
Vol:.(1234567890)

São Paulo Journal of Mathematical Sciences (2023) 17:36–54
https://doi.org/10.1007/s40863-022-00317-9

1 3

SPECIAL ISSUE IN HONOR OF RAFAEL H. VILLARREAL 
ON THE OCCASION OF HIS 70TH BIRTHDAY

Polytope volume in Normaliz

Winfried Bruns1 

Accepted: 6 July 2022 / Published online: 25 July 2022 
© The Author(s) 2022

Abstract
We survey the computation of polytope volumes by the algorithms of Normaliz to 
which the Lawrence algorithm has recently been added. It has enabled us to master 
volume computations for polytopes from social choice in dimension 119. This chal-
lenge required a sophisticated implementation of the Lawrence algorithm.
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1  Introduction

About 20 years ago Amelia Taylor asked the author whether Normaliz [10] could 
compute polytope volumes. It was easy to include this computation goal into the 
triangulation based “primal algorithm”. Since then, polytope volumes have played 
an important role in the development of Normaliz, and in recent years specific algo-
rithms have been added.

Polytope volumes can be interpreted as degrees of projective toric varieties and 
multiplicities of monomial algebras. In 2011, Bogdan Ichim pointed out their appli-
cations in social choice. Since then they have been a driving challenge for the vol-
ume algorithms in Normaliz whose history we sketch briefly. Before going on, let us 
emphasize that Normaliz computes lattice normalized volumes that for rational pol-
ytopes are rational numbers. Euclidean volumes, if asked for by the user, are derived 
from them.
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In social choice, polytope volumes are interpreted as probabilities of certain 
paradoxa and quality measures of voting schemes. See the books by Gehrlein and 
Lepelley [16, 17]. These applications become rapidly very difficult since the rel-
evant polytopes explode in dimension: for n candidates they are cross-sections of 
cones of dimension n!. In their paper [19, p. 382] of 2008 Lepelley, Louichi and 
Smaoui state:

Consequently, it is not possible to analyze four candidate elections, where 
the total number of variables (possible preference rankings) is 24. We hope 
that further developments of these algorithms will enable the overcoming of 
this difficulty.

With the efficient parallelization of Normaliz in 2012 and the addition of Schüür-
mann’s symmetrization method [23], Normaliz could compute a wide variety of 
social choice polytopes for 4 candidates; see Bruns et al. [9].

When the limitations of the available algorithms became visible in 2017, the 
author implemented an algorithm for polytope volumes by descent in the face 
lattice. It is implicitly based on a reverse lexicographic triangulation of the poly-
tope, but does not compute the triangulation explicitly. It brought a significant 
improvement in computation times for polytopes defined by inequalities, and 
made more computations for elections with 4 candidates possible, as shown in 
Bruns and Ichim [6].

But the case n = 5 , n! = 120 , remained elusive. The breakthrough came with 
the Normaliz implementation of Lawrence’s algorithm [18]. It is based on a dual-
ity between “generic” triangulations of the dual cone and signed decompositions 
of the “primal” polytope into simplices. In principle, signed decompositions are 
as good as ordinary ones for volume computation, but they present hard numeri-
cal problems. The rational arithmetic of Normaliz can cope with them, but it must 
pay by computation time. The applications to 5 candidates elections have been 
documented by Bruns and Ichim [7]. They would have been unreachable without 
the sophisticated implementation that we explain in Sect. 4.

Simultaneously with the Lawrence algorithm, we introduced a refinement of 
the descent algorithm that identifies isomorphic faces in the descent. Isomor-
phism classes, as explained in [4], are computed by McKay and Piperno’s pack-
age nauty [21]. Even for nauty, isomorphism classes are expensive, but they help 
in the volume computation of some classical polytopes.

Section  2 gives a very brief introduction to the terminology of this note. It 
explains basic results that are used in the computation of lattice normalized vol-
ume. Section 3 contains an overview of the volume algorithms and explains them, 
in particular Lawrence’s algorithm. The final Sect.  5 lists computation times, 
with emphasis on the new algorithms, signed decomposition and descent with the 
exploitation of isomorphism types. They are not only applied to polytopes from 
social choice, but also to classical polytopes, for example cubes, Birkhoff poly-
topes and linear ordering polytopes.

The package vinci [12] contains algorithms for polytope volumes. See [6] for 
a comparative study of computation times and memory usages. Because of its 
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floating point arithmetic, vinci is often faster than Normaliz, but its results come 
without an error bound. Because of the extreme numerical difficulty, its imple-
mentation of the Lawrence algorithm fails reliable results already for polytopes 
coming from 4 candidates elections; see Remark 6.

This note is dedicated to my friends Wolmer Vasconcelos and Rafael Villarreal. 
Their constant support has been very encouraging in the 25 years of the Normaliz 
project. One of the first third party publications citing Normaliz is their paper [14] 
with Delfino, Taylor and Weininger. The example collection of Normaliz still con-
tains input files supplied by Rafael a quarter of a century ago, and his book [24] 
documents numerous applications.

2 � Preliminaries

We refer the reader to [5] for discrete convex geometry. Here we content ourselves to 
a very brief overview.

