C−1

t
Y ,C−1

t
Y ,C−1

t
X
)
 satisfies

where zt is non-negative.

We refer to either [25, Proposition 1.3] or [6, Lemma 3.5] for the details on 
the proof and more references. Also, with the aim of concluding this section, 
next we recall a formula for the Ricci curvature of Cheeger deformed metric (see 
also [6, Lemma 2.6, p.7)]).

g(U∗,V∗) = Q(PU,V), ∀U∗,V∗ ∈ Vp

gt(U
∗,V∗) = Q(PtU,V), ∀U∗,V∗ ∈ Vp

gt

(
X,Y

)
= g

(
CtX,Y

)
, ∀X,Y ∈ TpM

(5)�t

�
X,Y

�
= �0

�
X,Y

�
+

t3

4
‖[PU,PV]‖2

Q
+ zt

�
X,Y

�
,
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2.1  Ricci curvature

Let {v1,… , vk} be a Q-orthonormal basis of eigenvectors of P ∶ �p → �p , with eigen-
values �1 ≤ ⋯ ≤ �k . Given a g-orthonormal basis {ek+1,… , en} for Hp , we fix the g
-orthonormal basis {e1,… , ek, ek+1,… , en} for TpM , where ei = �

−1∕2

i
v∗
i
 for i ≤ k.

The follow claim can be straightforwardly checked:

Claim 1 The set {C−1∕2
t ei}

n
i=1

 is a gt-orthonormal basis for TpM . Moreover, 
C
−1∕2
t ei = (1 + t�i)

1∕2ei for i ≤ k and C−1∕2
t ei = ei for i > k.

Define the horizontal Ricci curvature as

Lemma 1 For {e1, ..., en} as above,

Moreover,

In particular, if the action G is free and ḡ denotes the orbital distance metric in M/G 
it holds that

Proof A straightforward computation following Eq. (5) gives

Equations (7), (8) now follows by replacing X by CtX . Finally, Eq. (9) is derived 
from Lemma 4.2 in [6].   ◻

(6)Ric�
(
X
)
∶=

n∑

i=k+1

R
(
X, ei, ei,X

)
.

(7)

Ricgt

�
X
�
= Ric�

g

�
CtX

�
+

n�

i=1

zt

�
C
1∕2
t ei,CtX

�

+

k�

i=1

1

1 + t�i

�
�0(�

−1∕2

i
v∗
i
,CtX) +

�it

4
‖[vi, tP(1 + tP)−1X�]‖2Q

�
.

(8)Ricgt

�
X
�
= Ric�

g

�
CtX

�
+

k�

i=1

1

4
‖[vi,U]‖2

Q
+ lim

t→∞

n�

i=1

zt

�
CtX,C

1∕2
t ei

�
.

(9)lim
t→∞

Ricgt (X) = Ricg(d�X)

Ricgt

�
C−1
t
X
�
=

n�

i=1

Rgt

�
C
−1∕2
t ei,C

−1
t
X,C−1

t
X,C

−1∕2
t ei

�
=

n�

i=1

�t

�
C
1∕2
t ei,X

�

=

n�

i=1

�
0

�
C
1∕2
t ei,X

�
+

n�

i=1

zt

�
C
1∕2
t ei,X

�
+

t3

4

k�

i=1

‖[PC1∕2
t �

−1∕2

i
vi,PX�]‖2Q

= Ric�
g
(X) +

n�

i=1

zt(C
1∕2
t ei,X) +

k�

i=1

1

1 + t�i

�
�
0

(�
−1∕2

i
v∗
i
,X) +

�it
3

4

‖[vi,PX�]‖2Q
�
.
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We finish this section giving a characterization to the zt-term. This shall bring 
more clarity to the content of Lemma 3 ahead. See also [6, Lemma 3.5, p. 11].

Lemma 2 It holds that

where dwZ is defined as:

where Z∗ is the action vector associated to Z ∈ �.

Moreover, if q ∈ Mreg , X, Y ∈ Hq and U ∈ � , then

Therefore,

Proof We begin observing that Eqs. (13) and (14) follow from the definition of exte-
rior derivative of 1-forms:

To continue, let us make a small digression.

Claim 2 Let pr ∶ (M, g) → (M∕G, g) be a Riemannian submersion and let X, Y be 
horizontal vector fields. Then

Proof This follows from the fact that for any vector space with inner product:
If V is a vector space with inner product ⟨⋅, ⋅⟩ , then

(10)zt
(
X̄, Ȳ

)
= 3t max

Z ∈ �

|Z|Q = 1

{
dwZ

(
X̄, Ȳ

)
+

t

2
Q([PU,PV], Z)

}2

tg(Z∗, Z∗) + 1
,

(11)wZ ∶ TM → ℝ

(12)X ↦
1

2
g(X, Z∗),

(13)dwZ(U
∗,X) =

1

2
Xg(U∗, Z∗)

(14)dwZ(X, Y) = −
1

2
g([X, Y]V, Z∗) = −g(AXY , Z

∗).

(15)zt(X,Y) = 3t
||||
(1 + tP)−1∕2P∇�

X
Y − (1 + tP)−1∕2t

1

2
[PU,PV]

||||

2

Q

.

d�(X, Y) ∶= X�(Y) − Y�(X) − �([X, Y]).

|AXY|2g = max
Z∈�,|Z|=1

{
dwZ(X, Y)

2g(Z∗, Z∗)−1
}
.

