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Abstract
We consider q-matroids and their associated classical matroids derived from Gabid-
ulin rank-metric codes. We express the generalized rank weights of a Gabidulin 
rank-metric code in terms of Betti numbers of the dual classical matroid associated 
to the q-matroid corresponding to the code. In our main result, we show how these 
Betti numbers and their elongations determine the generalized weight polynomials 
for q-matroids, in particular, for the Gabidulin rank-metric codes. In addition, we 
demonstrate how the weight distribution and higher weight spectra of such codes 
can be determined directly from the associated q-matroids by using Möbius func-
tions of its lattice of q-flats.
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1 Introduction

Rank-metric codes were first introduced by Delsarte [6] in 1978, and are referred to 
as Delsarte rank-metric codes. These codes are defined as �q-subspaces of the space 
of m × n-matrices over �q (the field with q elements, for q a prime power) where the 
rank distance between two codewords (i.e. matrices) is given by the rank of their 
difference. These codes are important for their applications in network coding, pub-
lic-key cryptography, and distributed storage, topics that thus stimulate the interest 
in studying the intrinsic properties of these codes. In this work we are interested in a 
particular case of Delsarte rank-metric codes, widely known as Gabidulin rank-met-
ric codes, introduced independently by Gabidulin [7] in 1985 and Roth [28] in 1991. 
A Gabidulin rank-metric code C of length n and dimension k may be defined as a 
k-dimensional subspace of the n-dimensional vector space � n

qm
 over �qm . In this case, 

the rank-analogue of the Hamming metric is defined as follows. Fix a basis B of �qm 
over �q to interpret a vector v ∈ � n

qm
 as an (m × n)-matrix �v over �q . Now the rank 

distance between two codewords v and w is defined as d(v,w) ∶= rank(�v −�w) . 
For convenience we will set Q = qm . Hence the elements in C are words in � n

Q
 . In this 

paper we also consider the Gabidulin rank-metric code Cr , which is the set of all �Q̃
-linear combination of words of C , where Q̃ = Qr for an arbitrary but fixed positive 
integer r, equipped with the rank metric. This code is referred to as the extension of 
C to �Q̃ and denoted by C⊗�Q

�Q̃ (or C̃ , in short) analogous to the case of Hamming 
metric codes as considered in [16, 22]. These terms will be reintroduced in the 
beginning of Sect. 4, when they are used for the first time.

For a linear block code C over �q and its extension C⊗�q
�Q for some Q = qm with 

any positive integer m, it is shown in [22] that the number AC,j(Q) of codewords of 
Hamming weight j in the code C⊗�q

�Q is a polynomial in Q. Later, in [16], one 
generalized the weight polynomials to matroids. Following the work on the connec-
tion between generalized weights of a Hamming metric code C and Betti numbers of 
certain associated matroid M as established in [18], an expression for AC,j(Q) or 
more generally, for the generalized weight polymials PM,j(Q) of a matroid M, is pro-
vided in terms of Betti numbers associated to the Stanley–Reisner ring of the 
matroid M and its elongations. On the other hand, recently a study on determining 
the singular homology of q-complexes associated to q-matroids has been initiated in 
[10]. This work is towards a topological approach to connect the generalized rank 
weights of a rank metric code with homological invariants of the associated 
q-matroid. This led us to study the q-matroids associated to Gabidulin rank metric 
codes and their lattices of cycles and flats with a view towards a combinatorial 
approach to express generalized rank weights and related polynomials in terms of 
homology of the associated q-matroids.

In this paper, we prove rank-analogues of some classical results for Gabidulin 
rank-metric codes. To each Gabidulin rank-metric code C , we associate 
q-matroids MC and M∗

C
 as introduced in [24]; which can be viewed as q-ana-

logues of matroids derived from generator matrices and parity check matrices, 
respectively, for block codes with the Hamming metric. To MC we furthermore 
associate a classical matroid Cl(MC) (also mentioned in [24]). We study 
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resolutions of the Stanley–Reisner ring of the independence complexes of the 
dual classical matroid Cl(MC)

∗ , and the possible elongations of that matroid. We 
show how the rank-weight distribution of the code C⊗�Q

�Q̃ can be determined by 
the ℕ-graded Betti numbers of the Stanley–Reisner ring corresponding to these 
resolutions. Furthermore, we generalize the results for arbitrary q-matroids by 
introducing generalized weight polynomials PM,j for a q-matroid M.

Moreover, we show that the following three pieces of information are equiva-
lent: The weight distribution AC,j(Q

r) for all j,  r, the higher weight spectra A(i)

Q,j
 

(the weight distributions for FQ-subspaces of C of dimension i) of C for all i,  j, 
and all the �(l)

j
 (certain alternating functions for Cl(MC)

∗ for all i, l). This result is 
a perfect analogue of a corresponding result for usual Hamming block codes and 
its associated matroids, see [20, Cor. 17]. In particular we like to emphasize how 
the higher rank-weight spectra (for subcodes of all dimensions) of C follow from 
the rank-weight distribution of C̃.

A key observation that plays an instrumental role throughout this article is the 
isomorphism between the lattice of q-flats of the q-matroid MC (resp. lattice of 
q-cycles of M∗

C
 ) and the lattice of flats of the matroid Cl(MC) (resp. lattice of 

cycles of Cl(MC)
∗ ). Moreover, it is well known (see for example [29, p. 57] and 

[17, p. 6]) that all the Betti numbers of the Stanley–Reisner rings of Cl(MC)
∗ and 

its elongations can be given by concrete Möbius functions of the lattice of flats of 
Cl(MC) and its various truncations and sublattices. We use this fact to show that 
sometimes it is more convenient to work directly with the lattice of q-flats of MC 
or the opposite lattice, i.e., of q-cycles of M∗

C
.

It is important to mention that alternative methods for determining weight dis-
tribution and higher weight spectra is given in [4, 5] for the more general notion 
of Delsarte rank-metric codes. Thus we get a variation of ways to retrieve the 
triple set of information described above for Gabidulin rank-metric codes; one 
from resolutions of Stanley–Reisner rings, and one from a direct study of lattices 
in addition to techniques described by the authors in [4, 5] using zeta functions.