2.1 � Cones and polytopes

A cone C in the real space ℝn is the intersection of finitely many linear halfspaces:

and for each i the halfspace H+
i
 is the set {x ∈ ℝn ∶ �i(x) ≥ 0} for a linear form �i 

in the dual space (ℝn)∗ . By the theorem of Minkowski–Weyl, one can equivalently 
describe cones as the conical set generated by finitely many vectors vj ∈ ℝn,

Since we want to deal only with polytopes and cones derived from them, we can 
restrict our cones to a subclass: C is a pointed cone: if −x ∈ C for x ∈ C , then x = 0 . 
If C is pointed, then the elements in a minimal set of generators as in (2.2) are 
uniquely determined up to positive scalars, and the sets ℝ+vi are the extreme rays of 
C.

The cone C is rational if the vectors vi can be chosen in ℚn , and therefore in ℤn . 
Then each extreme ray contains exactly one primitive integral vector, namely one 
with coprime coordinates. It is called an extreme integral generator.

The dimension of C is the dimension of the vector subspace ℝ+C . If dimC < n , 
then the halfspaces H+

i
 in (2.1) are not uniquely determined, but the halfspaces 

H+
i
∩ℝC of ℝC in an irredundant representation C =

⋂
i(H

+
i
∩ℝC) are. They inter-

sect C in its facets. More generally, a face of C is the intersection of C with a hyper-
plane that has C inside one of the two closed halfspaces it defines. A face of C is 
again a cone.

In Sects. 3.5 and 4 the dual cone C∗ will play a central role. Its definition does not 
only depend on the intrinsic structure of C, but also on the ambient space. Therefore 

(2.1)C =

s⋂

i=1

H+
i
,

(2.2)C = {q1v1 +⋯ + qnvm ∶ q1,… , qm ≥ 0}.
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we will then assume that C is a full dimensional pointed cone: dimC = n . Conse-
quently the halfspaces H+

i
 in an irredundant representation (2.1) are uniquely deter-

mined, and there is a unique primitive choice for �i . These linear forms �i are called 
the support forms of C. In this note the hyperplanes Hi are the support hyperplanes 
of C. The dual cone

is full dimensional and pointed as well. Under the natural identification ℝn = (ℝn)∗∗ 
the bidual cone C∗∗ is identified with C: the extreme rays of C∗ are the linear forms 
defining the facets of C, and vice versa. In the rational case the extreme integral gen-
erators of C∗ are the support forms of C, and vice versa.

A polytope P is the convex hull of finitely many points in a real space ℝn . Our 
polytopes will be rational: such polytopes have vertices in ℚn . Computationally, pol-
ytopes are treated as compact intersections of pointed cones and hyperplanes. The 
hyperplane is defined by a linear form with integral coefficients, called degree, such 
that

The intersection P is compact (and nonempty) if and only if C ≠ 0 and deg x > 0 for 
x ∈ C , x ≠ 0 . This is not a restriction of generality: if P ⊂ ℝn is not given as in (2.3), 
then we can easily re-embed it suitably: we identify P with P� = P × {1} ⊂ ℝn+1 , 
and choose C = ℝ+P

�.

2.2 � Lattice normalized volume

Normaliz computes lattice normalized volume. We review this notion with empha-
sis of its computation. The reader can find more details in [6, Sect. 3]. Let P ⊂ ℝn 
be a rational polytope. The affine hull A = affP is a rational affine subspace of ℝn . 
First assume that 0 ∈ A . Then L = (affP) ∩ ℤn is a subgroup of ℤn of rank d = dimP 
(and ℤn∕L is torsionfree). Choose a ℤ-basis v1,… , vd of L. The lattice (normalized) 
volume Vol on A is the Lebesgue measure on A scaled in such a way that the sim-
plex conv(0, v1,… , vd) has measure 1. The definition is independent of the choice of 
v1,… , vd since all invertible d × d matrices over ℤ have determinant ±1 . If 0 ∉ A , 
then we replace A by a translate A0 = A − w , w ∈ A , and set VolX = Vol(X − w) 
for X ⊂ A . This definition is independent of the choice of w since Vol is translation 
invariant on A0 . Note that the polytope containing a single point x ∈ ℚn has lattice 
volume 1. If desired, the definition of lattice volume can be extended to arbitrary 
measurable subsets of A, and Normaliz does it for algebraic polytopes.

If P is a lattice polytope, i.e., a polytope with vertices in ℤn , then VolP is an inte-
ger. For an arbitrary rational polytope we have VolP ∈ ℚ . As a consequence, VolP 
can be computed precisely by rational arithmetic. This is not true for Euclidean vol-
ume in general: the diagonal of the unit square has length 

√
2.

A second invariant we need is the lattice height of a rational point x over a 
rational subspace H ≠ ∅ . More generally, one can consider points x such that 

C∗ = {� ∈ (ℝn)∗ ∶ �(x) ≥ 0 for all x ∈ C}

(2.3)P = {x ∈ C ∶ deg x = 1}.
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aff(H, x) is again rational; for example, this is the case if H is a hyperplane in ℝn . 
If x ∈ H , we set HtH(x) = 0 . Otherwise let A = aff(H, x) so that H is a hyperplane 
in A.