⟨v, v⟩ = max
x∈V−{0}

⟨x, v⟩2⟨x, x⟩−1.
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Hence,

  ◻

Back to the proof, we now apply Claim 2 to the Riemannian submersion 
�� ∶ (M × G, g +

1

t
Q) → (M, gt) since zt(X,Y) is precisely 3|A��

L��C
−1
t X

L��C−1
t
Y|2

g+t−1Q
.

Denote by wt

Z
 , wZ and wZ the auxiliary 1-forms (see Eq.  12) associated to the 

actions defined in (M × G, g +
1

t
Q) , (M, g) , and to the action by left translation in 

(G, Q), respectively. Note that wt

Z
= wZ + t−1wZ.

On the one hand, L�′X , the horizontal lift of C−1
t
X with respect to 

�� ∶ M × G → M is given by

On the other hand dwZ(PU,PV) =
1

2
Q([PU,PV], Z) and

Finally, note that

once Q(Z, Z) = 1 . The proof is finished by applying Claim 2 to the metric g+ 1

t
Q . 

Equation (15) follows easily combining Eq. (10) with (13), (14).   ◻

3  Cheeger deformations on associated fiber bundles

In this section we shall use Cheeger deformations to produce deformed metrics on 
fiber bundles with compact structure groups. As we will describe in Sect. 4, such a 
deformation works as a canonical model from which any basic vertical metric defor-
mation on fiber bundles shall descend from.

Let F ↪ M
�
−→B be a fiber bundle from a manifold M, with fiber F and compact 

structure group G and base B. We start by recalling that the structure group of a fiber 
bundle is the group where some choice of transition functions on M takes values. 
Precisely, if G acts effectively on F, then G is a structure group for � if there is a 

|AXY|2g = max
Z∈�−{0}

{
g(AXY , Z

∗)2g(Z∗, Z∗)−1
}
,

= max
Z∈�,|Z|=1

{
dwZ(X, Y)

2g(Z∗, Z∗)−1
}
.

L��C
−1
t
X = (X,−tPU).

dw
t

Z
(L��C

−1
t
X,L��C

−1
t
Y) = dw

t

Z
((X,−tPU), (Y ,−tPV)),

= dwZ(X,Y) +
1

t
dwZ(−tPU,−tPV),

= dwZ(X,Y) +
t

2
Q([PU,PV], Z).

(g+
1

t
Q)(Z∗, Z∗) = g(Z∗, Z∗) +

1

t
Q(Z, Z) = g(Z∗, Z∗) +

1

t
=

1

t
(tg(Z∗, Z∗) + 1)
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choice of local trivializations {(Ui,�i ∶ �−1(Ui) → Ui × F)}  such that, for every i, j 
with Ui ∩ Uj ≠ � , there is a continuous function �ij ∶ Ui ∩ Uj → G satisfying

for all p ∈ Ui ∩ Uj.
The existence of {�ij} allows us to construct a principal G-bundle over B (see [14, 

Proposition 5.2] for details) that we shall denote by P . Furthermore, there exists a 
principal G-bundle � ∶ P × F → M whose principal action is given by

(For the details see the construction on the proof of [10, Proposition 2.7.1].)
For each pair g and gF of G-invariant metrics on P and F, respectively, there 

exists a metric h on M induced by � . Denote by M the set of all metrics obtained in 
this way (for instance, if the G-action on F is transitive, then every metric on M such 
that the holonomy acts by isometries on each fiber belongs to M ). The set M is the 
set of admissible metrics for our deformation:

Definition 1 (The deformation) Given h ∈ M , consider g+gF a product metric on 
P × F such that � ∶ (P × F, g + gF) → (M, h) is a Riemannian submersion. We 
define ht as the submersion metric induced by gt + gF , where gt is the time t Cheeger 
deformation associated with g.

As it can be seen, the deformation itself is well-defined for a broader class of 
metrics (for instance, P × F could have any metric such that each slice {p} × F has 
a G-invariant metric). However, if the metric is not a product metric, the deformed 
curvature is harder to control and Theorem 3.1 ahead does not hold.

3.1  Curvature formulae

With the aim of establishing the basic curvature formulae associated to the intro-
duced deformation, we proceed with the following discussion.

Fix (p, f ) ∈ P × F . Any X ∈ T(p,f )(P × F) can be written as X̄ =
(
X + V∨

,XF +W∗
)
 , 

where X is orthogonal to the G-orbit on P , XF is orthogonal to the G-orbit on F and, for 
V ,W ∈ � , V∨ and W∗ are the action vectors relative to the G-actions on P and F respec-
tively. Let P, PF and Pt be the orbit tensors associated to g, gF and gt , respectively. We 
claim that X is gt + gF-orthogonal to the G-orbit of (17) if and only if

for some W ∈ �f .
Indeed, a vector (X + V∨,XF +W∗) is horizontal if and only if, for every U ∈ �:

(16)�i◦�
−1
j
(p, f ) = (p,�ij(p)f ),

(17)r(p, f ) ∶= (rp, rf ).

(18)X = (X − (P−1
t
PFW)∨,XF +W∗).
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Since U is arbitrary, we conclude that V = −P−1
t
PFW.