The paper is organized as follows. In the next section, we collect some prelimi-
naries and recall basic definitions regarding notions like (q-)matroids, (q, m)-pol-
ymatroids, and Stanley–Reisner rings associated to matroids. In Sect. 3 we show 
how the generalized weights of Gabidulin rank-metric codes, more generally for 
q-matroids, can be expressed by invariants derived from the mentioned Stan-
ley–Reisner rings. We consider the extended codes C⊗�Q

�Q̃ in Sect. 4 and give 
expressions for their rank-weight distributions using the classical matroids asso-
ciated to the q-matroids corresponding to the codes. Our main results (Theorems 
64 and 70 and Corollary 71) determining generalized rank weights and higher 
weight spectra of C⊗�Q

�Q̃ , and more generally, the weight polynomials for 
q-matroids in terms of Betti numbers, are derived in Sect. 5. In Sect. 6 we demon-
strate our main results with an example and also show how the weight distribu-
tion of uniform q-matroids can be determined directly from its lattice of q-flats. 
We end this article with a retrospective look in Sect.  7 where we define a new 
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concept called virtual Betti numbers for lattices satisfying the Jordan–Dedekind 
property.

2  Preliminaries

Throughout this paper q denotes a power of a prime number and �q the finite field 
with q elements. We fix a positive integer n, and denote by E the set {1,… , n} and 
by E the n-dimensional vector space � n

q
 over �q . By Σ(E) we denote the set of all 

subspaces of E . We use [j] to denote the quantity qn−1 + qn−2 +⋯ + qn−j for any 
j = 1,… , n . We denote by ℕ0 the set of all nonnegative integers, and by ℕ the set of 
all positive integers.

In this section, we recall basic definitions and results concerning matroids, their 
associated Stanley–Reisner rings, and their q-analogues, i.e., (q,  m)-polymatroids 
and q-matroids.

2.1  Matroids

There are many cryptomorphic definitions of a matroid [32]. Here we record the one 
in terms of rank function:

Definition 1 A matroid is a pair (E, �) where E is a finite set and � ∶ 2E → ℕ0 is a 
function satisfying: 

 (R1) If X ⊆ E , then 0 ⩽ �(X) ⩽ |X|,
 (R2) If X ⊆ Y ⊆ E , then �(X) ⩽ �(Y),
 (R3) If X, Y are subsets of E, then 

The function � is called the rank function of the matroid. The rank of a 
matroid M = (E, �) is �(E) . The nullity function n of the matroid is given by 
n(X) = |X| − �(X) for X ⊆ E . By (R1), this is an integer-valued non-negative func-
tion on 2E.

Next we recall the notions of flats and cycles of a matroid, which play a central 
role in this paper.

Definition 2 Let M = (E, �) be a matroid. A flat of the matroid is a subset F ⊆ E 
satisfying

�(X ∩ Y) + �(X ∪ Y) ⩽ �(X) + �(Y).

�(F ∪ {x}) = �(F) + 1, for all x ∈ E�F.
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From the definition, it follows easily that E is a flat itself. Also, for X ⊆ E , the 
smallest flat containing X is the set Y = {x ∈ E, �(X ∪ {x}) = �(X)} and moreover, 
�(Y) = �(X) . The intersection of two flats is a flat.

Definition 3 Let M = (E, �) be a matroid, and n be its nullity function. For 
0 ⩽ i ⩽ n(E) , let

and let Ni be the set of minimal elements of Ni with respect to inclusion. Then 
the elements of Ni are called cycles of M of nullity i. Cycles of nullity 1 are called 
circuits.

It is proved in [18, Sect. 3] that the cycles of a matroid are union of circuits, and of 
course, by definition, ∅ is a cycle (of nullity 0).

Definition 4 Let M = (E, �) be a matroid. The dual matroid of M is the matroid 
M∗ = (E, �∗) with

It is well known that there is a one to one correspondence between the flats of a 
matroid and the cycles of its dual, namely, F is a flat of M if and only if E ⧵ F is a 
cycle of M∗.

Definition 5 Let M = (E, �) be a matroid. The lth truncation of M is the matroid 
M(l) = (E, �(l)) where

for any subset X ⊆ E and 0 ≤ l ≤ �(M), and the lth elongation of M is the matroid 
M(l) = (E, �(l)) , where

for any subset X ⊆ E and 0 ≤ l ≤ n − �(M).

Note that (M∗)(l) = (M(l))
∗ , and (M∗)(l) = (M(l))∗ , and that the flats of M(l) are 

exactly the flats of M except those of rank �(M) − 1,… , �(M) − l , and that the 
cycles of M(l) are those of M except those of nullity 1, 2,… , l.

2.2  Stanley–Reisner resolutions

Any matroid M = (E, �) gives rise to a simplicial complex ΔM of independent sets, 
i.e., the faces of the complex are given by

Ni = {X ⊆ E, n(X) = i}

�∗(X) ∶= |X| + �(E ⧵ X) − �(E).

�(l)(X) ∶= min{�(M) − l, �(X)},

�(l)(X) ∶= min{|X|, �(X) + l}

F = {X ⊆ E, �(X) = |X|}.
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If � is a field, we can associate to the underlying simplicial complex a monomial 
ideal IM ⊆ S = �[Xe, e ∈ E] defined by

where X� =
∏

e∈� Xe . We refer to [14] for the study of such ideals. The Stan-
ley–Reisner ring of the matroid is then the quotient SM = S∕IM . This ring has mini-
mal ℕ|E| and ℕ graded free resolutions and as described in [18], they are of the form

and

It is known, in particular, that the numbers �i,�(M) = �i,� are independent of the min-
imal free resolution, and when the simplicial complex comes from a matroid (as in 
our case), also independent of the field � . As one sees �i,j(M) = �i,j = Σ|�|=j�i,� , for 
all i, j.

Such Betti numbers, for matroids being specified later, will be instrumental for 
our main results.

Definition 6 For i, j, l in question, given a matroid M, we let �(l)
i,j
(M) be the ℕ-graded 

graded Betti number of the lth elongation matrix M(l).

In particular, �(0)
i,j
(M) = �i,j(M)( If M is fixed, we just write �(l)

i,j
 for �(l)

i,j
(M).)

2.3  q‑Matroids and (q, m)‑polymatroids

For X ∈ Σ(E) , we denote by X⟂ the dual of X (with respect to the standard dot prod-
uct), i.e., X⟂ = {� ∈ E ∶ � ⋅ � = 0 for all � ∈ X} . It is elementary and well-known 
that X⟂ ∈ Σ(E) with dim X⟂ = n − dim X and (X⟂)⟂ = X , although X ∩ X⟂ need 
not be equal to {�} , but of course E⟂ = {�}.

The first part of the following key notion is due to [29, Definition 2].