Assume first that 0 ∈ H . Then H is cut out from A by an equation �(y) = 0 with 
a primitive ℤ-linear form � on L = A ∩ ℤn . With this choice of � , HtH(x) = |�(x)| 
is called the lattice height of x over H. (There are exactly two choices for � , differ-
ing by the factor −1 .) If 0 ∉ H , then we choose an auxiliary point v ∈ H , replace 
H by H − v , A by A − v and x by x − v . In the algorithms we will only have to deal 
with the case 0 ∈ H . If P is a rational polytope and F is a facet or, more generally, 
a face of P, then we set HtF(x) = HtH(x) where H = affF.

The following proposition relates lattice volume and lattice height.

Proposition 1  Let P be a rational polytope and v ∈ P a vertex of P such that there is 
a single facet F of P with v ∉ F . Then

This is part of [6, Prop. 1], to which we refer for the proof. The next basic 
result tells us how to compute the volume of a simplex, which is a polytope of 
dimension d with d + 1 vertices.

Proposition 2  Let S ⊂ ℝn be a rational simplex with vertices v0,… , vd . Choose a 
basis u1,… , ud of the lattice aff(S − v0) ∩ ℤn . Define the d × d matrix T = (tij) by the 
representations vi − v0 =

∑d

j=1
tijuj , i = 1,… , d . Then

This follows immediately from the transformation formula of Lebesgue meas-
ure. See [5, 2.C] for an algebraic proof.

As mentioned already, we present rational polytopes P in the form P = C ∩ H 
where C is a pointed cone and H is defined by the condition deg x = 1 with a ℤ
-linear form deg . This brings a second polytope into play, namely P = conv(0,P) 
as in Fig. 1.

All algorithms of Normaliz compute VolP , and then derive VolP from it:

Proposition 3  With the notation introduced, let L = ℝC ∩ ℤn and deg |L = k deg� 
with a primitive linear form deg′ on L and k > 0 . Then

VolP = HtF(v)VolF.

VolS = | detT|.

VolP = kVolP.

Fig. 1   P and P
P

P
deg= 1
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Proof  Let F = P be the unique facet of P opposite to 0. We can use deg′ to meas-
ure lattice height over F. Since deg� x = (1∕k) deg x = 1∕k for x ∈ F , one has 
HtH(0) = 1∕k , and the claim follows from Proposition 1. 	�  ◻

The number k in Proposition 3 is called the grading denominator in Normaliz. 
The reason is that deg� = deg ∕k is considered as the “true” grading on the cone C. 
The user can choose between the given grading deg or the divided one, deg′.

As our final tool we formulate a homogeneous version of Proposition 2:

Proposition 4  Let the simplex S be given in the form S = C ∩ H where H is the 
hyperplane of degree 1 points and C = ℝ+S . Let v1,… , vd , d = dim S + 1 , be 
nonzero points in the d extreme rays of C, for example the extreme integral genera-
tors. Then

where T = (tij) is the d × d matrix with vi =
∑

j tijuj for a basis u1,… , ud of the lat-
tice L = ℤn ∩ℝS.

This follows immediately from Proposition  2 if we set v0 = 0 , observing that 
v1∕g1,… , vd∕gd are the remaining vertices of S.

3 � Volume algorithms in Normaliz

There are three basic algorithms: 

(1)	 the primal volume algorithm: Normaliz computes a lexicographic triangulation, 
and finds the volume as the sum of the volumes of the simplices in the triangula-
tion;

(2)	 volume by descent in the face lattice: there is a reverse lexicographic triangula-
tion in the background, but it is not computed explicitly;

(3)	 volume by signed decomposition, the Lawrence algorithm: Normaliz computes 
a triangulation of the dual cone and converts it into a signed decomposition of 
the polytope.

Normaliz also computes the exact volume of full dimensional polytopes defined 
over real algebraic number fields. For them only (1) is implemented at present. One 
could extend (3) to them, whereas (2) is not suitable. The algorithms (1) and (3) are 
also used in the computations of integrals of rational polynomials over polytopes.

By rule of thumb one can say that the best choice is 

(1)	 if the polytope has few vertices, but potentially many facets;

VolS =
1

g1 … gd
| detT|, gi = deg vi, i = 1,… , d,
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(2)	 if the number of vertices and the number of facets are of the same order of mag-
nitude;

(3)	 if there are very few facets and many vertices.

This recommendation will be confirmed by the computational data in Sect. 5. There 
are variants: 

(a)	 exploitation of isomorphism types of faces in the descent algorithm;
(b)	 symmetrization as explained below.

Normaliz checks the default conditions of the algorithms in the order

If the default conditions are not satisfied for any of them, the primal triangulation 
algorithm is used. These decisions must often be made on the basis of partial infor-
mation. Therefore it can be useful to choose a certain variant explicitly or to exclude 
others. The exploitation of isomorphism types must always be asked for by the user.

Normaliz uses OpenMP for parallelization. Unless the user insists on computa-
tions with GMP integers, Normaliz tries 64 bit arithmetic first, and restarts the com-
putation with GMP integers if it recognizes an overflow.

3.1 � The primal volume algorithm

Mathematically there is not much to say: if a polytope P is decomposed into sim-
plices with non-overlapping interiors, then its volume is the sum of the volumes of 
the simplices forming the decomposition (Fig. 2).