Keeping in mind that the point (p, f) is fixed, we abuse notation and denote

Define the tensors P̃t, C̃t ∶ �f → �f ,

Claim 3 Let L� ∶ T�(p,f )M → T(p,f )(P × F) be the horizontal lift associated to � . 
Then,

Proof First observe that the right-hand-side of (22) is of the form (18): take 
W = P−1

F
P̃tU , so P−1

t
P̃tU = P−1

t
PFW . Therefore, it is sufficient to verify that

Since ker d�̄� = {(U∨,U∗) | U ∈ �} , convention (19) gives d�̄�(U∨, 0) = −U∗ , thus

since P̃t = (P−1
t

+ P−1
F
)−1 .   ◻

Next, we prove that the unreduced sectional curvature is nondecreasing for 
reparameterized planes (Theorem  3.1). For the reparametrization, extend C̃t to 
T�(p,f )M via

Mimicking M. Müter’s approach, we obtain a similar result to Theorem 2.2 defining 
�̃�t(X̃, Ỹ) = Rht

(C̃−1
t
X, C̃−1

t
Y , C̃−1

t
Y , C̃−1

t
X).

Theorem  3.1 (Sectional curvature) Let h ∈ M and gt + gF be as in Definition 1. 
Then, for every pair X̃ = X + XF + U∗ , Ỹ = Y + YF + V∗ ,

where �t is as in Theorem 2.2 and z̃t is non-negative.

0 =
(
gt+gF

)
((X + V∨,XF +W∗), (U∨,U∗)) = g(V∨,U∨) + gF(W

∗,U∗)

= Q(PtV + PFW,U).

(19)d�̄�(p,f )(X,XF + U∗) ∶= X + XF + U∗.

(20)P̃t ∶= PF(1 + P−1
t
PF)

−1 = (P−1
F

+ P−1
t
)−1,

(21)C̃t ∶= −CtP
−1
t
P̃t = −P−1P̃t.

(22)L𝜋(X + XF + U∗) = (X − (P−1
t
P̃tU)∨,XF + (P−1

F
P̃tU)∗).

d�̄�(X − (P−1
t
P̃tU)∨,XF + (P−1

F
P̃tU)∗) = X + XF + U∗.

d�̄�(X − (P−1
t
P̃tU)∨,XF + (P−1

F
P̃tU)∗) = X + XF + ((P−1

t
+ P−1

F
)P̃tU)∗ = X + XF + U∗

(23)C̃t(X + XF + U∗) ∶= X + XF + (C̃tU)∗.

�̃�t(X̃, Ỹ) = 𝜅t(X+U
∨, Y+V∨)+KgF

(XF − (P−1
F
PU)∗, YF − (P−1

F
PV)∗) + z̃t(X̃, Ỹ),
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Proof The proof follows from a direct use of Gray–O’Neill curvature formula and 
Claim 3. Observe that

Let z̃t be three times the norm squared of the integrability tensor of � applied to 
L𝜋C̃

−1
t
X̃,L𝜋C̃

−1
t
Ỹ  (see [10] for details). Then,

  ◻

Since the z̃t shall play some role in the next applications in this paper, we shall 
study it in more detail. We first claim that it isnon-decreasing with respect to t. 
This is a crucial observation since z̃0 is an essential part of the initial curvature: 
since �̄� ∶ (P × F, g × gF) → (M, h) is chosen to be a Riemannian submersion, z̃0 
is the A-tensor term on the submersion formula. Or, equivalently, taking t = 0 in 
Theorem 3.1,

It is even possible to furnish a precise description to z̃t . Indeed, although we choose 
to omit the proof, it can be proved exactly as in [6, Lemma 3.5, p. 11], or Lemma 2, 
that

Lemma 3 Let

where Z∗ is the action vector associated to Z ∈ � . Then it holds that

L𝜋(C̃
−1
t
X̃) = (C−1

t
(X + U∨),XF − (P−1

F
PU)∗).

Rht
(C̃−1

t
X, C̃−1

t
Y , C̃−1

t
Y , C̃−1

t
X) = Kgt

(C−1
t
(X + U∨),C−1

t
(Y + V∨))

+ KgF
(XF − (P−1

F
PU)∗, YF − (P−1

F
PV)∗) + z̃t(X̃, Ỹ)

= 𝜅t(X+U
∨
, Y+V∨)+KgF

(XF − (P−1
F
PU)∗, YF − (P−1

F
PV)∗) + z̃t(X̃, Ỹ).

Kh(X̃, Ỹ) = �̃�0(X̃, Ỹ)

= 𝜅0(X+U
∨, Y+V∨)+KgF

(XF − (P−1
F
PU)∗, YF − (P−1

F
PV)∗) + z̃0(X̃, Ỹ)

= Kg(X+U
∨, Y+V∨)+KgF

(XF − (P−1
F
PU)∗, YF − (P−1

F
PV)∗) + z̃0(X̃, Ỹ).

wt
Z
∶ TP → ℝ

X + U∨ ↦
1

2
gt(X + U∨, Z∨).

wZ ∶ TF → ℝ

XF + U∗ ↦
1

2
gF(XF + U∗, Z∗),

3−1z̃t(X̃, Ỹ) =

max
Z∈𝔤⧵{0}

{
dwt

Z
(X + C−1

t
U∨, Y + C−1

t
V∨) + dwZ(XF − (P−1

F
PU)∗, YF − (P−1

F
PV)∗)

}2

gt(Z
∨, Z∨) + gF(Z

∗, Z∗)
.
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3.2  Regularization via Cheeger deformations

Let (M, g) be a compact Riemannian manifold with an effective isometric action by 
a compact Lie group G. If gt denotes a one-parameter family of metrics obtained 
out from g via Cheeger deformations, we can check from the expression to 
Pt = P(1 + tP)−1 , see Eq. (1), that as t → ∞ the Riemannian metric gt degenerates.