Definition 7 A (q, m)-polymatroid is an ordered pair M = (E, �) consisting of the 
vector space E = � n

q
 and a function � ∶ Σ(E) → ℕ0 satisfying (P1)–(P3) below: 

 (P1) 0 ≤ �(X) ≤ m dimX for all X ∈ Σ(E);
 (P2) �(X) ≤ �(Y) for all X, Y ∈ Σ(E) with X ⊆ Y;
 (P3) �(X + Y) + �(X ∩ Y) ≤ �(X) + �(Y) , for all X, Y ∈ Σ(E).

The function � is called the rank function of the (q, m)-polymatroid. The rank of a 
(q,  m)-polymatroid M = (E, �) is rank(M) = �(E) . The nullity function � of the 

IM =< X𝜎 ∶ 𝜎 ∉ F >,

0 ← SM ← S ←

⨁
�∈N1

S(−�)�1,� ← ⋯ ←

⨁
�∈Nn−�(M)

S(−�)�|E|−�(M),� ← 0

0 ← SM ← S ←

⨁
j∈�

S(−j)�1,j ← ⋯ ←

⨁
j∈�

S(−j)�|E|−�(M),j ← 0.
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(q, m)-polymatroid is given by �(X) = m dim�q
X − �(X) for X ∈ Σ(E) . By (P1), this 

is an integer-valued non-negative function on Σ(E).
To us the following special case will be the most important one:

Definition 8 A q-matroid is a (q, 1)-polymatroid.

Definition 9 Let M = (E, �) be a (q, m)-polymatroid. The dual (q, m)-polymatroid 
of M is the (q, m)-polymatroid M∗ = (E, �∗) with

The dual of a q-matroid is obtained from the case m = 1.

Definition 10 Let M = (E, �) be a q-matroid. Then a subspace F ⊆ E is called a 
q-flat if 𝜌(F ⊕ ⟨e⟩) > 𝜌(F) for all e ∈ E�F.

Definition 11 Let M = (E, �) be a q-matroid, and � be its nullity function, i.e., 
�(X) = dim�q

X − �(X) for all X ∈ Σ(E) . For 0 ⩽ i ⩽ �(E) , a subspace X ⊆ E of nul-
lity i is called a q-cycle of M if X is minimal in Ni w.r.t. inclusion, where

The q-cycles of nullity 1 are called q-circuits.

Remark 12 (q,  m)-flats and (q,  m)-cycles can be defined in analogous ways for 
(q, m)-polymatroids in general, but we will only treat the case m = 1 in what follows.

We then have:

Lemma 13 Let M = (E, �) be a q-matroid. Then X ∈ Σ(E) is a q-flat (of rank r) of 
a q-matroid N  if and only if its orthogonal complement X⟂ is a q-cycle (of nullity 
�(M) − r ) for M∗.

Proof Let X be a q-flat of a q-matroid M of rank r. From the definition of q-cycle, 
any subspace strictly contained in a q-cycle A have nullity strictly less the nullity of 
A, which we assume to be a.

Then from the identity, �∗(X) = dim X + �(X⟂) − �(E) , it is clear that if any 
space of the form X ⊕ ⟨v⟩ has rank strictly greater than that of X, the nullity of any 
subspace B of X⟂ of codimension 1 should be strictly one less than that of X⟂ . So if 
X is a q-flat, then X⟂ is a q-cycle. Similar logic proves the converse also.

Since �∗(X⟂) = dim X⟂ − dim X⟂ − �(X) + �(E) = �(M) − �(X) , it shows that 
for a q-flat X of rank r its orthogonal complement X⟂ is a q-cycle of M∗ of nullity 
�(M) − r .   ◻

We now introduce an important definition, essentially taken from [24]:

�∗(X) = m dimX + �(X⟂) − �(E).

Ni = {X ∈ Σ(E), �(X) = i}.
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Definition 14 For every q-matroid M = (E, �) , we associate a pair

where P(E) is the set of all 1-dimensional subspaces of E = � n
q
 , in other words, P(E) 

is the projectivization of E with |P(E)| = qn−1

q−1
= qn−1 + qn−2 +⋯ + 1. Moreover, for 

S ⊆ P(E) , we set:

where ⟨S⟩ is the (affine) subspace in E = � n
q
 , spanned by the 1-dimensional sub-

spaces of E in S.

Proposition 15 For every q-matriod M = (E, �) , the pair Cl(M) = (P(E), ��) is a 
matroid.

Proof Properties (R1) and (R2) follow directly from the properties (P1) and (P2) of 
Definition 7, respectively. To prove (R3), we take X, Y ⊆ P(E) and verify:

  ◻

Furthermore, we observe:

Lemma 16 Let M = (E, �) be a q-matroid and Cl(M) = (P(E), ��) be the classical 
matroid associated to M . Then S ⊆ P(E) is a flat with rank �(S) = r for Cl(M) if 
and only if it is of the form P(F) for some q-flat F of M of q-rank �(F) = r.

Proof If X = P(F) for some q-flat F, and y ∈ P(E) − X , then 
�(X ∪ {y}) = 𝜌(F ⊕ ⟨y⟩) > 𝜌(F) = �(X), so X is a flat.

If X is not of the form P(F) for F a q-flat, then X = P(G) for G not a q-flat, or X is 
not of the form P(H) for any G ∈ Σ(E) . If X = P(G) for G not a q-flat, then there exists 
e such that 𝜌(G⊕ ⟨e⟩) = 𝜌(G) . Then �(P(G⊕ ⟨e⟩)) = 𝜌(G⊕ ⟨e⟩) = 𝜌(G) = �(X) , so 
X is not a flat.

If X is not of the form P(G) for any G ∈ Σ(E) , then X is strictly contained in 
Y = Span(X) in P(E) . Hence: �(X) = �(⟨X⟩) = �(⟨Y⟩) = �(Y) , and so X is not a flat.  
 ◻

Definition 17 Let (E,R) be a poset. The opposite of a poset (E,R) is the poset (E,S) 
where xSy ⇔ yRx.

Cl(M) = (P(E), ��),

��(S) ∶= �(⟨S⟩),

��(X ∩ Y) + ��(X ∪ Y)

= �(⟨X ∩ Y⟩ + �(⟨X ∪ Y⟩)
= �(⟨X⟩ ∩ ⟨Y⟩) + �(⟨X⟩ + ⟨Y⟩)
≤ �(⟨X⟩) + �(⟨Y⟩) (by P3)

≤ ��(X) + ��(Y).
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Definition 18 

 (i) Let (E,R) be a finite poset. A chain C in E is a totally ordered subset of E 
(meaning aRb or bRa for a, b in C).