Since the computation of Hilbert bases and Hilbert series is based on (lexico-
graphic) triangulations as well, Normaliz has a sophisticated algorithm for them, 
using pyramid decomposition; see [8]. Normaliz tries to avoid determinant compu-
tations by the “exploitation of unimodularity”; see [8, Prop. 7].

3.2 � Volume by descent in the face lattice

The idea is to exploit the following proposition:

signed decomposition → descent → symmetrization.

Fig. 2   A triangulation
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Proposition 5  Let P ⊂ ℝn be a rational polytope, and v ∈ P . Then

Proposition 5 follows immediately from Proposition 1 since the polytopes conv(v,F) 
constitute a polyhedral decomposition of P. Usually v is a vertex of the polytope P with 
as few opposite facets Fi as possible, as illustrated by Fig. 3.

The recursive application results in building a descent system, i.e., a subset F  of the 
face lattice so that for each face F ∈ F  , to which (3.1) is applied, all facets of F that are 
opposite to the selected vertex are contained in F  . However, if a face is simplicial, its 
multiplicity is computed by the standard determinant formula. The algorithm is imple-
mented in such a way that all data are collected in the descent and no backtracking is 
necessary. The RAM usage is essentially determined by the two largest layers. For a 
detailed discussion we refer the reader to [6].

3.3 � Exploitation of isomorphism classes

If the integral automorphism group of the cone C over the polytope P is large enough, 
one can expect that each face in the descent system F  has many isomorphic copies in 
F  . These can be detected and identified so that only one representative of every iso-
morphism class must be kept in F  . This reduces F  in size and can significantly speed 
up the volume computation. It must be used with care since the computation of isomor-
phism classes is rather expensive. See [4] for a discussion of their computation.

If the polytope is specified by generators and the number of facets is large, then the 
first step in the descent system is built differently. Normaliz computes the automor-
phism group of the polytope and selects one representative in each orbit of facets. The 
vertex v above is replaced by a fix point of the automorphism group, and the first step 
in the volume computation is the formula

where Fi represents one of the c orbits and O(Fi) is the number of facets in the orbit 
of Fi . Then F1,… ,Fc form the first layer in the descent system. This allows the 

(3.1)VolP =
∑

F facet of P

HtF(v)VolF.

VolP =

c∑

i=1

O(Fi)HtFi
(v)VolFi

Fig. 3   Pyramid decomposition 
of a polytope

v

F1

F2 F3

F4
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application of descent in cases where the number of facets is too large for a success-
ful computation without exploitation of isomorphism classes. If the user does not 
prohibit it, Normaliz encodes isomorphism classes by their SHA256 checksums.

3.4 � Symmetrization

To understand the computation of volumes through symmetrization one must 
take a detour through Ehrhart series. As usual, assume that our polytope P is 
given as the intersection P = C ∩ H where C ⊂ ℝd is a pointed rational cone and 
H = {x ∈ ℝd ∶ deg x = 1} is the hyperplane of degree 1 points. For symmetrization 
we assume that deg is primitive.

Under certain conditions one can count lattice points of degree k, k ∈ ℕ , in C by 
mapping C to a cone C′ of lower dimension and then counting each degree k lattice 
point y in C′ with the number of its lattice preimages. This approach works well if 
the number of preimages is given by a polynomial in the coordinates of y. Since C′ 
has lower dimension, one can hope that its combinatorial structure is much simpler 
than that of C. One must of course pay a price: instead of counting each lattice point 
with the weight 1, one must count it with a polynomial weight.

The availability of this approach depends on symmetries in the coordinates of C, 
and therefore we call it symmetrization. Normaliz tries symmetrization under the 
following condition: C and the relevant lattice are given by constraints (inequali-
ties, equations, congruences) and the inequalities contain the sign conditions xi ≥ 0 
for all coordinates xi of C. Then Normaliz groups coordinates that appear in all 
constraints and the grading  (!) with the same coefficients, and, roughly speaking, 
replaces them by their sum. The number of preimages that one must count for the 
vector y of sums is then a product of binomial coefficients—a polynomial as desired. 
More precisely, if yj , j = 1,… ,m , is the sum of uj variables xi then

is the number of preimages of (y1,… , ym).
Since the Lebesgue measure can be approximated by scaled counting measures, 

one obtains

where h is the highest homogeneous component of f with respect to total degree, 
and � is the suitably scaled Lebesgue measure. We learnt this approach from Schür-
mann [23]. The Normaliz algorithm for integrals is described in [11]. This note con-
tains a complete elementary treatment and several references to advanced aspects.

Symmetrization can have stunning effects. Nevertheless we do not include it in 
the computations of Sect. 5 since it does not help for any of them, at least not in the 

f (y) =

(
u1 + y1 − 1

u1 − 1

)
…

(
um + ym − 1

um − 1

)
.

VolP = ∫P

h d�
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present implementation. Plenty of examples are contained in [9], where it is often 
very useful in the computation of Hilbert series.

3.5 � Volume by signed decomposition

This algorithm uses that a generic triangulation of the dual cone induces a signed 
decomposition of the primal polytope, as we will now explain.