Taking this observation in account, in [18] Searle, Solórzano and Wilhelm show 
that for any compact subset of the regular stratum of the G-action on M, re-scaling 
the fibers of the fiber bundle � ∶ (Mreg, gt) → Mreg∕G , with the same parameter t, a 
procedure known as Canonical Variation, implies that for any integer p ≥ 0 it holds 
the convergence of �gt ∶= tgt|V ⊕ g|H , in the Cp-topology, to a Riemannian metric 
with totally geodesic fibers, see [18, Theorem A].

It follows, in particular, that the class �Ω of principal bundles with connection 
metrics is invariant by Cheeger deformations. More interesting, any principal bun-
dle with an invariant submersion metric is attracted to �Ω by the means of Cheeger 
deformations.

In this section, we shall prove the analogous result to the class of Riemannian 
submersions on fiber bundles with compact structure group and total space.

Let (M, ht) → (B, gB) be a complete Riemannian fiber bundle where ht is induced 
via Definition 1. We prove that for any compact K ⊂ M and any non-negative inte-
ger p, the canonical deformation

where (H, ht|H) is isometric to (TB, gB) , converges to, in the Cp-topology, to a Rie-
mannian submersion metric with totally geodesic fibers on M → B and horizontal 
distribution isometric to H ≅ TB.

To begin with, let us explain a little bit further about the admissible metrics to the 
deformation since we have the restriction imposed by the class M (recall Definition 
1).

Suppose that we start with a Riemannian metric gB on B. Then let P be the prin-
cipal bundle obtained from M → B and let � ∶ TP → � be any connection there 
defined. If the structure group of M → B has a biinvariant metric Q, we impose the 
Kaluza–Klein (or connection) metric on P:

Assuming that G is compact one observes that it is always possible to assume that � 
is G-invariant. Therefore, any metric h obtained this way belongs to M for the invar-
iant metrics on P defined by Eq. (25). Theorem 3.2 shall show that every metric h in 
the class M is attracted by the subset of M of metrics obtained in this manner.

Let us first prove that the metric (24) shall approach a metric with totally geo-
desic fibers as t grows large. To do so, we first observe that the shape operator S̃X 
for any X ∈ H associated to h̃t coincides with the shape operator St

X
 of ht . Indeed, 

according to equation (2.1.7) in [10, Chapter 2, p. 47] the vertical component of the 

(24)h̃t(x) ∶= tht(x)|V + ht(x)|H, x ∈ K

(25)g ∶= gB + Q(�,�).
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covariant derivative ∇̃TX of a canonical variation remains unchanged provided if T 
is vertical and X is horizontal.

It then suffices to check that limt→∞ max|X|=1 |StX|t = 0 in K. To do so, observe 
that since the shape operator is symmetric with respect to the metric it is obtained 
from, it holds that

Finally, it can be directly checked from the Koszul formula that the right hand side 
on the above equation goes to 0 as t → ∞ : since

and C̃t = −P−1(P−1
F

+ P−1
t
)−1 , P−1

t
= P−1(1 + tP) it is clear that the only possible 

problematic term is Xh(C̃tV ,V) . However, applying the Leibiniz rule, one gets that

Once more, the Leibiniz rule and the notion of covariant derivative to tensors 
implies that it suffices to study ∇XC̃t . But since

we are done.   ◻

We prove that:

Theorem 3.2 Let � ∶ F ↪ M → B be a fiber bundle with compact total space and 
compact structure group G. Assume that h is a Riemannian submersion metric on 
M obtained via the submersion � ∶ (P × F, g + gF) → M , where P is the associ-
ated principal bundle to � and g, gF are, respectively, G-invariant metrics on P and 
F. Then for any integer p ≥ 0 , after an appropriate re-scaling the fibers of � , the 
metric deformation ht (Definition 1, Sect. 3), converges in the Cp-topology to a Rie-
mannian submersion metric with totally geodesic fibers.

Proof Although we could proceed similarly but independently to Searle–Solórzano–
Wilhelm’s result ([18, Theorem A]), we shall use it to both metrics g in P and gF in 
F.

Once more, Theorem A in [18] states that if the metric g̃t is a same parameter 
canonical variation of the Cheeger deformation of g , it follows that for any integer 
p ≥ 0 the metric g̃t converges, in the Cp topology, to a metric g∞ to which the fibers 

max
|X|h=1

|St
X
|ht = max

|X|h=|V|h=1
|h(−C̃t∇t

�

V
X,V)|.

h(−C̃t∇t
�

V
X,V) = Xh(C̃tV ,V) + h([X,V], C̃tV) + h([X,V], C̃tV)

Xh(C̃tV ,V) = h(∇XC̃tV ,V) + h(C̃tV ,∇XV).

∇XC̃t = −(P−2∇XP)(P
−1
F

+ P−1
t
)−1 + P−1∇X(P

−1
F

+ P−1
t
)−1,

∇X(P
−1
F

+ P−1
t
)−1 = −(P−1

F
+ P−1

t
)−2(∇XP

−1
F

− P−2
t
∇XPt),

∇XPt = ∇X(1 + tP) = t∇XP.
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of � are totally geodesic. It then suffices to check that a canonical variation of gt and 
of the t-Cheeger deformation of gF induces via � ∶ (P + F, gt + gF) → (M, ht) the 
metric h̃t.