 (ii) The length of a chain is equal to the cardinality of the chain minus 1. The 
length of a finite poset is the maximal length of chains in the poset.

 (iii) If the poset has the Jordan–Dedekind property (meaning: all maximal chains 
have the same length), then the rank of an element x ∈ E is the length of the 
poset ([0, x],R).

Definition 19 A finite lattice is a finite poset P = (E,R) , where there exists a maxi-
mal element, denoted by 1, a minimal element, denoted by 0, and for any two ele-
ments a, b ∈ E , there exists a least upper bound (or join) a ∨ b and a greatest lower 
bound (or meet) a ∧ b . An atom is a minimal element of the subset E�{0}.

The opposite lattice P∗ of a lattice P satisfies 0P∗ = 1P , 1P∗ = 0P , a ∨P∗ b = a ∧P b 
and a ∧P∗ b = a ∨P b.

Let M be a matroid on the ground set E. It is well known that the set of flats of M is 
a lattice, where the order is the inclusion order. Moreover, it is well known that this lat-
tice has the Jordan–Dedekind property, and therefore has a well-defined rank function. 
The minimal element of the lattice is the closure of ∅ , its maximal element is E, while 
the meet of two flats is their intersection, and the join is the closure of their union.

Definition 20 A geometric lattice is a finite lattice having the Jordan–Dedekind 
property, and where its rank function, say r, satisfies:

• It is atomistic, i.e., every element is a supremum of a set of atoms.
• It is semimodular, i.e.,r(x ∧ y) + r(x ∨ y) ≤ r(x) + r(y).

It is well known that the flats of a matroid constitute a geometric lattice, where the 
rank function of the lattice corresponds to the rank function of the matroid, for each 
flat.

Lemma 16 has the following immediate, probably well known, consequence:

Proposition 21 

(a) As posets ordered by inclusion, the set of flats of Cl(M) , and the set of q-flats of 
M are isomorphic.

(b) The posets of cycles of Cl(M)∗ and q-cycles of M∗ are isomorphic.
(c) The poset of q-flats of M constitute a geometric lattice.
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Proof 

(a) From Lemma 16 there is a bijection between the flats of Cl(M) and the flats of 
M . Since it is inclusion-preserving, the lattices are isomorphic.

(b) This holds since by (a) their opposite lattices are isomorphic.
(c) This holds by (a), since the flats of Cl(M) are well known to do so.

  ◻

3  Generalized weights of q‑matroids and Betti numbers

In this section, we consider rank-metric codes and their corresponding (q, m)-pol-
ymatroids and q-matroids. The main result of this section gives a relation between 
generalized rank weights of Gabidulin rank-metric codes with Betti numbers of cer-
tain classical matroids associated to the q-matroids corresponding to the codes.

Let �m×n(�q) , or simply � , denote the space of all m × n matrices with entries in 
the finite field �q . Note that � is a vector space over �q of dimension mn.

Definition 22 

(a) By a Delsarte rank-metric code, or simply, a Delsarte code, we mean a �q-linear 
subspace of �.

(b) By a Gabidulin rank-metric code, or a vector rank-metric code, we mean a 
k-dimensional �qm-linear space C in � n

qm
.

A Gabidulin rank-metric code C is also then a K = km-dimensional linear code 
over �q . This can be viewed as a special case of a Delsarte code in the following 
way: Fix once and for all an �q-basis B = {b1,… , bm} of �qm . Therefore, any element 
a ∈ �qm can be uniquely written as a1b1 +⋯ ambm and represented by a column vec-
tor (a1,… , am)

t . In a similar way, any codeword c = (w1,… ,wn) ∈ � n
qm

 can be repre-

sented as an m × n-matrix MB(c) =

⎛
⎜⎜⎜⎝

w1,1 ⋯ ⋯ wn,1

⋯ ⋯ ⋯⋯

⋯ ⋯ ⋯⋯

w1,m ⋯ ⋯ wm,n

⎞⎟⎟⎟⎠
.

Following Shiromoto [29], we associate to a Delsarte code (resp. Gabidulin rank-
metric code) C , a family {C(X) ∶ X ∈ Σ(E)} of subcodes of C , and a (q, m)-polyma-
troid (resp. q-matroid) as follows.

Definition 23 

(a) Let C ⊆ �m×n(�q) be a Delsarte code. Given any X ∈ Σ(E) , C(X) is defined to be 
the subspace of C consisting of all matrices in C with row spaces contained in X. 
Let �1

C
 : Σ(E) ⟶ ℕ0 be the function defined as 

�1
C
(X) = dim�q

C − dim�q
C(X⟂) for X ∈ Σ(E).
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(b) Let C be a Gabidulin rank-metric code over �qm∕�q . With respect to the fixed �q
-basis B of �qm , we consider the respresentation of codewords by matrices. Then 
for any X ∈ Σ(E) , C(X) is defined similar to the case of Delsarte codes. Let �C : 
Σ(E) ⟶ ℕ0 be the function defined as 

Proposition 24 The pair (E, �1
C
) is a (q,  m)-polymatroid, and the pair (E, �C) is a 

q-matroid.

Proof The first statement is proved in [29], and the second one then follows auto-
matically, since �C(X) =

�1
C
(X)

m
 .   ◻

It is important to note that q-matroids associated to Gabidulin rank-metric 
codes were first defined in [23, Definition 22 and Theorem 24] and the q-matroid 
in [23] is the same as (E, �C) in Proposition 24.

Remark 25 We note that the nullity function (�1
C
)∗ of the dual (q, m)-polymatroid of 

(E, �1
C
) satisfies:

for a Delsarte code, and that the nullity function (�C)∗ of the dual of the q-matroid 
(E, �C) then is given by

for a Gabidulin rank-metric code.

Definition 26 Let C ⊆ � n
qm

 be a Gabidulin rank-metric code of length n and dimen-
sion k over the extension �qm∕�q . Let d be the minimum rank distance of C . If 
d = n − k + 1 , then C is called a maximum rank distance (MRD) code.

Next we recall the very first construction of MRD codes, independently given 
by Gabidulin [7] and Delsarte [6].

Example 27 Let m,  n,  k be positive integers such that m ≥ n ≥ k . If we consider 
� = (a1,… , an) ∈ � n

qm
 such that {ai ∶ i = 1,… , n} is a linearly independent set over 

�q , then �qm-linear code generated by the following matrix � is an MRD code of 
length n and dimension k.

�C(X) = dim�qm
C − dim�qm

C(X⟂).

