
Vol:.(1234567890)

São Paulo Journal of Mathematical Sciences (2023) 17:36–54
https://doi.org/10.1007/s40863-022-00317-9

1 3

SPECIAL ISSUE IN HONOR OF RAFAEL H. VILLARREAL
ON THE OCCASION OF HIS 70TH BIRTHDAY

Polytope volume in Normaliz

Winfried Bruns1 

Accepted: 6 July 2022 / Published online: 25 July 2022
© The Author(s) 2022

Abstract
We survey the computation of polytope volumes by the algorithms of Normaliz to
which the Lawrence algorithm has recently been added. It has enabled us to master
volume computations for polytopes from social choice in dimension 119. This chal-
lenge required a sophisticated implementation of the Lawrence algorithm.

Keywords  Polytope · Volume · Lawrence algorithm

Mathematics Subject Classification  52B55 · 52A38

1  Introduction

About 20 years ago Amelia Taylor asked the author whether Normaliz [10] could
compute polytope volumes. It was easy to include this computation goal into the
triangulation based “primal algorithm”. Since then, polytope volumes have played
an important role in the development of Normaliz, and in recent years specific algo-
rithms have been added.

Polytope volumes can be interpreted as degrees of projective toric varieties and
multiplicities of monomial algebras. In 2011, Bogdan Ichim pointed out their appli-
cations in social choice. Since then they have been a driving challenge for the vol-
ume algorithms in Normaliz whose history we sketch briefly. Before going on, let us
emphasize that Normaliz computes lattice normalized volumes that for rational pol-
ytopes are rational numbers. Euclidean volumes, if asked for by the user, are derived
from them.

To the memory of Wolmer Vasconcelos and to Rafael Villareal on his 70th birthday.

Communicated by Aron Simis.

 *	 Winfried Bruns
	 wbruns@uos.de

1	 Institut für Mathematik, Universität Osnabrück, 49069 Osnabrück, Germany

http://orcid.org/0000-0002-7081-2261
http://crossmark.crossref.org/dialog/?doi=10.1007/s40863-022-00317-9&domain=pdf

37

1 3

São Paulo Journal of Mathematical Sciences (2023) 17:36–54	

In social choice, polytope volumes are interpreted as probabilities of certain
paradoxa and quality measures of voting schemes. See the books by Gehrlein and
Lepelley [16, 17]. These applications become rapidly very difficult since the rel-
evant polytopes explode in dimension: for n candidates they are cross-sections of
cones of dimension n!. In their paper [19, p. 382] of 2008 Lepelley, Louichi and
Smaoui state:

Consequently, it is not possible to analyze four candidate elections, where
the total number of variables (possible preference rankings) is 24. We hope
that further developments of these algorithms will enable the overcoming of
this difficulty.

With the efficient parallelization of Normaliz in 2012 and the addition of Schüür-
mann’s symmetrization method [23], Normaliz could compute a wide variety of
social choice polytopes for 4 candidates; see Bruns et al. [9].

When the limitations of the available algorithms became visible in 2017, the
author implemented an algorithm for polytope volumes by descent in the face
lattice. It is implicitly based on a reverse lexicographic triangulation of the poly-
tope, but does not compute the triangulation explicitly. It brought a significant
improvement in computation times for polytopes defined by inequalities, and
made more computations for elections with 4 candidates possible, as shown in
Bruns and Ichim [6].

But the case n = 5 , n! = 120 , remained elusive. The breakthrough came with
the Normaliz implementation of Lawrence’s algorithm [18]. It is based on a dual-
ity between “generic” triangulations of the dual cone and signed decompositions
of the “primal” polytope into simplices. In principle, signed decompositions are
as good as ordinary ones for volume computation, but they present hard numeri-
cal problems. The rational arithmetic of Normaliz can cope with them, but it must
pay by computation time. The applications to 5 candidates elections have been
documented by Bruns and Ichim [7]. They would have been unreachable without
the sophisticated implementation that we explain in Sect. 4.

Simultaneously with the Lawrence algorithm, we introduced a refinement of
the descent algorithm that identifies isomorphic faces in the descent. Isomor-
phism classes, as explained in [4], are computed by McKay and Piperno’s pack-
age nauty [21]. Even for nauty, isomorphism classes are expensive, but they help
in the volume computation of some classical polytopes.

Section 2 gives a very brief introduction to the terminology of this note. It
explains basic results that are used in the computation of lattice normalized vol-
ume. Section 3 contains an overview of the volume algorithms and explains them,
in particular Lawrence’s algorithm. The final Sect. 5 lists computation times,
with emphasis on the new algorithms, signed decomposition and descent with the
exploitation of isomorphism types. They are not only applied to polytopes from
social choice, but also to classical polytopes, for example cubes, Birkhoff poly-
topes and linear ordering polytopes.

The package vinci [12] contains algorithms for polytope volumes. See [6] for
a comparative study of computation times and memory usages. Because of its

38	 São Paulo Journal of Mathematical Sciences (2023) 17:36–54

1 3

floating point arithmetic, vinci is often faster than Normaliz, but its results come
without an error bound. Because of the extreme numerical difficulty, its imple-
mentation of the Lawrence algorithm fails reliable results already for polytopes
coming from 4 candidates elections; see Remark 6.

This note is dedicated to my friends Wolmer Vasconcelos and Rafael Villarreal.
Their constant support has been very encouraging in the 25 years of the Normaliz
project. One of the first third party publications citing Normaliz is their paper [14]
with Delfino, Taylor and Weininger. The example collection of Normaliz still con-
tains input files supplied by Rafael a quarter of a century ago, and his book [24]
documents numerous applications.

2 � Preliminaries

We refer the reader to [5] for discrete convex geometry. Here we content ourselves to
a very brief overview.