To do so, observe that since according to Eq. (22)

one has

The tensor Pt is changed to tP(1 + tP)−1 under a canonical variation so the following 
changes hold

Moreover, the t-canonical variation of a t-Cheeger deformation of gF yields the 
change

Hence, making t → ∞ yields

On the other hand, since tC̃t → P−1 as t → ∞ and d�(U∨, 0) = −U∗ (recall Claim 3), 
the previous computation guarantees the result.   ◻

4  Revisiting some classical results: curvature of bi‑quotients 
and almost non‑negative curvatures

4.1  Bi‑quotients

Following [10, Chapter 2.6], let G be a Lie group with a left-invariant metric that 
is right-invariant under a subgroup H. Inspired by constructions of homogeneous 
spaces, consider the group manifold G × H which acts isometrically on G via

L𝜋(X + XF + U∗) = (X − (P−1
t
P̃tU)∨,XF + (P−1

F
P̃tU)∗)

ht
(
d𝜋L𝜋(X + XF + U∗), ⋅

)
= gt + gF

(
(X − (P−1

t
P̃tU)∨,XF + (P−1

F
P̃tU)∗), ⋅

)

= gt
(
X − (P−1

t
P̃tU)∨, ⋅

)
+ gF

(
XF + (P−1

F
P̃tU)∗, ⋅

)

= g(X, ⋅) + g(−Ct(P
−1
t
P̃tU)∨, ⋅) + gF

(
XF + (P−1

F
P̃tU)∗, ⋅

)
.

Ct = P−1Pt ↔ t(1 + tP)−1

P̃t =
(
P−1
F

+ P−1
t

)−1
↔

(
P−1
F

+ t−1P−1
t

)−1
.

PF ↔ tPF(1 + tPF)
−1

g

(
−
(
P−1

(
t−1P−1

F
(1 + tPF) + t−1P−1

t

)−1
U
)∨

, ⋅

)

+gF

((
t−1P−1

F
(1 + tPF)

(
t−1(1 + tPF)P

−1
F

+ t−1P−1
t

)−1
U
)∗

, ⋅

)

→
1

2

{
gF(U

∗, ⋅) − g
(
(P−1U)∨, ⋅

)}
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Since any subgroup K ≤ G × H acts via the same manner on G, if this K-action hap-
pens to be free then the the orbit space G//K is called a bi-quotient of G. Moreover, 
once the K action on G is via isometries, there is a metric on G//K that makes the 
quotient projection � ∶ G → G∕∕K to be a Riemannian submersion.

Observe that we can see G//K as the total space of a fiber bundle with trivial fiber, 
in the sense that the fiber F is a just point and the bundle projection is the identity 
map. This manner, we can derive the curvature formula to certain deformed metrics 
on bi-quotients from the previous section.

Indeed, note that if we consider G × K with the K-action defined by (4) then the 
projection �′ recovers G as the respective orbit space. Therefore, composing �′ with 
the projection � we obtain the corresponding projection � (recall Definition 1)

The purpose of the computations presented here is the one of showing how the cur-
vature formula on bi-quotients can be very simplified considering the deformation 
we have introduced in Sect. 3.

Indeed, a simple use of Theorem  3.1 implies that the sectional curvature of 
M ∶= G∕∕H can be read from � via the curvature of P = G since F = {e}, the iden-
tity in K. Namely,

Theorem 4.1 Let Q be a bi-invariant metric on K = G × H and g be a left invariant 
metric on G which is right-invariant by the elements of the form {e} × H . If gt is the 
metric on G//K induced by � ∶ (G × K, g + t−1Q) → (G∕∕K, ht) , the sectional cur-
vature of ht satisfies

where X̃ = X + XF + U∗ , Ỹ = Y + YF + V∗ and z̃t is computed in Lemma 3.

We proceed developing the formulae to the Ricci curvature of the metric defor-
mation given in Definition 1, presented in Sect. 3. Further applications on bi-quo-
tients shall be also obtained next.

4.2  Almost non‑negative curvatures and positive Ricci curvature

Since we are relying on the horizontal lift L�  defined by (22) to compute curvatures, 
in order to study the Ricci curvature of ht we begin by constructing an appropriate 
basis for the horizontal space of � with respect to gt + gF.

Consider a Q-orthonormal basis {vk(0)} of �f  and define

(26)(g, h) ⋅ a ∶= gah−1.

K G×K × {e} π′

π

G
π

G//K (27)

(28)𝜅ht

(
X̃, Ỹ

)
= 𝜅gt

(
X+U∨, Y+V∨

)
+�zt

(
X̃, Ỹ

)

vk(t) = P̃
−1∕2
t vk(0).
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Lemma 4 The set

is gt + gF-orthonormal and gt + gF orthogonal to (U∨,U∗) , for every U ∈ �.

Proof Note that the elements in (29) are of the form (22). Thus, it is sufficient to 
show that the set (29) is orthonormal. A straightforward computation gives:

where we have used that (P−1
t

+ P−1
F
) = P̃−1

t
 and that P̃t is symmetric.   ◻

Let {eB
i
} and {eF

j
} be orthonormal bases for the spaces normal to the orbits on P 

and on F, respectively. We complete the set on Lemma 4 to a gt + gF-othornormal 
basis for the �̄�-horizontal space:

Denote by e1,… , en the elements in Bt.