(1)(�1
C
)∗(X) = dimFq

C(X) for X ∈ Σ(E).

(2)(�C)
∗(X) = dimFqm

C(X) for X ∈ Σ(E).

� ∶=

⎛
⎜⎜⎜⎝

a1 a2 … an
a
q

1
a
q

2
… a

q
n

⋮ ⋮ ⋱ ⋮

a
qk−1

1
a
qk−1

2
… a

qk−1

n

⎞
⎟⎟⎟⎠
.
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(See, for example, [7] and [26, Sect.  2] for the definition and basic facts about MRD 
codes.)

Example 28 Assume for simplicity that m ≥ n . Let C ⊆ �m×n(�q) be an MRD code 
of dimension K over �q . Such a C is a Delsarte code such that K = dimFq

C is divisi-

ble by m and C(X) = {0} for all subspaces X of E with dimFq
X ≤ n −

K

m
 . The latter 

follows, for instance, from [11, Proposition 6.2]. Thus �1
C
(Y) = K if Y ∈ Σ(E) with 

dimFq
Y ≥ K∕m , and hence �C(Y) = k. Further, in view of [11, Theorem 6.4], we see 

that �C(Y) = dimFq
Y  if Y ∈ Σ(E) with dimFq

Y ≤ K∕m . It follows that (E, �C) is the 
uniform q-matroid U(k,  n) (i.e. the q-matroid with rank function 
�(X) = min{dim(X), k}.

Now we recall the definition of generalized rank weights of Gabidulin rank-met-
ric codes in terms of nullity function of the corresponding (dual) q-matroids. The 
following definition is from [23] where the authors prove its equivalence with the 
other existing definitions.

Definition 29 [23, Definition 5] Let C be a Gabidulin rank-metric code over �qm∕�q . 

(a) The rank support Rsupp(c) of any codeword c ∈ C is the �q-linear row space of 
MB(c) (the matrix representation of c, as in the text following Definition 22.) 
For a subcode D of C , its rank support Rsupp(D) is the Fq-linear span of the set 
{Rsupp(d) ∶ d ∈ D}.

(b) Let dim�qm
C = k . Then for 1 ≤ r ≤ k , the r-th generalized rank weight of C is 

defined as 

Remark 30 In this article, we define the rank support using row spaces, irrespective 
of m ≥ n or m < n. This is following the definition by Shiromoto in [29] (where one 
uses column spaces, but of the transposes of our matrices) and thereafter, in [8]. As 
proved in [8, Theorem 37], this dr(C) matches with Ravagnani’s definition of gener-
alized weights for Delsarte codes in [27] only if m > n.

Then we express the generalized rank weights in terms of the nullity function of 
dual q-matroid associated to the code :

Proposition 31 For a Gabidulin rank-metric code C over �qm∕�q , the r-th generalized 
rank weight is

Proof Following the definitions of C(X) in Definition 23 and dr in Definition 29(b), 
we have

dr(C) = min{dim�q
Rsupp(D),D is a subcode of C with dim�qm

(D) = r}.

dr = min{dim�q
X ∶ X ∈ Σ with �∗

C
(X) ≥ r}.
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Therefore, the statement follows from Remark 25, since �∗
C
(X) = dim�qm

C(X) .   ◻

Inspired by Remark 25 and Proposition 31 we have:

Definition 32 For any q-matroid M = (E, �) we set

where �∗ is the nullity function of the dual q-matroid M∗.

It is clear from the above description that, for a Gabidulin rank-metric code C (or 
more generally, for a q-matroid), the r-th generalized weight is equal to the smallest 
�q-dimension of any q-cycle of nullity r of MC

∗ . As an immediate consequence, we 
obtain:

Lemma 33 Let C be a Gabidulin rank-metric code over �qm∕�q of dimension k. Then 
for any 1 ≤ r ≤ k , dr = n − mr , where mr is the largest dimension over �q of any 
q-flat of rank k − r for MC.

Proof This follows from Definition 32 and Lemma 13.   ◻

The next result provides a relation between the generalized rank weights of a 
Gabidulin rank-metric code C and the cycles of the associated dual matroid Cl(MC)

∗ 
of the corresponding q-matroid MC.

Corollary 34 Let Cl(M) be the classical matroid associated to a q-matroid 
M = (E, �) . 

(a) Any cycle X of Cl(M)∗ is the complement of projective spaces (when interpreting 
P(E) as projective (n − 1)-space). Its cardinality is qn−1 + qn−2 +⋯ + qm , for m 
the dimension of the flat F for for which the X is the complement of Cl(F).

(b) For a Gabidulin rank-metric code C we have that dr is equal to the smallest j such that 
there exists a cycle of nullity r and cardinality [j] for the matroid (Cl((E, �C))∗.

Proof Part (a): This follows from Lemma 16. Proof of (b)

dr(C) = min{dim�q
X ∶ X ∈ Σ(E) with dim�qm

C(X) ≥ r}.

dr(M) = min{dim�q
X ∶ X ∈ Σ with �∗(X) ≥ r, }
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  ◻

We use this relation and the following result from [18] about classical matroids to 
express the generalized rank weights in terms of certain Betti numbers.

Theorem  35 [17, Theorem  2] Let M = (E, �) be a matroid on a finite set E and 
Ni(M) the set of cycles of M of nullity i. Then

Theorem 36 For a Gabidulin rank-metric code C we have that: 

(a) 
 for the ℕ−graded Betti numbers of the Stanley–Reisner ring associated to the 
independence complex of the classical matroid Cl(MC)

∗.
(b) These ℕ−graded Betti numbers satisfy �r,s = 0 , for all s ≤ qn−1

q−1
 where s is not of 

the form [j] for some j.

Proof From Corollary 34 we have, can write,

Now Theorem 35 implies that � is a cycle of Cl(MC)
∗ of nullity r and of cardinality 

[j], if and only if the ℕ-graded Betti number �r,[j] of the associated Stanley–Reisner 
ring is nonzero. Thus (a) follows directly from the expression of dr in equation (3).