2.1 � Cones and polytopes

A cone C in the real space ℝn is the intersection of finitely many linear halfspaces:

and for each i the halfspace H+
i
 is the set {x ∈ ℝn ∶ �i(x) ≥ 0} for a linear form �i

in the dual space (ℝn)∗ . By the theorem of Minkowski–Weyl, one can equivalently
describe cones as the conical set generated by finitely many vectors vj ∈ ℝn,

Since we want to deal only with polytopes and cones derived from them, we can
restrict our cones to a subclass: C is a pointed cone: if −x ∈ C for x ∈ C , then x = 0 .
If C is pointed, then the elements in a minimal set of generators as in (2.2) are
uniquely determined up to positive scalars, and the sets ℝ+vi are the extreme rays of
C.

The cone C is rational if the vectors vi can be chosen in ℚn , and therefore in ℤn .
Then each extreme ray contains exactly one primitive integral vector, namely one
with coprime coordinates. It is called an extreme integral generator.

The dimension of C is the dimension of the vector subspace ℝ+C . If dimC < n ,
then the halfspaces H+

i
 in (2.1) are not uniquely determined, but the halfspaces

H+
i
∩ℝC of ℝC in an irredundant representation C =

⋂
i(H

+
i
∩ℝC) are. They inter-

sect C in its facets. More generally, a face of C is the intersection of C with a hyper-
plane that has C inside one of the two closed halfspaces it defines. A face of C is
again a cone.

In Sects. 3.5 and 4 the dual cone C∗ will play a central role. Its definition does not
only depend on the intrinsic structure of C, but also on the ambient space. Therefore

(2.1)C =

s⋂

i=1

H+
i
,

(2.2)C = {q1v1 +⋯ + qnvm ∶ q1,… , qm ≥ 0}.

39

1 3

São Paulo Journal of Mathematical Sciences (2023) 17:36–54	

we will then assume that C is a full dimensional pointed cone: dimC = n . Conse-
quently the halfspaces H+

i
 in an irredundant representation (2.1) are uniquely deter-

mined, and there is a unique primitive choice for �i . These linear forms �i are called
the support forms of C. In this note the hyperplanes Hi are the support hyperplanes
of C. The dual cone

is full dimensional and pointed as well. Under the natural identification ℝn = (ℝn)∗∗
the bidual cone C∗∗ is identified with C: the extreme rays of C∗ are the linear forms
defining the facets of C, and vice versa. In the rational case the extreme integral gen-
erators of C∗ are the support forms of C, and vice versa.

A polytope P is the convex hull of finitely many points in a real space ℝn . Our
polytopes will be rational: such polytopes have vertices in ℚn . Computationally, pol-
ytopes are treated as compact intersections of pointed cones and hyperplanes. The
hyperplane is defined by a linear form with integral coefficients, called degree, such
that

The intersection P is compact (and nonempty) if and only if C ≠ 0 and deg x > 0 for
x ∈ C , x ≠ 0 . This is not a restriction of generality: if P ⊂ ℝn is not given as in (2.3),
then we can easily re-embed it suitably: we identify P with P� = P × {1} ⊂ ℝn+1 ,
and choose C = ℝ+P

�.

2.2 � Lattice normalized volume

Normaliz computes lattice normalized volume. We review this notion with empha-
sis of its computation. The reader can find more details in [6, Sect. 3]. Let P ⊂ ℝn
be a rational polytope. The affine hull A = affP is a rational affine subspace of ℝn .
First assume that 0 ∈ A . Then L = (affP) ∩ ℤn is a subgroup of ℤn of rank d = dimP
(and ℤn∕L is torsionfree). Choose a ℤ-basis v1,… , vd of L. The lattice (normalized)
volume Vol on A is the Lebesgue measure on A scaled in such a way that the sim-
plex conv(0, v1,… , vd) has measure 1. The definition is independent of the choice of
v1,… , vd since all invertible d × d matrices over ℤ have determinant ±1 . If 0 ∉ A ,
then we replace A by a translate A0 = A − w , w ∈ A , and set VolX = Vol(X − w)
for X ⊂ A . This definition is independent of the choice of w since Vol is translation
invariant on A0 . Note that the polytope containing a single point x ∈ ℚn has lattice
volume 1. If desired, the definition of lattice volume can be extended to arbitrary
measurable subsets of A, and Normaliz does it for algebraic polytopes.

If P is a lattice polytope, i.e., a polytope with vertices in ℤn , then VolP is an inte-
ger. For an arbitrary rational polytope we have VolP ∈ ℚ . As a consequence, VolP
can be computed precisely by rational arithmetic. This is not true for Euclidean vol-
ume in general: the diagonal of the unit square has length

√
2.

A second invariant we need is the lattice height of a rational point x over a
rational subspace H ≠ ∅ . More generally, one can consider points x such that

C∗ = {� ∈ (ℝn)∗ ∶ �(x) ≥ 0 for all x ∈ C}

(2.3)P = {x ∈ C ∶ deg x = 1}.

40	 São Paulo Journal of Mathematical Sciences (2023) 17:36–54

1 3

aff(H, x) is again rational; for example, this is the case if H is a hyperplane in ℝn .
If x ∈ H , we set HtH(x) = 0 . Otherwise let A = aff(H, x) so that H is a hyperplane
in A.

Assume first that 0 ∈ H . Then H is cut out from A by an equation �(y) = 0 with
a primitive ℤ-linear form � on L = A ∩ ℤn . With this choice of � , HtH(x) = |�(x)|
is called the lattice height of x over H. (There are exactly two choices for � , differ-
ing by the factor −1 .) If 0 ∉ H , then we choose an auxiliary point v ∈ H , replace
H by H − v , A by A − v and x by x − v . In the algorithms we will only have to deal
with the case 0 ∈ H . If P is a rational polytope and F is a facet or, more generally,
a face of P, then we set HtF(x) = HtH(x) where H = affF.

The following proposition relates lattice volume and lattice height.

Proposition 1  Let P be a rational polytope and v ∈ P a vertex of P such that there is
a single facet F of P with v ∉ F . Then

This is part of [6, Prop. 1], to which we refer for the proof. The next basic
result tells us how to compute the volume of a simplex, which is a polytope of
dimension d with d + 1 vertices.