Lemma 5 For any (p, f ) ∈ P × F and X + XF + U∗ ∈ T�̄�(p,f )M,

Proof Using the basis Bt , from (30), and Theorem 3.1, we have:

On the other hand, the P̃t satisfies:

(29){(−P−1
t
P̃tvk(t)

∨
,P−1

F
P̃tvk(t)

∗
)} = {(−P−1

t
P̃
1∕2
t vk(0)

∨,P−1
F
P̃
1∕2
t vk(0)

∗)}

(
gt + gF

)((
−P−1

t
P̃tvi(t)

∨,P−1
F
P̃tvi(t)

∗
)
,
(
−P−1

t
P̃tvj(t)

∨,P−1
F
P̃tvj(t)

∗
))

= Q
(
P̃tvi(t),P

−1
t
P̃tvj(t)

)
+ Q

(
P̃tvi(t),P

−1
F
P̃tvj(t)

)

= Q
(
P̃tvi(t),

(
P−1
t

+ P−1
F

)
P̃tvj(t)

)

= Q
(
P̃tvi(t), vj(t)

)
= Q

(
P̃
1∕2
t vi(0), P̃

−1∕2
t vj(0)

)
= 𝛿ij,

(30)Bt ∶=
{(

eB
i
, 0
)
,

(
−P−1

t
P̃
1∕2
t vk(0)

∨
,P−1

F
P̃
1∕2
t vk(0)

∗
)
,

(
0, eF

j

)}
.

(31)lim
t→∞

Richt (X + XF + U∗) ≥ Ric�
g
(X) + Ric�

gF
(XF) +

�

k

1

4
‖[vk(0),U]‖2

Q
.

Richt (X̃) =

n∑

i=1

𝜅t(C̃tX̃, C̃tei)

≥
∑

i

𝜅t(X − (CtP
−1
t
P̃tU)∨, eB

i
) +

∑

k

𝜅t(X − (CtP
−1
t
P̃tU)∨,−CtP

−1
t
P̃
1∕2
t vk(0)

∨)

+
∑

j

KgF
(XF + (P−1

F
P̃tU)∗, eF

j
) +

∑

k

KgF
(XF + (P−1

F
P̃tU)∗,P−1

F
P̃
1∕2
t vk(0)

∗).

(32)lim
t→∞

tP̃t = 1,

(33)lim
t→∞

P−1
t
P̃t = 1.
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In particular, P̃t → 0 as t → ∞ . Equation (32) follows since tP̃t = PF(Pt + PF)
−1tPt , 

Pt → 0 and tPt → 1 . Equation (33) follows since

Using (32), we observe that

Moreover, using Eq. (5) and that CtP
−1
t

= P−1,

For the remaining term:

Using (32) and (33), we obtain

Lemma 5 follows by putting together (34), (35) and (36).   ◻

The following needed lemmas can be readily obtained via straightforward com-
putations, therefore, we chose to not include their proofs.

Lemma 6 It holds that

Moreover, if the orbits on P are totally geodesic then

Lemma 7 If {ei} denotes the set of elements in the basis Bt (see Eq. 30) and the G 
orbits on P are totally geodesic then for any X̃ = X + XF + U∗ it holds that

lim
t→∞

P−1
t
P̃t = lim

t→∞
(tPt)

−1 lim
t→∞

tP̃t = 1.

(34)

lim
t→∞

{
∑

j

KgF

(
XF + (P−1

F
P̃tU)∗, eF

j

)
+
∑

k

KgF
(XF + (P−1

F
P̃tU)∗,P−1

F
P̃
1∕2
t vk(0)

∗)

}

= Ric�
gF
(XF).

(35)lim
t→∞

∑

i

𝜅t(X − (CtP
−1
t
P̃tU)∨, ei) ≥ lim

t→∞
Ric�

g
(X − (P−1P̃tU)∨) = Ric�

g
(X).

𝜅t(CtX − (CtP
−1
t
P̃tU)∨,−CtP

−1
t
P̃
1∕2
t vk(0)

∨)

≥ Kg(X − (P−1P̃tU)∨,−P−1P̃
1∕2
t vk(0)

∨) +
t3

4
‖[P̃tU, P̃

1∕2
t vk(0)]‖2Q

(36)lim
t→∞

𝜅t(CtX − (CtP
−1
t
P̃tU)∨,−CtP

−1
t
P̃
1∕2
t vk(0)

∨) ≥
1

4
‖[vk(0),U]‖2

Q
.

(37)

lim
t→∞

z̃t(C̃tX̃, C̃tỸ) = 3 max
Z∈𝔤⧵{0}

limt→∞

{
dwt

Z
(X − U∨, Y − V∨) + dwZ(XF, YF)

}2

gF(Z
∗,Z∗)

.

(38)lim
t→∞

dwt
Z
(X − U∨, Y)2 = g(AXU, Z)2.

(39)lim
t→∞

∑

i

z̃t(C̃td𝜋ei, C̃tX̃) = 3
∑

i=1

|A𝜋
X
eB
i
|2
g
+ 3

∑

j=1

|A𝜋F
XF
eF
j
|2
gF
.
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Therefore,

We now recover the results of Schwachhöfer and Tuschmann ([19]) relating 
the geometry and the topology of bi-quotients. The method applied provides a 
huge simplification over their work. We re-inforce, however, that the possibil-
ity of a simplification was already expected, as observed Wilking and Ziller, see 
[25]. More precisely, it is always possible by the means of a Cheeger deforma-
tion to prove the existence of metrics of almost non-negative sectional curvature 
on cohomogeneity one manifolds: the idea consists of putting metrics on non-
negative sectional curvature near the singular orbits (recall for instance that these 
are homogeneous disk-bundles ([11])) and extend these arbitrarily in the middle. 
Then it can be shown that all curvatures in the middle go to 0.