Let C ⊂ ℝd be a pointed cone of dimension d (it is important that C is full dimen-
sional). The polytope P is the intersection of C with the hyperplane H defined by a 
grading deg : H = {x ∶ deg(x) = 1} . The grading is an interior element of the dual 
cone C∗ = {� ∈ (ℝd)∗ ∶ �(x) ≥ 0 for all x ∈ C} . In order to visualize the situation 
we take an auxiliary (irrelevant) cross-section Q of the dual cone as in Fig. 4.

Now suppose that we have a generic triangulation Δ of the dual cone where 
genericity is defined as follows: deg is not contained in any hyperplane through a 
facet of any � ∈ Δ . Let � ∈ Δ be given, and denote the linear forms on (ℝd)∗ defin-
ing its facets by �1,…�d ∈ (ℝd)∗∗ = ℝd . ( �1,…�d are the extreme rays of the dual 
of � .) The hyperplanes defined by the vanishing of �1,…�d decompose (ℝd)∗ into 
“orthants” that can be labeled by a sign vector � = (s1,… , sd) ∈ {±1}d:

By the assumption on deg , there is exactly one sign vector � such that deg lies in the 
interior of D(�, �) . Consequently the hyperplane H intersects the dual D(�, �)∗ in a 
polytope R� . Set e(�) = |{i ∶ si = −1}|.

Let �X denote the indicator function of a subset X ⊂ ℝd . Then

for all x ∈ ℝd outside a union of finitely many hyperplanes. Since volume (lattice 
normalized or Euclidean) is additive on indicator functions, this formula can be 
used for the computation VolP , and more generally for the computation of integrals 
over P.

In order to find a generic triangulation, Normaliz first computes a triangulation 
Δ of C∗ and saves the induced hollow triangulation Γ that Δ induces on the bound-
ary of C∗ . Then it finds a generic element � ∈ C∗ such that the star triangulation Σ 
of C∗ , in which every simplicial cone is generated by the center � and a facet of the 

D(�, �) = {� ∶ (−1)si�i(�) ≥ 0}.

(3.2)�P(x) =
∑

�∈Δ

(−1)e(�)�R�
(x)

Fig. 4   A square and a cross-
section of the dual cone

P Qdeg
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hollow triangulation, is generic. Figure 5 illustrates the signed decomposition of a 
square into 4 simplices.

The algorithm has been developed by Lawrence [18] in the language of linear 
programming. We have learnt it from Filliman’s paper [15], which contains a proof 
of Eq.  (3.2). See Beck, Haase and Sottile [1] for an elementary approach and the 
relationship to other duality theorems.

4 � The implementation of the Lawrence algorithm

The complete course of the volume computation consists of 4 steps that can be 
clearly delimited from each other: 

(1)	 computation of a triangulation Δ of C∗;
(2)	 computation of the induced hollow triangulation Γ;
(3)	 choice of the generic element �;
(4)	 evaluation of the star triangulation Σ.

Each of the 4 steps is highly critical if one wants to reach the applications in social 
choice that were our driving challenge. For (1) we could essentially rely on the 
standard triangulation algorithm of Normaliz. Step (2) and the arithmetic for (3) and 
(4) are described in the following. Both (3) and (4) are iterations over the hollow 
triangulation and star triangulations derived from it.

4.1 � The hollow triangulation

Suppose the triangulation Δ of C∗ has been computed. For each simplicial cone 
� ∈ Δ we must now find the facets of � that lie in the boundary of C∗ . There are vari-
ous solutions for this task. The first that comes to mind is to compute the facets of C∗ 
and match the facets of � with it. But C∗ can have an enormous number of facets that 
one does better not compute since they can easily exhaust RAM. The facets of C∗ are 
of course extreme rays of the cone C over P, but for signed decomposition Normaliz 
only computes them if asked for by the user. A second approach that is much better 
in terms of RAM is to compute the facets of � and select those that have all extreme 

Fig. 5   Generic triangulation of 
the dual and signed decomposi-
tion P

+
−

−
+ Qdeg

+

+−

−
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rays of C∗ on the same side as � . However, this requires an enormous number of sca-
lar products that in high dimension are expensive.

Instead of these geometric approaches, Normaliz uses only the combinatorics of tri-
angulations of cones. It forms the set of all pairs (F, �) where F is a facet of � , � ∈ Δ . 
Both components are encoded as 0–1-vectors that indicate the extreme rays of C∗ span-
ning F and � , respectively. From this set one must discard all pairs (F, �) for which 
there exists a pair (F, ��) , �� ∈ Δ , �′ ≠ � . In principle one could eliminate all F that 
appear a second time without remembering the “mother” � , but � helps in several ways. 
The first is that one can store the hollow triangulation as a set of pairs (�,�(�)) where 
�(�) is a second 0–1-vector indicating those extreme rays of � whose omission yields a 
facet of the hollow triangulation.

In order not to blow up memory for large Δ , the pairs (�,�(�)) are computed in 
small portions controlled by “patterns”. Each pattern is an increasing sequence 
(p1,… , pr) of indices, and it is required that the facet F satisfies the following condi-
tion: if q1,… , qd−1 , d = dimC∗ , are the indices of the extreme rays of F in ascending 
order, then qi = pi for i = 1,… , r.