Proposition 2  Let S ⊂ ℝn be a rational simplex with vertices v0,… , vd . Choose a
basis u1,… , ud of the lattice aff(S − v0) ∩ ℤn . Define the d × d matrix T = (tij) by the
representations vi − v0 =

∑d

j=1
tijuj , i = 1,… , d . Then

This follows immediately from the transformation formula of Lebesgue meas-
ure. See [5, 2.C] for an algebraic proof.

As mentioned already, we present rational polytopes P in the form P = C ∩ H
where C is a pointed cone and H is defined by the condition deg x = 1 with a ℤ
-linear form deg . This brings a second polytope into play, namely P = conv(0,P)
as in Fig. 1.

All algorithms of Normaliz compute VolP , and then derive VolP from it:

Proposition 3  With the notation introduced, let L = ℝC ∩ ℤn and deg |L = k deg�
with a primitive linear form deg′ on L and k > 0 . Then

VolP = HtF(v)VolF.

VolS = | detT|.

VolP = kVolP.

Fig. 1   P and P
P

P
deg= 1

41

1 3

São Paulo Journal of Mathematical Sciences (2023) 17:36–54	

Proof  Let F = P be the unique facet of P opposite to 0. We can use deg′ to meas-
ure lattice height over F. Since deg� x = (1∕k) deg x = 1∕k for x ∈ F , one has
HtH(0) = 1∕k , and the claim follows from Proposition 1. 	� ◻

The number k in Proposition 3 is called the grading denominator in Normaliz.
The reason is that deg� = deg ∕k is considered as the “true” grading on the cone C.
The user can choose between the given grading deg or the divided one, deg′.

As our final tool we formulate a homogeneous version of Proposition 2:

Proposition 4  Let the simplex S be given in the form S = C ∩ H where H is the
hyperplane of degree 1 points and C = ℝ+S . Let v1,… , vd , d = dim S + 1 , be
nonzero points in the d extreme rays of C, for example the extreme integral genera-
tors. Then

where T = (tij) is the d × d matrix with vi =
∑

j tijuj for a basis u1,… , ud of the lat-
tice L = ℤn ∩ℝS.

This follows immediately from Proposition 2 if we set v0 = 0 , observing that
v1∕g1,… , vd∕gd are the remaining vertices of S.

3 � Volume algorithms in Normaliz

There are three basic algorithms:

(1)	 the primal volume algorithm: Normaliz computes a lexicographic triangulation,
and finds the volume as the sum of the volumes of the simplices in the triangula-
tion;

(2)	 volume by descent in the face lattice: there is a reverse lexicographic triangula-
tion in the background, but it is not computed explicitly;

(3)	 volume by signed decomposition, the Lawrence algorithm: Normaliz computes
a triangulation of the dual cone and converts it into a signed decomposition of
the polytope.

Normaliz also computes the exact volume of full dimensional polytopes defined
over real algebraic number fields. For them only (1) is implemented at present. One
could extend (3) to them, whereas (2) is not suitable. The algorithms (1) and (3) are
also used in the computations of integrals of rational polynomials over polytopes.

By rule of thumb one can say that the best choice is

(1)	 if the polytope has few vertices, but potentially many facets;

VolS =
1

g1 … gd
| detT|, gi = deg vi, i = 1,… , d,

42	 São Paulo Journal of Mathematical Sciences (2023) 17:36–54

1 3

(2)	 if the number of vertices and the number of facets are of the same order of mag-
nitude;

(3)	 if there are very few facets and many vertices.

This recommendation will be confirmed by the computational data in Sect. 5. There
are variants:

(a)	 exploitation of isomorphism types of faces in the descent algorithm;
(b)	 symmetrization as explained below.

Normaliz checks the default conditions of the algorithms in the order

If the default conditions are not satisfied for any of them, the primal triangulation
algorithm is used. These decisions must often be made on the basis of partial infor-
mation. Therefore it can be useful to choose a certain variant explicitly or to exclude
others. The exploitation of isomorphism types must always be asked for by the user.

Normaliz uses OpenMP for parallelization. Unless the user insists on computa-
tions with GMP integers, Normaliz tries 64 bit arithmetic first, and restarts the com-
putation with GMP integers if it recognizes an overflow.

3.1 � The primal volume algorithm

Mathematically there is not much to say: if a polytope P is decomposed into sim-
plices with non-overlapping interiors, then its volume is the sum of the volumes of
the simplices forming the decomposition (Fig. 2).

Since the computation of Hilbert bases and Hilbert series is based on (lexico-
graphic) triangulations as well, Normaliz has a sophisticated algorithm for them,
using pyramid decomposition; see [8]. Normaliz tries to avoid determinant compu-
tations by the “exploitation of unimodularity”; see [8, Prop. 7].

3.2 � Volume by descent in the face lattice

The idea is to exploit the following proposition:

signed decomposition → descent → symmetrization.

Fig. 2   A triangulation

43

1 3

São Paulo Journal of Mathematical Sciences (2023) 17:36–54	

Proposition 5  Let P ⊂ ℝn be a rational polytope, and v ∈ P . Then

Proposition 5 follows immediately from Proposition 1 since the polytopes conv(v,F)
constitute a polyhedral decomposition of P. Usually v is a vertex of the polytope P with
as few opposite facets Fi as possible, as illustrated by Fig. 3.

The recursive application results in building a descent system, i.e., a subset F of the
face lattice so that for each face F ∈ F  , to which (3.1) is applied, all facets of F that are
opposite to the selected vertex are contained in F  . However, if a face is simplicial, its
multiplicity is computed by the standard determinant formula. The algorithm is imple-
mented in such a way that all data are collected in the descent and no backtracking is
necessary. The RAM usage is essentially determined by the two largest layers. For a
detailed discussion we refer the reader to [6].

3.3 � Exploitation of isomorphism classes

If the integral automorphism group of the cone C over the polytope P is large enough,
one can expect that each face in the descent system F has many isomorphic copies in
F  . These can be detected and identified so that only one representative of every iso-
morphism class must be kept in F  . This reduces F in size and can significantly speed
up the volume computation. It must be used with care since the computation of isomor-
phism classes is rather expensive. See [4] for a discussion of their computation.