To prove (b), first we recall from Corollary 34 that all the cycles of Cl(MC)
∗ are 

of cardinality [j] for some j with 1 ≤ j ≤ n . Now from Theorem 35, it is clear that 
the ℕ−graded Betti numbers �r,s are zero if s is not of the form [j] for some positive j 
with j ≤ n .   ◻

4  Number of codewords of each rank weight via classical matroids

For this section we introduce some notations and fix some parameters. Let m, n be posi-
tive integers and C ⊆ � n

qm
 be a Gabidulin rank-metric code over �qm∕�q of dimension 

k ≤ min{m, n} with a generator matrix G = [(gi,j)] (i.e. a k × n-matrix, with entries in 

dr = min{dim�q
X|�∗(X) = r}

= min{dim�q
X|X is a q-cycle of (MC)

∗ of nullity r}

= min{j|X⟂ is a q-flat of MC of rank k − r and dimension n − j},

and, using Lemma16 again:

= min{j|P(X⟂) is a flat of Cl(MC) of rank k − r and cardinality qn−j−1 +⋯ + 1}

= min{j|P(X⟂)c is a cycle of Cl(MC)
∗ of nullity r and cardinality [j]}.

�i,�(M) ≠ 0 if and only if � ∈ Ni(M).

dr = min{j|�r,[j] ≠ 0},

(3)dr = min{j|� ∈ Nr(Cl(M)∗) and |�| = qn−1 +…+ qn−j}.
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�qm , and whose row space over �qm is C ) . Let Q = qm and Q̃ = Qr for some r ∈ ℕ . Let 
C̃ = C⊗�Q

�Qr denote the extension of C and thus C̃ can be considered as a Gabidulin 
rank-metric code over �Q̃∕�q.

Definition 37 For 0 ≤ s ≤ k, let AQ̃

C,s
 denote the number of words of rank weight s in 

C̃ = C⊗�Q
�Qr.

In this and the following section we will find expressions for AQ̃

C,s
 . First we fix bases 

for the field extensions considered in this section. Let {g1, g2,… , gr} be an arbitrary 
but fixed basis for �Q̃ over �Q . Therefore combining the fixed �q-basis {b1,… , bm} of 
�Q , we then once and for all use {bigj}1≤i≤m,1≤j≤r as a basis for �Q̃ over �q . We use the 
following ordering

of the �q-basis of �Q̃ and consider the representation of codewords in C̃ as (mr × n)

-matrices with entries in �q with respect to the ordered basis Br.
In this section we express AQ̃

C,s
 in terms of the nullity function of a classical 

matroid associated to the q-matroid corresponding to the Gabidulin rank-metric 
code C.

Lemma 38 Let C ⊆ � n
Q
 be a Gabidulin rank-metric code over �Q∕�q and 

C̃ = C⊗�Q
�Q̃, for Q̃ = Qr. Then we have

Proof The second equality is clear as dim�Q
�Q̃ = r.

For the first equality, it is enough to show that C̃(U) is isomorphic to C(U)⊕r as �Q
-vector spaces. We observe that C̃ , which is given as a row space over �Q̃ of a matrix 
with entries in �Q , can be written as a direct sum Cg1 ⊕ Cg2 ⊕⋯⊕ Cgr . The way 
we have chosen our basis Br to express codewords, it is clear that C̃(U) is a direct 
sum of C(U)g1 ⊕ C(U)g2 ⊕⋯⊕ C(U)gr. Hence it is clear that 
dim�Q

C̃(U) = r dim�Q
C(U) .   ◻

Remark 39 The above lemma implies that dim�Q̃
C̃(U) is independent of the choice 

of r so that Q̃ = Qr.

Corollary 40 Let C ⊆ � n
Q
 be a Gabidulin rank-metric code and C̃ be the extended 

code C⊗�Q
Q̃ where Q̃ = Qr for some r ∈ ℕ . Then the q-matroids (E, 𝜌C̃) correspond-

ing to the codes C̃ are the same for any r ∈ ℕ.

Proof For any U ⊆ � n
q
 , we have

Br = {g1b1, g1b2,… , g1bm, g2b1, g2b2,… , g2bm,… , grb1, grb2,… , grbm}

dim�Q
C(U) = dim�Q̃

C̃(U) =
1

r
dim�Q

C̃(U).
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which is independent of r by Lemma 38.   ◻

Remark 41 Corollary 40 is an obvious consequence if we consider the equivalent 
definition of rank function of the q-matroid associated to Gabidulin rank metric 
code as given in [23, Definition 22]. Indeed, 𝜌C̃(U) = rank(GYT ) where G is a gen-
erator matrix of C and YT is the transpose of a generator matrix of U. Since all codes 
C̃ defined as in Definition 37 have a common generator matrix, the q-matroids asso-
ciated the codes are also same.

Now we move onto giving our main result of this section, i.e., an expression 
for AQ̃

C,s
 , the number of codewords with rank weight s for s ∈ {1,… , n} , using the 

classical matroids corresponding to the q-matroid (E, �C).
First we define the some notions associated to C̃.

Definition 42 Let C be a Gabidulin rank-metric code over �Q∕�q of length n and 
C̃ = C⊗�Q

Q̃ . Then for any subspace U ⊆ � n
q
,

Then following Definitions 37 and 42, we have

Proposition 43 Let C be a Gabidulin rank-metric code over �Q∕�q of length n. Let 
MC = (� n

q
, �C) be its corresponding q-matroid and cl(MC) = (P(� n

q
), �) be the asso-

ciated classical matroid. Then for Q̃ = Qr,

where n∗
Cl(MC)

 denotes the nullity function of the dual matroid Cl(MC)
∗.

Proof We set MC . Let U1,… ,Uqn−1

q−1

 be the codimension 1 subspaces of E = � n
q
 . 

Therefore,

𝜌C̃(U) = dim�Q̃
C̃ − dim�Q̃

C̃(U⟂) =

dim�Q̃
C̃(E) − dim�Q̃

C̃(U⟂),

C̃(U) ∶= {x ∈ C̃ | Rsupp(x) ⊆ U} and A
Q̃

C,U
∶= |{x ∈ C̃|Rsupp(x) = U}|.

(4)
A
Q̃

C,n
= A

Q̃

C,E
and A

Q̃

C,s
=

∑
U ⊆ E

dimU = s

|AQ̃

C,U
|.

A
Q̃

C,n
= (−1)

qn−1

q−1

∑
𝛾⊆P(E)

(−1)|𝛾|Q̃n
∗
Cl(MC)

(𝛾)
,

(5)A
Q̃

C,E
= |C̃| − |{x ∈ C⊗�Q

Q̃|Rsupp(x) ⊆ Ui for some i}|
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We use si to denote the 1 dimensional subspace U⟂
i
 for 1 ≤ i ≤

qn−1

q−1
 . Note that

Since C̃(Ui) ∩ C̃(Uj) = C̃(Ui ∩ Uj) , similarly as above we get,

Following the same argument, we can say

for any positive integer a. Therefore

Therefore AQ̃

C,E
= (−1)

qn−1

q−1
∑

𝛾⊆P(E)

(−1)�𝛾�Q̃n
∗
Cl(MC)

(𝛾)
.   ◻

Remark 44 AQ̃

C,E
 is of course non-zero only if m ≥ n , since otherwise there cannot be 

any codeword of rank n in C̃.