In what follows the method is very different, but it relies in the same spirit: 
Cheeger deformations tend to shrink the curvature along the orbits. More impor-
tantly, they also work as a regularization process: the metrics naturally converge 
to a metric with totally geodesic fibers. This phenomenon is manifested here in 
the form that the Ricci curvature of a bi-quotient is completely determined by the 
Ricci curvature of the upstairs Lie group with a bi-invariant metric.

Theorem  4.2 (Schwachhöfer–Tuschmann) A bi-quotient G//K of a compact con-
nected Lie group G carries a metric of positive Ricci curvature if, and only if, its 
fundamental group is finite.

Proof Recall that according to Sect. 4.1, G//K can be seen as the total space with 
trivial fiber F = {e} and structure group K. Since the tangent space to the ‘manifold 
point’ {e} is only the zero vector it follows that Ric�

gF
≡ 0 . Moreover, denote by 

� ∶ K ↪ G → G∕∕K the Riemannian submersion obtained from the principal bun-
dle with total space P = G . According to Lemma 7, if g denotes the submersion 
metric induced by � from g one gets

where the last equality comes from the fact that the horizontal space associated to 
the action of K in F = {e} is only the zero vector, i.e, XF = 0 . Now the proof is fin-
ished by noticing that if |𝜋1(G∕∕K)| < ∞ then the same holds for G.

Therefore, since

(40)

lim
t→∞

Richt (X + XF + U∗) = Ricḡ(d𝜋X) + Ric�(XF) + 3
�

j=1

�A𝜋F
XF
eF
j
�2
gF

+
�

k

1

4
‖[vk(0),U]‖2

Q
.

lim
t→∞

Richt (X + XF + U∗) = Ricḡ(d𝜋X) + 3
�

j=1

�A𝜋F
XF
eF
j
�2
gF
+

1

4

�

k

‖[vk(0),U]‖2
Q

= Ricḡ(d𝜋X) +
1

4

�

k

‖[vk(0),U]‖2
Q
,
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where {e1,… , edimG∕∕K} is an orthonormal basis to the horizontal space of the 
K-action on G, associated to the submersion � , if Q is any bi-invariant metric on G 
it holds that

where � is the Lie algebra of K. Hence,

and so limt→∞ Richt (X + XF + U∗) > 0 since G has finite fundamental the sums of 
the three kind of brackets cannot vanish simultaneously.   ◻

We finish providing a result about almost non-negative sectional curvature and 
positive Ricci curvature, simultaneously, to biquotients. This shall be done tak-
ing advantage of the following similar result to [7, Theorem 0.18], which has a 
very simple proof. Once more, this proof was already known to be possible by B. 
Wilking and W. Ziller in the context of principal fiber bundles. Here we extent it 
naturally to general fiber bundles with compact structure group.

Theorem  4.3 (Fukaya–Yamaguchi type result) Let F ↪ M → B be a bundle with 
compact structure group G, fiber F and base B. Assume that M is an associate bun-
dle to � ∶ (P, g) → B such that: 

(1) Kg ≥ 0;
(2) F has a G-invariant metric gF of non-negative sectional curvature.

Then M admits a sequence of Riemannian metrics {gn} such that secgn ≥ −
1

n
, 

diam (M, gn) ≤
1

n
.

Definition 2 A compact manifold M with a family of metrics (gn) as on the thesis of 
Theorem 4.3 is said to admit almost non-negative sectional curvature.

Ricḡ(d𝜋X) = Ric�(X) + 3

dimG∕∕K∑

i=1

|A𝜋
X
ei|2,

Ricḡ(d𝜋X) = Ric�(X) + 3

dimG∕∕K�

i=1

�A𝜋
X
ei�2,

=

dimG∕∕K�

i=1

‖[X, ei]‖2Q +
3

4

dimG∕∕K�

i=1

‖[X, ei]�‖2Q,

lim
t→∞

Richt (X + XF + U∗) =

dimG∕∕K�

i=1

‖[X, ei]�‖2Q +
7

4

dimG∕∕K�

i=1

‖[X, ei]�‖2Q

+
1

4

�

k

‖[vk(0),U]‖2
Q
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Theorem 4.3 is a straightforward consequence of the following lemma.

Lemma 8 Let F ↪ M → B and � ∶ P → B as on the hypotheses of Theo-
rem  4.3. Then for each 𝜖 > 0 there exists t𝜖 > 0 such that for every t > t𝜖 , 
�̃�t(�X, �Y) ≥ −𝜖, |�X| = |�Y| = 1.

Proof Assume by contradiction that there is 𝜖 > 0 , a sequence {tn} ↗ +∞ and a 
sequence of planes {X̃n, Ỹn} with |X̃n| = |Ỹn| = 1 satisfying

By compactness, passing to a subsequence if necessary one extracts a limit plane 
{X̃, Ỹ} such that

Theorem 2.2 then implies that

and hence, limn→∞[Un,Vn] = 0 . Therefore,

  ◻

We thus conclude:

Theorem 4.4 (Schwachhöfer–Tuschmann) Any bi-quotient G//K from a compact Lie 
group G admits a metric with positive Ricci curvature and almost non-negative sec-
tional curvature simultaneously if, and only if, G//K has finite fundamental group.