If the polytope is specified by generators and the number of facets is large, then the
first step in the descent system is built differently. Normaliz computes the automor-
phism group of the polytope and selects one representative in each orbit of facets. The
vertex v above is replaced by a fix point of the automorphism group, and the first step
in the volume computation is the formula

where Fi represents one of the c orbits and O(Fi) is the number of facets in the orbit
of Fi . Then F1,… ,Fc form the first layer in the descent system. This allows the

(3.1)VolP =
∑

F facet of P

HtF(v)VolF.

VolP =

c∑

i=1

O(Fi)HtFi
(v)VolFi

Fig. 3   Pyramid decomposition
of a polytope

v

F1

F2 F3

F4

44	 São Paulo Journal of Mathematical Sciences (2023) 17:36–54

1 3

application of descent in cases where the number of facets is too large for a success-
ful computation without exploitation of isomorphism classes. If the user does not
prohibit it, Normaliz encodes isomorphism classes by their SHA256 checksums.

3.4 � Symmetrization

To understand the computation of volumes through symmetrization one must
take a detour through Ehrhart series. As usual, assume that our polytope P is
given as the intersection P = C ∩ H where C ⊂ ℝd is a pointed rational cone and
H = {x ∈ ℝd ∶ deg x = 1} is the hyperplane of degree 1 points. For symmetrization
we assume that deg is primitive.

Under certain conditions one can count lattice points of degree k, k ∈ ℕ , in C by
mapping C to a cone C′ of lower dimension and then counting each degree k lattice
point y in C′ with the number of its lattice preimages. This approach works well if
the number of preimages is given by a polynomial in the coordinates of y. Since C′
has lower dimension, one can hope that its combinatorial structure is much simpler
than that of C. One must of course pay a price: instead of counting each lattice point
with the weight 1, one must count it with a polynomial weight.

The availability of this approach depends on symmetries in the coordinates of C,
and therefore we call it symmetrization. Normaliz tries symmetrization under the
following condition: C and the relevant lattice are given by constraints (inequali-
ties, equations, congruences) and the inequalities contain the sign conditions xi ≥ 0
for all coordinates xi of C. Then Normaliz groups coordinates that appear in all
constraints and the grading (!) with the same coefficients, and, roughly speaking,
replaces them by their sum. The number of preimages that one must count for the
vector y of sums is then a product of binomial coefficients—a polynomial as desired.
More precisely, if yj , j = 1,… ,m , is the sum of uj variables xi then

is the number of preimages of (y1,… , ym).
Since the Lebesgue measure can be approximated by scaled counting measures,

one obtains

where h is the highest homogeneous component of f with respect to total degree,
and � is the suitably scaled Lebesgue measure. We learnt this approach from Schür-
mann [23]. The Normaliz algorithm for integrals is described in [11]. This note con-
tains a complete elementary treatment and several references to advanced aspects.

Symmetrization can have stunning effects. Nevertheless we do not include it in
the computations of Sect. 5 since it does not help for any of them, at least not in the

f (y) =

(
u1 + y1 − 1

u1 − 1

)
…

(
um + ym − 1

um − 1

)
.

VolP = ∫P

h d�

45

1 3

São Paulo Journal of Mathematical Sciences (2023) 17:36–54	

present implementation. Plenty of examples are contained in [9], where it is often
very useful in the computation of Hilbert series.

3.5 � Volume by signed decomposition

This algorithm uses that a generic triangulation of the dual cone induces a signed
decomposition of the primal polytope, as we will now explain.

Let C ⊂ ℝd be a pointed cone of dimension d (it is important that C is full dimen-
sional). The polytope P is the intersection of C with the hyperplane H defined by a
grading deg : H = {x ∶ deg(x) = 1} . The grading is an interior element of the dual
cone C∗ = {� ∈ (ℝd)∗ ∶ �(x) ≥ 0 for all x ∈ C} . In order to visualize the situation
we take an auxiliary (irrelevant) cross-section Q of the dual cone as in Fig. 4.

Now suppose that we have a generic triangulation Δ of the dual cone where
genericity is defined as follows: deg is not contained in any hyperplane through a
facet of any � ∈ Δ . Let � ∈ Δ be given, and denote the linear forms on (ℝd)∗ defin-
ing its facets by �1,…�d ∈ (ℝd)∗∗ = ℝd . (�1,…�d are the extreme rays of the dual
of � .) The hyperplanes defined by the vanishing of �1,…�d decompose (ℝd)∗ into
“orthants” that can be labeled by a sign vector � = (s1,… , sd) ∈ {±1}d:

By the assumption on deg , there is exactly one sign vector � such that deg lies in the
interior of D(�, �) . Consequently the hyperplane H intersects the dual D(�, �)∗ in a
polytope R� . Set e(�) = |{i ∶ si = −1}|.

Let �X denote the indicator function of a subset X ⊂ ℝd . Then

for all x ∈ ℝd outside a union of finitely many hyperplanes. Since volume (lattice
normalized or Euclidean) is additive on indicator functions, this formula can be
used for the computation VolP , and more generally for the computation of integrals
over P.

In order to find a generic triangulation, Normaliz first computes a triangulation
Δ of C∗ and saves the induced hollow triangulation Γ that Δ induces on the bound-
ary of C∗ . Then it finds a generic element � ∈ C∗ such that the star triangulation Σ
of C∗ , in which every simplicial cone is generated by the center � and a facet of the

D(�, �) = {� ∶ (−1)si�i(�) ≥ 0}.

(3.2)�P(x) =
∑

�∈Δ

(−1)e(�)�R�
(x)

Fig. 4   A square and a cross-
section of the dual cone

P Qdeg

46	 São Paulo Journal of Mathematical Sciences (2023) 17:36–54

1 3

hollow triangulation, is generic. Figure 5 illustrates the signed decomposition of a
square into 4 simplices.

The algorithm has been developed by Lawrence [18] in the language of linear
programming. We have learnt it from Filliman’s paper [15], which contains a proof
of Eq. (3.2). See Beck, Haase and Sottile [1] for an elementary approach and the
relationship to other duality theorems.