Proposition 43 can be viewed as a variant of [16, Formula (10)], the proof of 
which was inspired by [24, Sect. 5.5.].

Using the result and procedure above we find expressions for the AQ̃

C,s
 for 

s = 0, 1,… , n − 1 . For that first we define the following q-matroid.

Definition 45 Let C be a Gabidulin rank-metric code of length n over �Q∕�q and let 
U be a subspace of E = � n

q
 with dim�q

U = s . By considering C(U) to be a Gabidulin 

(6)= Q̃k − | ∪
qn−1

q−1

i=1
C̃(Ui)|.

dim C̃(Ui) = dim�Q̃
C − 𝜌C(Ui

⟂)

= k − �Cl(MC)
(si)

= n
∗
Cl(MC)

(P(E)�si).

dim C̃(Ui) ∩ C̃(Uj) = dim�Q̃
C̃ − 𝜌C(Ui

⟂ ∪ Uj
⟂)

= k − �Cl(MC)
({si, sj})

= n
∗
Cl(MC)

(P(E)�{si, sj}).

dim C̃(∩a
j=1

Uij
) = n

∗
Cl(MC)

(P(E)�{si1 ,… , sia}),

∪
qn−1

q−1

i=1
C̃(Ui)|

=
∑
i

|C̃(Ui)| −
∑
i,j

|C̃(Ui) ∩ C̃(Uj)| +⋯ + (−1)
qn−1

q−1
−1

∑| ∩
qn−1

q−1

j=1
C̃(Uij

)|

=
∑
i

Q̃
n
∗
Cl(MC)

(P(E)�si) −
∑
i,j

Q̃
n
∗
Cl(MC)

(P(E)�{si,sj}) +⋯+

(−1)
qn−1

q−1
−1
Q̃

n
∗
Cl(MC)

(P(E)�P(E))

= (−1)
qn−1

q−1
−1
(
∑

𝛾⊆P(E)

(−1)|𝛾|Q̃n
∗
Cl(MC)

(𝛾)
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rank-metric code over �Q∕�q , its corresponding q-matroid is defined as 
MC(U) ∶= (U, �U) , where U is identified with � s

q
 and for any subspace V ⊆ U,

where V⟂
U

 is the orthogonal complement of V in U w.r.t. some chosen basis of U = � s
q

.

Lemma 46 For a Gabidulin rank-metric code C over �Q∕�q of length n and for any 
�q-subspace U of � n

q
 , let �∗

U
 be the nullity function of the q-matroid M∗

C(U)
 . Then 

�∗
U
= �∗

C
 . In other words, the q-cycles of M∗

C
 contained in U and the q-cycles of 

M
∗
C(U)

 are the same.

Proof Since V ⊆ U , whatever basis we pick, we obtain 
�∗
U
(V) = dim�q

C(U)(V) = dim�q
C(V) = �∗

C
(V) and thus the statement of the lemma 

follows.   ◻

Definition 47 For any subspace U ⊂ E = � n
q
 , with a fixed basis and dot product, and 

any q-matroid M = (E, �) with conullity function �∗ , we let MU = (U, �U) be the 
q-matroid with ground space U and conullity function �∗

U
 , such that �∗

U
(V) = �∗(V), 

for all subspaces V ⊂ U.

From Lemma 46 it is then clear that (MC)U = MC(U).

Using Proposition 43 we then obtain the following expression for AQ̃

C,U
:

Proposition 48 Let C be a Gabidulin rank-metric code over �Q∕�q of length n. Let 
M = MC = (� n

q
, �C) be its corresponding q-matroid and Cl(MC) = (P(� n

q
), �) be the 

associated classical matroid. Then for Q̃ = Qr and U ⊆ � n
q
,

where n∗
Cl(MU )

 is the nullity function of the dual classical matroid Cl(MU)
∗.

Proof Recall that AQ̃

C,U
 is the number of codewords in C⊗�Q

Q̃ , whose rank support 
is exactly U or the number of codewords in C̃(U) whose rank support is exactly U. 
Since C̃(U) = C(U)⊗�Q

�Q̃ , it is clear that AQ̃

C,U
= A

Q̃

C(U),U
 . Thus the result directly 

follows from Proposition 43.   ◻

Remark 49 In stark constrast to the statement in Lemma 46, n∗
Cl(MU )

(�) is not in gen-
eral equal to n∗

Cl(M)
(�) , for � contained in P(U). We have n∗

Cl(M)
(�) = 0 for all 

� ∈ P(U) if U ≠ E (all cycles of Cl(M)∗ are to big to be contained in such a P(U)).

�U(V) = dim C(U) − dim C(U)(V⟂
U
),

A
Q̃

C,U
= (−1)

qs−1

q−1

∑
𝛾⊆P(U)

(−1)|𝛾|Q̃n
∗
Cl(MU )

(𝛾)
,
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Nevertheless, as an immediate consequence of Proposition 48, we get:

Corollary 50 
for s = 0, 1,… , n − 1, n.

Here the sum is over all U with dim U = s . Since the number of � and U is finite 
for a fixed q, we conclude that:

Corollary 51 There exists a polynomial P ∈ ℤ[X] of degree

such that P(Qr) = A
Qr

C,s
 , for all r ∈ ℤ.

Proof The only thing left to prove is the statement about the degrees. All exponents 
occurring in the expression for AQ̃

C,s
 are at most the maximum of the numbers 

n
∗
U,Cl(M)

(U) for all U of dimension s. But these numbers are simply dim C(U) .   ◻

Remark 52 Corollary 51 can be easily derived from descriptions by other authors, 
and then typically from descriptions of Delsarte codes in general, but we have 
included it here for completeness of our own exposition. See for example [4, Remark 
3.5 and Theorem 3.8].

5  Number of codewords of each rank weight and Betti numbers

We will briefly demonstrate another well known and more direct way to find the AQ̃

C,s
 , 

i.e. the number of words of rank weight s (for small s an integer) in C⊗�Q
�Q̃ for 

0 ≤ s ≤ n, where Q̃ = Qr.
Recall that AQ̃

C,W
 for a subspace W ⊆ � n

q
 , we mean the number of words in C⊗�Q

�Q̃ 
with rank support W. From the definition, it follows that

Möbius inversion (See for example [31, 23, Proposition 3.7.1] and how it used in [4, 
Formula(7)]) gives:

But following Lemma 38, we have

A
Q̃

C,s
= (−1)

qs−1

q−1

∑
U,dim U=s

∑
𝛾⊆P(U)

(−1)|𝛾|Q̃n
∗
Cl(MU )

(𝛾)
,

max{dim C(U) ∶ U ⊆ �
n
q
with dim U = s, }

|C̃(U)| = ∑
V⊆U

A
Q̃

C,V
.