4.2 � Piggyback simplices

After the purely combinatorial computation of the hollow triangulation, arithmetic 
must be used in steps (3) and (4) above, namely in finding a generic linear form � ∈ C∗ 
and then in the volume computation. Both tasks are accelerated significantly if one 
takes advantage of the fact that simplices G and G′ of the star triangulation are in “pig-
gyback” position to each other, if the facets F and F′ of the hollow triangulation that 
define them belong to the same simplex � ∈ Δ . By “piggyback” position we mean that 
the simplices share a facet and lie on different sides of it, as indicated in Fig. 6.

Suppose that G has extreme rays �1,… , �d ∈ (ℝd)∗ and its facets are given by linear 
forms �1,… ,�d ∈ ℝd = (ℝd)∗∗ where �d defines the common facet, �1,… , �d−1 are 
the extreme rays shared by G and G′ and � is the remaining extreme ray of G′ . Then the 
facets of G′ are determined by −�d and

Since the computation of the ki and −�d from �1,… , �d−1,� alone amounts to the 
inversion of a matrix, it is clear that the use of (4.1) is a significant advantage, even 
if the computation of the values �i(�) needs d2 multiplications. There is actually no 

(4.1)ki = −�d(�)�i + �i(�)�d, i = 1,… , d − 1.

Fig. 6   Piggyback simplices
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need to compute the ki completely. We will only need their values on elements in the 
dual space, for which the values of the �i are known, for example the degree.

In the primal space, �1,… ,�d and k1,… , kd−1,−�d are extreme rays of the sim-
plices dual to G and G′ . For the volume of the corresponding simplices we need the 
determinants. By standard rules

So the piggyback relation between G and G′ pays off a second time.
In dealing with the simplices of the star triangulation that belong to the same 

simplicial cone � of Δ , we pick one of them, say G1 , and take all others piggyback. 
For G1 we must indeed invert the matrix M with rows �1,… , �d over ℚ , using 
D = | detM| as the denominator: M−1 = (1∕D)N with a matrix N ∈ ℤd×d . After 
extraction of their greatest common divisors, the columns �1,… ,�d of N are the 
support forms of G1 , equivalently, the extreme integral generators of the dual cone of 
G1 . For the volume computation we need the determinant of the matrix N′ with col-
umns �1,… ,�d . There is no need to compute it directly: since MN′ is the diagonal 
matrix with entries �i(�i) , i = 1,… , d , one has

and detM has already been computed.

4.3 � Finding a generic element

The generic element � of C∗ must satisfy the following condition: the grading deg 
does not lie on any hyperplane through a facet of a simplicial cone in the hollow tri-
angulation and � . But this condition is symmetric in � and deg ! It is much better to 
first take the star triangulation with center deg and check that � is not on any of the 
critical hyperplanes. The main difference between deg and � is the size of the coor-
dinates: those of deg are usually very small and those of � very large. So, in working 
with deg as the center, there is a very good chance to get away with 64 bit arithme-
tic. The computation based on � which is necessary for the volume, must very often 
be done with GMP integers.

Instead of choosing one vector � at random and verifying that it is generic, Nor-
maliz takes two vectors �1 and �2 and checks that not both of them lie together on a 
critical hyperplane. If this condition is satisfied, then a suitable linear combination 
� = a1�1 + a2�2 , a1, a2 ∈ ℤ , a1, a2 ≥ 0 , is generic. For the check we apply the pig-
gyback trick of Sect. 4.2, and especially (4.1). If �1 and �2 do not work, then their 
coordinates are increased.

| det(k1,… , kd−1,−�d)| = |�d(�)
d−1 det(�1,… ,�d)|.

detN� =

∏d

i=1
�i(�i)

detM
,
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4.4 � The addition of fractions

There is one more extremely critical aspect, namely the addition of fractions. If 
one accumulates the volume as an alternating sum of simplex volumes by succes-
sive addition of fractions, one can easily spend 99% of the computation time on this 
addition, or, in extreme situations, not finish at all, creating fractions whose numera-
tors and denominators fill gigabytes. The reason is that the extreme integral genera-
tors of the duals of cones involving the generic element can be very large: we must 
divide by them.

In extreme cases there is no other choice but to work with fixed precision. If the 
user asks for it, then the simplex volumes are still computed exactly, but for addition 
they are truncated to a fixed number of decimal digits. The default choice is trunca-
tion to an integral multiple of 10−100 . With this choice the final volume is computed 
up to an error ≤ |Γ| ⋅ 10−100 . The user can set a higher or lower precision.

For computations with full precision, Normaliz uses an addition pyramid, an 
extensible vector (q0,… , qn) of rational numbers. It serves as an accumulator. A new 
summand s is added to q0 , provided the number of summands that have already been 
accumulated in q0 is smaller than the capacity. If the capacity has been reached, then 
q0 is added to q1 and set to s. The addition of q0 to q1 is handled in the same way as 
that of s to q0 etc. At present the capacity is 8. This scheme has proved to be very 
efficient. Of course, at the very end, all entries of the pyramid must be added.

Remark 6  vinci [12] contains the Lawrence algorithm in a floating point implemen-
tation. As the authors state in [13], it is numerically unstable, and our preceding 
discussion should also indicate this problem.