4 � The implementation of the Lawrence algorithm

The complete course of the volume computation consists of 4 steps that can be
clearly delimited from each other:

(1)	 computation of a triangulation Δ of C∗;
(2)	 computation of the induced hollow triangulation Γ;
(3)	 choice of the generic element �;
(4)	 evaluation of the star triangulation Σ.

Each of the 4 steps is highly critical if one wants to reach the applications in social
choice that were our driving challenge. For (1) we could essentially rely on the
standard triangulation algorithm of Normaliz. Step (2) and the arithmetic for (3) and
(4) are described in the following. Both (3) and (4) are iterations over the hollow
triangulation and star triangulations derived from it.

4.1 � The hollow triangulation

Suppose the triangulation Δ of C∗ has been computed. For each simplicial cone
� ∈ Δ we must now find the facets of � that lie in the boundary of C∗ . There are vari-
ous solutions for this task. The first that comes to mind is to compute the facets of C∗
and match the facets of � with it. But C∗ can have an enormous number of facets that
one does better not compute since they can easily exhaust RAM. The facets of C∗ are
of course extreme rays of the cone C over P, but for signed decomposition Normaliz
only computes them if asked for by the user. A second approach that is much better
in terms of RAM is to compute the facets of � and select those that have all extreme

Fig. 5   Generic triangulation of
the dual and signed decomposi-
tion P

+
−

−
+ Qdeg

+

+−

−

47

1 3

São Paulo Journal of Mathematical Sciences (2023) 17:36–54	

rays of C∗ on the same side as � . However, this requires an enormous number of sca-
lar products that in high dimension are expensive.

Instead of these geometric approaches, Normaliz uses only the combinatorics of tri-
angulations of cones. It forms the set of all pairs (F, �) where F is a facet of � , � ∈ Δ .
Both components are encoded as 0–1-vectors that indicate the extreme rays of C∗ span-
ning F and � , respectively. From this set one must discard all pairs (F, �) for which
there exists a pair (F, ��) , �� ∈ Δ , �′ ≠ � . In principle one could eliminate all F that
appear a second time without remembering the “mother” � , but � helps in several ways.
The first is that one can store the hollow triangulation as a set of pairs (�,�(�)) where
�(�) is a second 0–1-vector indicating those extreme rays of � whose omission yields a
facet of the hollow triangulation.

In order not to blow up memory for large Δ , the pairs (�,�(�)) are computed in
small portions controlled by “patterns”. Each pattern is an increasing sequence
(p1,… , pr) of indices, and it is required that the facet F satisfies the following condi-
tion: if q1,… , qd−1 , d = dimC∗ , are the indices of the extreme rays of F in ascending
order, then qi = pi for i = 1,… , r.

4.2 � Piggyback simplices

After the purely combinatorial computation of the hollow triangulation, arithmetic
must be used in steps (3) and (4) above, namely in finding a generic linear form � ∈ C∗
and then in the volume computation. Both tasks are accelerated significantly if one
takes advantage of the fact that simplices G and G′ of the star triangulation are in “pig-
gyback” position to each other, if the facets F and F′ of the hollow triangulation that
define them belong to the same simplex � ∈ Δ . By “piggyback” position we mean that
the simplices share a facet and lie on different sides of it, as indicated in Fig. 6.

Suppose that G has extreme rays �1,… , �d ∈ (ℝd)∗ and its facets are given by linear
forms �1,… ,�d ∈ ℝd = (ℝd)∗∗ where �d defines the common facet, �1,… , �d−1 are
the extreme rays shared by G and G′ and � is the remaining extreme ray of G′ . Then the
facets of G′ are determined by −�d and

Since the computation of the ki and −�d from �1,… , �d−1,� alone amounts to the
inversion of a matrix, it is clear that the use of (4.1) is a significant advantage, even
if the computation of the values �i(�) needs d2 multiplications. There is actually no

(4.1)ki = −�d(�)�i + �i(�)�d, i = 1,… , d − 1.

Fig. 6   Piggyback simplices

F

F

G

G
λ1

λ3

λ2

µ

48	 São Paulo Journal of Mathematical Sciences (2023) 17:36–54

1 3

need to compute the ki completely. We will only need their values on elements in the
dual space, for which the values of the �i are known, for example the degree.

In the primal space, �1,… ,�d and k1,… , kd−1,−�d are extreme rays of the sim-
plices dual to G and G′ . For the volume of the corresponding simplices we need the
determinants. By standard rules

So the piggyback relation between G and G′ pays off a second time.
In dealing with the simplices of the star triangulation that belong to the same

simplicial cone � of Δ , we pick one of them, say G1 , and take all others piggyback.
For G1 we must indeed invert the matrix M with rows �1,… , �d over ℚ , using
D = | detM| as the denominator: M−1 = (1∕D)N with a matrix N ∈ ℤd×d . After
extraction of their greatest common divisors, the columns �1,… ,�d of N are the
support forms of G1 , equivalently, the extreme integral generators of the dual cone of
G1 . For the volume computation we need the determinant of the matrix N′ with col-
umns �1,… ,�d . There is no need to compute it directly: since MN′ is the diagonal
matrix with entries �i(�i) , i = 1,… , d , one has

and detM has already been computed.

4.3 � Finding a generic element

The generic element � of C∗ must satisfy the following condition: the grading deg
does not lie on any hyperplane through a facet of a simplicial cone in the hollow tri-
angulation and � . But this condition is symmetric in � and deg ! It is much better to
first take the star triangulation with center deg and check that � is not on any of the
critical hyperplanes. The main difference between deg and � is the size of the coor-
dinates: those of deg are usually very small and those of � very large. So, in working
with deg as the center, there is a very good chance to get away with 64 bit arithme-
tic. The computation based on � which is necessary for the volume, must very often
be done with GMP integers.