Remark 1 Since P is a principal bundle, we could try to impose more rigid hypoth-
eses to produce a metric of non-negative sectional curvature, but this is not possible 
only via the above method. Indeed, even assuming that G = S3, SO(3) and that gF 
and g have positive sectional curvature we would have that

for planes X = 0,U = 0,V = 0, YF = 0. In this case,

so we get no contradiction for any 𝜖 > 0.

(41)�̃�n

(
�Xn,

�Yn

)
≤ −𝜖.

−� ≥ lim
n→∞

{
�n
(
Xn+U

∨
n
, Yn+V

∨
n

)
+KgF

(
(XF)n − (P−1

F
PUn)

∗, (YF)n − (P−1
F
PVn)

∗
)}

.

(42)
−� ≥ lim

n→∞
�n
(
Xn+U

∨
n
, Yn+V

∨
n

)
≥ lim

n→∞

{
�0(Xn + U∨

n
, Yn + V∨

n
+ n3|[Un,Vn]|2Q

}
.

(43)−� ≥ �0
(
X + U∨, Y+V∨

)
+KgF

(
XF − (P−1

F
PU)∗, YF − (P−1

F
PV)∗

)
≥ 0.

�0
(
X, Y+V∨

)
+KgF

(
XF, YF − (P−1

F
PV)∗

)
= 0

X̃ = XF, Ỹ = Y ,
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A compact manifold with a family of metrics as in the Definition 2 with sec 
changed to Ric is a manifold with almost non-negative Ricci curvature. As a last 
result in this section we prove:

Theorem 4.5 Let F ↪ M → B be a fiber bundle with compact structure group G and 
total space M. Also assume that F carries a metric gF of non-negative Ricci curva-
ture and B carries a metric g� with Ric(g�) ≥ −�2 . Then M carries a metric h� with 
Ric(h�) ≥ −�2.

Proof Let h� be the connection Riemannian metric on M. That is, it has totally geo-
desic fibers and make (M, h) → (B, g�) to be a Riemannian submersion. Considering 
the h�

t
 deformation given by Definition 1 we see that for large t it holds that, accord-

ing to Lemma 7, the limit behavior of Ric(h�
t
) is

  ◻

5  Some comments on the Petersen–Wilhelm fiber dimension 
conjecture

Related to the Petersen–Wilhelm conjecture, assume that S3, SO(3) ↪ P → B 
is a principal bundle with positive sectional curvature. It is then conjectured that 
dimB > 3 . We conjecture further:

Conjecture 5.1 (Principal bundle Strong Petersen–Wilhelm conjecture) Any 
S3, SO(3) principal bundle over a positively curved manifold admits a metric with 
positive sectional curvature if, and only if, such a submersion is fat.

Assume for instance the validity of Conjecture 5.1 and take a fat principal bundle 
S3, SO(3) ↪ P → B . Regard it with a metric of positive sectional curvature. Now 
let (F, gF) be a Riemannian manifold with a S3, SO(3) isometric action. Assume that 
gF has positive sectional curvature. Then Theorem  3.1 implies that the h1 metric 
deformation (Definition 1) has non-negative sectional curvature. More importantly, 
Remark 1 implies that the existence of flat planes is intrinsic in the sense it only 
depends on the G = S3, SO(3) actions on both P and F.

Now recall that if F = S2 and P → B is the SO(3) principal bundle associated 
to it, then � ∶ S2 ↪ M → B is fat if, and only if, � ∶ SO(3) ↪ P → B is fat ([26, 
Proposition 2.22, p.16]). This implies that dimB ≥ 4 and hence, Petersen–Wilhelm 
conjecture is verified in this case. More drastically, the existence of a metric of non-
negative sectional curvature on M already verifies the conjecture.

That all said and also taking in account the results in [17], we are tempted to con-
jecture the following:

(44)Ricḡ(d𝜋X) + Ric�(XF) + 3
�

j=1

�A𝜋F
XF
eF
j
�2
gF
+
�

k

1

4
‖[vk(0),U]‖2

Q
≥ −𝜖2.
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Conjecture 5.2 Let � ∶ F ↪ M → B a fiber bundle with structure group S3 or SO(3) 
over a positively curved manifold B. If the principal bundle � ∶ S3, SO(3) ↪ P → B 
associated to it is fat and � has a metric of positive vertizontal curvature then � is 
fat.

Let us verify that this is precisely the case to S2-fat bundles, therefore agreeing 
with our conjecture. More precisely, let us show that h1 has positive vertizontal 
curvature.

Observe that the vertical space associated to � consists of vectors tangent to 
F = S2 . Since the SO(3) action on S2 is transitive and S2 can be identified with 
the homogeneous space SO(3)/SO(2) then for the fixed origin o ∈ F we have 
T0F ≅ �o(3)⊖ �o(2) , meaning that ToF is isomorphic to the complement of �o(2) 
in �o(3) . Fixing an Ad-invariant inner product in �o(3) such a complement can be 
chosen to be orthogonal.

Finally, the horizontal space on P at any p ∈ P is isomorphic to the tangent 
space T�(p)B and it is also isomorphic to the horizontal space orthogonal to ToF with 
respect to h1 . That is,

Therefore, any vertizontal plane tangent to M is of the form U∗ ∧ X for 
U ∈ �o(3)⊖ �o(2) and X ∈ (𝔰o(3))⟂g . Therefore Theorem 3.1 implies that

Since the SO(3) action on P is free we have concluded the result.   ◻
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