If one has a look at the volumes whose alternating sum must be formed, then 
they easily reach absolute values of 10100 . For any precision of their alternating sum, 
which may be of order 10−6 , one therefore needs a very high number of significant 
digits that a standard floating point format does not offer.

For example, this becomes visible already in the comparison of 4 voting schemes 
for 4 candidates [6, Sect. 6.1]. Let P be the corresponding polytope. With its algo-
rithm HOT (based on the same principle as descent) vinci correctly computes the 
Euclidean volume of 1.260510232743 ⋅ 10−25 , for P , whereas the vinci Lawrence 
algorithm yields 9.287423132835 ⋅ 10−8 . (We are grateful to Bogdan Ichim for these 
computations.) For this reason we are not comparing the Lawrence algorithms in 
Normaliz and vinci.

5 � Computational data

All computations have been done on the Dell R640 server of the Institute of Math-
ematics at Osnabrück. It is equipped with two Intel Xeon Gold 6152 cards (a total 
of 44 cores) and 1 TB of RAM. The computations use 32 parallel threads (of the 
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maximum of 88). The listed times are “wall clock” times. In order to avoid overload-
ing the tables, information about RAM usage has been inserted into the text.

That we allow 32 threads for a computation does of course not mean that they can 
be used. The percentage of CPU that the computations got varies from ∼ 400% to 
almost 3200%.

5.1 � Polytopes defined by vertices

The computation times for several polytopes defined by vertices are listed in Table 1. 
In the tables, dim is the dimension of the cone C over the polytope, #ext the number 
of extreme rays of C and sup the number of its support hyperplanes. The size of the 
triangulation computed by the primal triangulation is to be found in the column #tri. 
The number of determinants computed is usually smaller.

5.1.1 � Linear ordering polytopes

Lo<n> is the linear ordering polytope for a set of n elements. These polytopes have 
been investigated in combinatorial optimization; see [20]. The maximum n reacha-
ble is 7. For n = 8 not even the number of facets is known. It is however > 800 ⋅ 106 . 
The computation of the volumes is surprisingly fast if one exploits the isomorphism 
classes of faces. Note that for n = 7 the computation of the support hyperplanes 
alone takes > 20 h so that the computation of the volume needs ∼ 1 h.

The maximum RAM usage of lo-6 is 2.1 GB for descent, the other two algo-
rithms need < 1.5 GB. The computation for lo-7 takes 14.7 GB.

5.1.2 � Cross polytopes

cr-<n> is the unit cross polytope of dimension n. We have computed their (known) 
volumes for n = 20, 24, 28 . They have only 2n vertices, but 2n facets. But all facets 

Table 1   Polytopes defined by vertices

Combinatorial data Computation times

Dim #ext #supp #tri Primal Descent Isotypes

lo-6 16 720 910 5.8 ⋅ 109 19:20.80 m 3:17.48 m 0:04.57 m
lo-7 22 6040 87,472 21:39:51 h
cr-20 21 40 220 219 0:08.50 m 0:08.94 m 0:15.02 m
cr-24 25 48 224 223 2:11.91 m 3:29.67 m 5:42.24 m
cr-28 29 48 228 227 42:12.11 m 1:39:37 h 2:21:09 h
A543 36 60 29,387 103 ⋅ 106 0:24.09 m 36:56.56 m 0:18.59 m
A553 43 75 306,955 9.2 ⋅ 109 44:53.26 m 7:10.36 m
cy-60 17 60 656,100 0:46.45 m 0:44.27 m
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are simplices, and therefore the descent algorithm and its variant exploiting isomor-
phism classes are applicable. However, the primal algorithm behaves better for two 
reasons: (i) it avoids the administrative overhead of the descent algorithm, and (ii) 
the formation of the single orbit of facets takes rather long—it cannot be parallel-
ized. So the saving in the computations of determinants is overcompensated. Since 
all facets of a cross polytope are simplicial, there is only one descent step, namely 
from the full polytope to the facets opposite to the chosen vertex.

For n = 20 the primal algorithm gets away with 713 MB, whereas the two descent 
algorithms need about 1 GB. For n = 24 the numbers are 4.2 GB and 21 GB. For 
n = 28 they rise to 194 GB and ∼ 300 GB. It takes a lot of space to accommodate 
the 228 extreme rays.

5.1.3 � Other polytopes

A543 and A553 are taken from the Ohsugi–Hibi classification [22] of polytopes 
related to contingency tables. A553 shows that descent with isomorphism types 
can be favorable if the automorphism group of the polytope is sufficiently large. For 
A543 this effect is already visible, but still small. This applies to cy-60 as well, 
the cyclotomic polytope of order 60 defined by Beck and Hoşten [2]. That the pure 
descent algorithm is not suitable for this type of polytope is shown by A543.

The RAM usage of A543 is about 1.6 GB for the primal algorithm and 1 GB 
for descent with isomorphism classes. For A553 the corresponding numbers are 
4.3 GB and 101 GB. For cy-60 they are 316 MB and 1.4 GB.

5.2 � Polytopes defined by inequalities

We now turn to polytopes defined by inequalities and equations. Among them we 
have chosen Birkhoff polytopes, cubes and polytopes from social choice—as said 
already, the latter were the driving challenge for our implementation of the Law-
rence algorithm. In the tables, #tri dual is the size of the triangulation of the dual 
cone, and #hollow that of the associated hollow triangulation.