Instead of choosing one vector � at random and verifying that it is generic, Nor-
maliz takes two vectors �1 and �2 and checks that not both of them lie together on a
critical hyperplane. If this condition is satisfied, then a suitable linear combination
� = a1�1 + a2�2 , a1, a2 ∈ ℤ , a1, a2 ≥ 0 , is generic. For the check we apply the pig-
gyback trick of Sect. 4.2, and especially (4.1). If �1 and �2 do not work, then their
coordinates are increased.

| det(k1,… , kd−1,−�d)| = |�d(�)
d−1 det(�1,… ,�d)|.

detN� =

∏d

i=1
�i(�i)

detM
,

49

1 3

São Paulo Journal of Mathematical Sciences (2023) 17:36–54	

4.4 � The addition of fractions

There is one more extremely critical aspect, namely the addition of fractions. If
one accumulates the volume as an alternating sum of simplex volumes by succes-
sive addition of fractions, one can easily spend 99% of the computation time on this
addition, or, in extreme situations, not finish at all, creating fractions whose numera-
tors and denominators fill gigabytes. The reason is that the extreme integral genera-
tors of the duals of cones involving the generic element can be very large: we must
divide by them.

In extreme cases there is no other choice but to work with fixed precision. If the
user asks for it, then the simplex volumes are still computed exactly, but for addition
they are truncated to a fixed number of decimal digits. The default choice is trunca-
tion to an integral multiple of 10−100 . With this choice the final volume is computed
up to an error ≤ |Γ| ⋅ 10−100 . The user can set a higher or lower precision.

For computations with full precision, Normaliz uses an addition pyramid, an
extensible vector (q0,… , qn) of rational numbers. It serves as an accumulator. A new
summand s is added to q0 , provided the number of summands that have already been
accumulated in q0 is smaller than the capacity. If the capacity has been reached, then
q0 is added to q1 and set to s. The addition of q0 to q1 is handled in the same way as
that of s to q0 etc. At present the capacity is 8. This scheme has proved to be very
efficient. Of course, at the very end, all entries of the pyramid must be added.

Remark 6  vinci [12] contains the Lawrence algorithm in a floating point implemen-
tation. As the authors state in [13], it is numerically unstable, and our preceding
discussion should also indicate this problem.

If one has a look at the volumes whose alternating sum must be formed, then
they easily reach absolute values of 10100 . For any precision of their alternating sum,
which may be of order 10−6 , one therefore needs a very high number of significant
digits that a standard floating point format does not offer.

For example, this becomes visible already in the comparison of 4 voting schemes
for 4 candidates [6, Sect. 6.1]. Let P be the corresponding polytope. With its algo-
rithm HOT (based on the same principle as descent) vinci correctly computes the
Euclidean volume of 1.260510232743 ⋅ 10−25 , for P , whereas the vinci Lawrence
algorithm yields 9.287423132835 ⋅ 10−8 . (We are grateful to Bogdan Ichim for these
computations.) For this reason we are not comparing the Lawrence algorithms in
Normaliz and vinci.

5 � Computational data

All computations have been done on the Dell R640 server of the Institute of Math-
ematics at Osnabrück. It is equipped with two Intel Xeon Gold 6152 cards (a total
of 44 cores) and 1 TB of RAM. The computations use 32 parallel threads (of the

50	 São Paulo Journal of Mathematical Sciences (2023) 17:36–54

1 3

maximum of 88). The listed times are “wall clock” times. In order to avoid overload-
ing the tables, information about RAM usage has been inserted into the text.

That we allow 32 threads for a computation does of course not mean that they can
be used. The percentage of CPU that the computations got varies from ∼ 400% to
almost 3200%.

5.1 � Polytopes defined by vertices

The computation times for several polytopes defined by vertices are listed in Table 1.
In the tables, dim is the dimension of the cone C over the polytope, #ext the number
of extreme rays of C and sup the number of its support hyperplanes. The size of the
triangulation computed by the primal triangulation is to be found in the column #tri.
The number of determinants computed is usually smaller.

5.1.1 � Linear ordering polytopes

Lo<n> is the linear ordering polytope for a set of n elements. These polytopes have
been investigated in combinatorial optimization; see [20]. The maximum n reacha-
ble is 7. For n = 8 not even the number of facets is known. It is however > 800 ⋅ 106 .
The computation of the volumes is surprisingly fast if one exploits the isomorphism
classes of faces. Note that for n = 7 the computation of the support hyperplanes
alone takes > 20 h so that the computation of the volume needs ∼ 1 h.

The maximum RAM usage of lo-6 is 2.1 GB for descent, the other two algo-
rithms need < 1.5 GB. The computation for lo-7 takes 14.7 GB.

5.1.2 � Cross polytopes

cr-<n> is the unit cross polytope of dimension n. We have computed their (known)
volumes for n = 20, 24, 28 . They have only 2n vertices, but 2n facets. But all facets

Table 1   Polytopes defined by vertices

Combinatorial data Computation times

Dim #ext #supp #tri Primal Descent Isotypes

lo-6 16 720 910 5.8 ⋅ 109 19:20.80 m 3:17.48 m 0:04.57 m
lo-7 22 6040 87,472 21:39:51 h
cr-20 21 40 220 219 0:08.50 m 0:08.94 m 0:15.02 m
cr-24 25 48 224 223 2:11.91 m 3:29.67 m 5:42.24 m
cr-28 29 48 228 227 42:12.11 m 1:39:37 h 2:21:09 h
A543 36 60 29,387 103 ⋅ 106 0:24.09 m 36:56.56 m 0:18.59 m
A553 43 75 306,955 9.2 ⋅ 109 44:53.26 m 7:10.36 m
cy-60 17 60 656,100 0:46.45 m 0:44.27 m

51

1 3

São Paulo Journal of Mathematical Sciences (2023) 17:36–54	

are simplices, and therefore the descent algorithm and its variant exploiting isomor-
phism classes are applicable. However, the primal algorithm behaves better for two
reasons: (i) it avoids the administrative overhead of the descent algorithm, and (ii)
the formation of the single orbit of facets takes rather long—it cannot be parallel-
ized. So the saving in the computations of determinants is overcompensated. Since
all facets of a cross polytope are simplicial, there is only one descent step, namely
from the full polytope to the facets opposite to the chosen vertex.