5.2.1 � Birkhoff polytopes

The Birkhoff polytope of order n is the set of doubly stochastic n × n matrices. Its 
vertices are the n × n permutation matrices, and their number n! is rapidly growing. 
Their volumes have been computed for n ≤ 10 by Beck and Pixton [3] with residue 
methods that are not (yet) available in Normaliz.

For n ≤ 5 any of the Normaliz algorithm does the job very quickly, but for n = 6 
the primal algorithm must already give up since the lexicographic triangulation 
becomes too large. In the table we start with this case. The Lawrence algorithm 
reaches n = 8 . As one can see, even the triangulations of the dual cone grow too 
quickly for the next step. The bulk of the computation time for n = 8 is taken by 
the computation of the hollow triangulation, namely ∼ 13 h. The coordinates of the 
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generic element � are small enough to allow 64 bit arithmetic for the volume com-
putation ( < 3 h) (Table 2).

RAM usage for bi-6 is 44 MB and 473 MB. The computations for bi-7 take 
7.9 GB and 12.5 GB. That for bi-8 needs 216 GB.

5.2.2 � Cubes

cu-<n> is the unit cube of dimension n. It is a good test object since its volume 
is known. Since faces of the same codimension are isomorphic, descent with iso-
morphism types is expected to be fast, and it is indeed. However, it must use the 
huge number of vertices explicitly, and for this reason signed decomposition is 
even faster. The Normaliz binary in the distribution does never reach any of these 
algorithms since Normaliz recognizes parallelotopes P, computes the volume of 
a “corner simplex” and multiplies it by n!, n = dimP . This takes ∼ 0.01 s, even 
for n = 28 . It would certainly be possible to go to n = 32 with the Lawrence algo-
rithm or descent with isomorphism types.

In [6] the reader can find performance data for the descent algorithm applied to 
cu-20 and cu-24. In addition, more general parallelotopes of the same dimen-
sions are computed there. The computation times show that the arithmetic is sec-
ondary and the times are dominated by the combinatorial complexity.

RAM usage for cu-20 is ∼ 1.1 GB for both algorithms, and for cu-24 we 
need 23 GB and 2 GB. cu-28 takes 428 GB and 127 GB. That signed decompo-
sition is so much better, is due to the fact that it does not store the extreme rays.

5.2.3 � Polytopes from social choice

Computational data for polytopes from social choice are contained in [9] for the 
primal algorithm and symmetrization and in [6] for descent in the face lattice. 
Voting schemes with 5 candidates are essentially inaccessible to them. The Law-
rence algorithm has now reached them, and [7] contains data for them. Tables 3 
and 4 are imported from there. The names of the polytopes are explained in [7].

Table 2   Birkhoff polytopes and cubes

Combinatorial data Computation times

Dim #ext #supp #tri dual #hollow Isotypes Signed dec

bi-6 26 720 36 142,755 933,120 0:03.64 m 0:03.10 m
bi-7 37 5040 49 11 ⋅ 106 85 ⋅ 106 38:05.85 m 5:36.92 m
bi-8 50 40,320 64 1.2 ⋅ 109 11 ⋅ 109 17:59:20 h
cu-20 21 220 40 219 220 0:08.73 m 0:07.00 m
cu-24 25 224 48 223 224 4:56.11 m 2:12.64 m
cu-28 29 228 56 227 228 1:53:27 h 1:01:37 h
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For two polytopes we have included the number of extreme rays to show the 
order of magnitude. For the Lawrence algorithm they are not needed explicitly, 
and in particular they need not be stored.

The stages (1)–(3) of all computations could be done by 64 bit arithmetic, and 
this holds even for the volume computations of the first and third polytope. The 
volume computations of the two largest had to be done with fixed precision.

For the two largest examples it was necessary to use distributed computation 
on a high performance cluster (indicated by HPC). For this reason we have split 
the computation times. For CondEffPlur on the HPC of the University of Osna-
brück the time was < 9 h. We refer the reader to [7] for more information.
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Table 3   Combinatorial data

Dim C #ext # supp # tri dual # hollow

strictBorda 4cand 24 33 100,738 324,862
CondEffAppr 4cand 74 80 1,620,052 30,564,920
Condorcet 120 290,064 124 137,105 6,572,904
PlurVsRunoff 120 80,912,472 125 4,912,369 93,749,784
CWand2nd 120 126 15,529,730 608,572,514
CondEffPlurRunoff 120 127 246,310,369 5,456,573,880
CondEffPlur 120 128 2,388,564,481 39,390,184,920

Table 4   Memory usage and times for parallelized volume computations

RAM
in GB

Time

Stages (1)–(3) Stage (4) Total

strictBorda 4cand 0.35 1.278 s 0.464 s 1.742 s
CondEffAppr 4cand 7.4 97.8 s 14:31 m 16:09 m
Condorcet 1.67 18.0 s 52.493 s 1:10 m
PlurVsRunoff 26.2 12:40 m 1:29:21 h 1:42:01 s
CWand2nd 56.4 49:55 m 10:21:36 h 11:11:31 h
CondEffPlurRunoff 113 13:30:22 h HPC –
CondEffPlur 646 125:27:20 h HPC –
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