For n = 20 the primal algorithm gets away with 713 MB, whereas the two descent
algorithms need about 1 GB. For n = 24 the numbers are 4.2 GB and 21 GB. For
n = 28 they rise to 194 GB and ∼ 300 GB. It takes a lot of space to accommodate
the 228 extreme rays.

5.1.3 � Other polytopes

A543 and A553 are taken from the Ohsugi–Hibi classification [22] of polytopes
related to contingency tables. A553 shows that descent with isomorphism types
can be favorable if the automorphism group of the polytope is sufficiently large. For
A543 this effect is already visible, but still small. This applies to cy-60 as well,
the cyclotomic polytope of order 60 defined by Beck and Hoşten [2]. That the pure
descent algorithm is not suitable for this type of polytope is shown by A543.

The RAM usage of A543 is about 1.6 GB for the primal algorithm and 1 GB
for descent with isomorphism classes. For A553 the corresponding numbers are
4.3 GB and 101 GB. For cy-60 they are 316 MB and 1.4 GB.

5.2 � Polytopes defined by inequalities

We now turn to polytopes defined by inequalities and equations. Among them we
have chosen Birkhoff polytopes, cubes and polytopes from social choice—as said
already, the latter were the driving challenge for our implementation of the Law-
rence algorithm. In the tables, #tri dual is the size of the triangulation of the dual
cone, and #hollow that of the associated hollow triangulation.

5.2.1 � Birkhoff polytopes

The Birkhoff polytope of order n is the set of doubly stochastic n × n matrices. Its
vertices are the n × n permutation matrices, and their number n! is rapidly growing.
Their volumes have been computed for n ≤ 10 by Beck and Pixton [3] with residue
methods that are not (yet) available in Normaliz.

For n ≤ 5 any of the Normaliz algorithm does the job very quickly, but for n = 6
the primal algorithm must already give up since the lexicographic triangulation
becomes too large. In the table we start with this case. The Lawrence algorithm
reaches n = 8 . As one can see, even the triangulations of the dual cone grow too
quickly for the next step. The bulk of the computation time for n = 8 is taken by
the computation of the hollow triangulation, namely ∼ 13 h. The coordinates of the

52	 São Paulo Journal of Mathematical Sciences (2023) 17:36–54

1 3

generic element � are small enough to allow 64 bit arithmetic for the volume com-
putation ( < 3 h) (Table 2).

RAM usage for bi-6 is 44 MB and 473 MB. The computations for bi-7 take
7.9 GB and 12.5 GB. That for bi-8 needs 216 GB.

5.2.2 � Cubes

cu-<n> is the unit cube of dimension n. It is a good test object since its volume
is known. Since faces of the same codimension are isomorphic, descent with iso-
morphism types is expected to be fast, and it is indeed. However, it must use the
huge number of vertices explicitly, and for this reason signed decomposition is
even faster. The Normaliz binary in the distribution does never reach any of these
algorithms since Normaliz recognizes parallelotopes P, computes the volume of
a “corner simplex” and multiplies it by n!, n = dimP . This takes ∼ 0.01 s, even
for n = 28 . It would certainly be possible to go to n = 32 with the Lawrence algo-
rithm or descent with isomorphism types.

In [6] the reader can find performance data for the descent algorithm applied to
cu-20 and cu-24. In addition, more general parallelotopes of the same dimen-
sions are computed there. The computation times show that the arithmetic is sec-
ondary and the times are dominated by the combinatorial complexity.

RAM usage for cu-20 is ∼ 1.1 GB for both algorithms, and for cu-24 we
need 23 GB and 2 GB. cu-28 takes 428 GB and 127 GB. That signed decompo-
sition is so much better, is due to the fact that it does not store the extreme rays.

5.2.3 � Polytopes from social choice

Computational data for polytopes from social choice are contained in [9] for the
primal algorithm and symmetrization and in [6] for descent in the face lattice.
Voting schemes with 5 candidates are essentially inaccessible to them. The Law-
rence algorithm has now reached them, and [7] contains data for them. Tables 3
and 4 are imported from there. The names of the polytopes are explained in [7].

Table 2   Birkhoff polytopes and cubes

Combinatorial data Computation times

Dim #ext #supp #tri dual #hollow Isotypes Signed dec

bi-6 26 720 36 142,755 933,120 0:03.64 m 0:03.10 m
bi-7 37 5040 49 11 ⋅ 106 85 ⋅ 106 38:05.85 m 5:36.92 m
bi-8 50 40,320 64 1.2 ⋅ 109 11 ⋅ 109 17:59:20 h
cu-20 21 220 40 219 220 0:08.73 m 0:07.00 m
cu-24 25 224 48 223 224 4:56.11 m 2:12.64 m
cu-28 29 228 56 227 228 1:53:27 h 1:01:37 h

53

1 3

São Paulo Journal of Mathematical Sciences (2023) 17:36–54	

For two polytopes we have included the number of extreme rays to show the
order of magnitude. For the Lawrence algorithm they are not needed explicitly,
and in particular they need not be stored.

The stages (1)–(3) of all computations could be done by 64 bit arithmetic, and
this holds even for the volume computations of the first and third polytope. The
volume computations of the two largest had to be done with fixed precision.

For the two largest examples it was necessary to use distributed computation
on a high performance cluster (indicated by HPC). For this reason we have split
the computation times. For CondEffPlur on the HPC of the University of Osna-
brück the time was < 9 h. We refer the reader to [7] for more information.

Acknowledgements  The author was partially supported by the DFG Grant BR 688/26-1. He thanks
Ulrich von der Ohe for fruitful discussions.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article

Table 3   Combinatorial data

Dim C #ext # supp # tri dual # hollow

strictBorda 4cand 24 33 100,738 324,862
CondEffAppr 4cand 74 80 1,620,052 30,564,920
Condorcet 120 290,064 124 137,105 6,572,904
PlurVsRunoff 120 80,912,472 125 4,912,369 93,749,784
CWand2nd 120 126 15,529,730 608,572,514
CondEffPlurRunoff 120 127 246,310,369 5,456,573,880
CondEffPlur 120 128 2,388,564,481 39,390,184,920

Table 4   Memory usage and times for parallelized volume computations

RAM
in GB

Time

Stages (1)–(3) Stage (4) Total

strictBorda 4cand 0.35 1.278 s 0.464 s 1.742 s
CondEffAppr 4cand 7.4 97.8 s 14:31 m 16:09 m
Condorcet 1.67 18.0 s 52.493 s 1:10 m
PlurVsRunoff 26.2 12:40 m 1:29:21 h 1:42:01 s
CWand2nd 56.4 49:55 m 10:21:36 h 11:11:31 h
CondEffPlurRunoff 113 13:30:22 h HPC –
CondEffPlur 646 125:27:20 h HPC –

54	 São Paulo Journal of Mathematical Sciences (2023) 17:36–54

1 3

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Beck, M., Haase, Ch., Sottile, F.: Formulas of Brion, Lawrence, and Varchenko on rational gen-
erating functions for cones. Math. Intell. 31, 9–17 (2009)

	 2.	 Beck, M., Hoşten, S.: Cyclotomic polytopes and growth series of cyclotomic lattices. Math. Res.
Lett. 13, 607–622 (2006)

	 3.	 Beck, M., Pixton, D.: The Ehrhart polynomial of the Birkhoff polytope. Discrete Comput. Geom.
30, 623–637 (2003)

	 4.	 Bruns, W.: Automorphism groups and normal forms in Normaliz. Res. Math. Sci. 9(2), 20 (2022)
	 5.	 Bruns, W., Gubeladze, J.: Polytopes, Rings and K-Theory. Springer, Berlin (2009)
	 6.	 Bruns, W., Ichim, B.: Polytope volume by descent in the face lattice and applications in social

choice. Math. Program. Comput. 13, 415–442 (2021)
	 7.	 Bruns, W., Ichim, B.: Computations of volumes in five candidates elections. Preprint arXiv:​

2109.​00473
	 8.	 Bruns, W., Ichim, B., Söger, C.: The power of pyramid decomposition in Normaliz. J. Symb.

Comput. 74, 513–536 (2016)
	 9.	 Bruns, W., Ichim, B., Söger, C.: Computations of volumes and Ehrhart series in four candidates

elections. Ann. Oper. Res. 280, 241–265 (2019)
	10.	 Bruns, W., Ichim, B., Söger, C., von der Ohe, U.: Normaliz. Algorithms for rational cones and

affine monoids. https://​norma​liz.​uos.​de
	11.	 Bruns, W., Söger, C.: Generalized Ehrhart series and integration in Normaliz. J. Symb. Comput.

68, 75–86 (2015)
	12.	 Büeler, B., Enge, A.: Vinci. Package available from https://​www.​math.u-​borde​aux.​fr/​~aenge/
	13.	 Büeler, B., Enge, A., Fukuda, K.: Exact volume computation for polytopes: a practical study. In:

Polytopes—Combinatorics and Computation (Oberwolfach, 1997), pp. 131–154, DMV Seminars,
29. Birkhäuser, Basel (2000)

	14.	 Delfino, D., Taylor, A., Vasconcelos, W.V., Weininger, N., Villarreal, R.H.: Monomial ideals and
the computation of multiplicities. In: Commutative Ring Theory and Applications (Fez, 2001), pp.
87–106. M. Dekker (2003)

	15.	 Filliman, P.: The volume of duals and sections of polytopes. Mathematika 39, 67–80 (1992)
	16.	 Gehrlein, W.V., Lepelley, D.: Voting Paradoxes and Group Coherence. Springer, Berlin (2011)
	17.	 Gehrlein, W.V., Lepelley, D.: Elections, Voting Rules and Paradoxical Outcomes. Springer, Berlin

(2017)
	18.	 Lawrence, J.: Polytope volume computation. Math. Comput. 57, 259–271 (1991)
	19.	 Lepelley, D., Louichi, A., Smaoui, H.: On Ehrhart polynomials and probability calculations in vot-

ing theory. Soc. Choice Welf. 30, 363–383 (2008)
	20.	 Martí, R., Reinelt, G.: The linear ordering problem. In: Antman, S.S., Marsden, J.E., Sirovich, L.

(eds.) Exact and Heuristic Methods in Combinatorial Optimization. Springer, Berlin (2011)
	21.	 McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 60, 94–112 (2014)
	22.	 Ohsugi, H., Hibi, T.: Toric ideals arising from contingency tables. In: Bruns, W. (ed.) Commuta-

tive Algebra and Combinatorics. Ramanujan Mathematical Society Lecture Note Series, vol. 4, pp.
87–111 (2006)

	23.	 Schürmann, A.: Exploiting polyhedral symmetries in social choice. Soc. Choice Welf. 40, 1097–
1110 (2013)

	24.	 Villarreal, R.. H.: Monomial Algebras, Second Edition CRC Press, Boca Raton (2015)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2109.00473
http://arxiv.org/abs/2109.00473
https://normaliz.uos.de
https://www.math.u-bordeaux.fr/%7eaenge/

	Polytope volume in Normaliz
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Cones and polytopes
	2.2 Lattice normalized volume

	3 Volume algorithms in Normaliz
	3.1 The primal volume algorithm
	3.2 Volume by descent in the face lattice
	3.3 Exploitation of isomorphism classes
	3.4 Symmetrization
	3.5 Volume by signed decomposition

	4 The implementation of the Lawrence algorithm
	4.1 The hollow triangulation
	4.2 Piggyback simplices
	4.3 Finding a generic element
	4.4 The addition of fractions

	5 Computational data
	5.1 Polytopes defined by vertices
	5.1.1 Linear ordering polytopes
	5.1.2 Cross polytopes
	5.1.3 Other polytopes

	5.2 Polytopes defined by inequalities
	5.2.1 Birkhoff polytopes
	5.2.2 Cubes
	5.2.3 Polytopes from social choice

	Acknowledgements
	References