A
Q̃

C,U
=

∑
V⊆U

(−1)dimU−dimVq(
dimU−dimV

2
)|C̃(V)|.
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This gives:

Proposition 53 
for s = 1,… , n.

An advantage with this expression, compared with that in Corollary 50, is that the 
conullity �∗

C
 refers to the same q-matroid MC , for all the U appearing in the formula.

Comparing the two expressions of AQ̃

C,s
 in Corollary 50 and Proposition 53, we have 

the following result.

Corollary 54 Let M = MC = (E = � n
q
, �) for a Gabidulin rank-metric code C and 

let Cl(MU) be the classical matroid corresponding to the q-matroid MU for a sub-
space U of E . Then as formal polynomials in ℤ[X] we have:

for s = 0, 1,… , n − 1, n.

Proof These are both polynomials, and the difference between them has zeroes for 
Qr , for infinitely many r. But any non-zero polynomial over any field (in this case ℚ 
or ℝ ) has only finitely many zeroes. Hence the difference between the two polyno-
mials appearing in the corollary is the zero polynomial.   ◻

Definition 55 For a Gabidulin rank-metric code C , we use AC,s(X) to denote the 
polynomial(s) in Corollary 54. This is called the s-th generalized rank weight poly-
nomial of the code C.

Definition 56 For any q-matroid M , let PM,s(X) denote the polynomial appearing 
on the left side in Corollary 54. We call the PM,s(X) the s-th generalized rank weight 
polynomial of a q-matroid M.

|C̃(V)| = Q̃
dimF

Q̃
(C̃(V))

= Q̃
dim�Q

C(V)
, and

dim�Q
C(V) = dim�Q

C − 𝜌C(V
⟂) = k − 𝜌C(V

⟂) = dim U − 𝜌∗
C
(V) = 𝜂∗

C
(V).

A
Q̃

C,s
=

∑
U ⊆ E

dim U = s

∑
V⊆U

(−1)dim U−dim Vq(
dim U−dim V

2
)Q̃𝜂∗

C
(V),

(−1)
qs−1

q−1

∑
U ⊆ E

dimU = s

∑
𝛾⊆P(U)

(−1)|𝛾|Xn
∗
Cl(MU )

(𝛾)

=
∑

U ⊆ E

dimU = s

∑
V⊆U

(−1)dimU−dimVq(
dimU−dimV

2
)X𝜂∗

M
(V),
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Remark 57 Note that AC,s(Q̃) = PMC,s
(Q̃) = A

Q̃

C,s
 for Q̃ = Qr for any r ∈ ℕ for any 

Gabidulin rank-metric code C.

From this result we obtain:

Corollary 58 For a Gabidulin rank-metric code we have: 
di = min{s| degPMC,s

(X) = i} , for i = 1,… , k , and PMC,s
 the s-th generalized rank 

weight polynomial of the q-matroid MC.

Proof From Definition 32, valid for any q-matroid M : 
di(M) = min{dim U|�∗(U) = i} for any q-matroid M . Compare with the right side 
of Corollory 54.   ◻

We now have:

Proposition 59 For a q-matroid M = (E = � n
q
, �) , let N = Cl(M)∗ . Then we have:

Proof This is a special case of [16, Theorem 5.1] which (in the relevant case) says 
that for any classical matroid M = (E, �) of rank k: the polynomial

is equal to

Comparing with the left version of PM,n in Corollary 54, or the expression in Propo-
sition 48, one obtains the result.   ◻

Let U be a cycle of dimension s ∈ {1,… , n} for a q-matroid M . Then Proposi-
tion 59 immediately gives:

where �(l)
i,P(U)

(NU) and �(l−1)
i,P(U)

(NU) refer to Betti numbers of the classical matroid 
NU = Cl(MU)

∗ , and kU = dim MU . Hence we obtain that PM,s(X) is the sum of all 

PM,n(X) =

k∑
l=0

k∑
i=0

(−1)i(�
(l)

i,
qn−1

q−1

(N) − �
(l−1)

i,
qn−1

q−1

(N))Xl =

k∑
l=0

k∑
i=0

(−1)i(�
(l)

i,P(E)
(N) − �

(l−1)

i,P(E)
(N))Xl.

(−1)|E|
∑
𝛾⊂E

(−1)|𝛾|XnM∗ (𝛾).

k∑
l=0

k∑
i=0

(−1)i(�
(l)

i,E
(M∗) − �

(l−1)

i,E
(M∗))Xl.

PU(X) =

kU∑
l=0

kU∑
i=0

(−1)i(�
(l)

i,P(U)
(NU) − �

(l−1)

i,P(U)
(NU))X

l,
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such expressions for all U of dimension s. We recall that for a Gabidulin rank-metric 
code C then PU(Q̃) is the number of codewords of rank support U in C̃ . We would 
like to relate the Betti numbers appearing in these expressions, and which refer to 
different matroids (Cl(MU))

∗ to Betti numbers of one single matroid Cl(M)∗ (which 
PM,n(X) ) already does, but none of the other PM,s so far). To remedy this lack of 
simplicity we refer to the Corollary 61 below, given in [17, Corollary 2], and using 
the exposition on p. 59 in [30]. But first we recall the following classical definition:

Definition 60 Let L be a lattice. The Möbius function �L(a, b) is defined recursively 
by �L(a, a) = 1 , and 𝜇(a, b) = −Σa≤c<b𝜇(a, c).

Corollary 61 [17, Corollary 21] For a matroid M = (E, �) and a subset X ⊂ E we 
have

where LF(M∗) and LC(M) refer to the lattices of flats of M∗ and cycles of M, 
respectively.

Since we know that �i,X = 0 for all i different from the nullity n(X) , Corol-
lary 61 implies that the Betti numbers of a classical matroid, and also of all of 
its elongation matroids, are entirely determined by the lattice of cycles of the 
matroid. This makes the following result important:

Proposition 62 Let M be a q-matroid on E = � n
q
 and U be a q-cycle of the dual 

q-matroid M∗ . Then the following 4 lattices are isomorphic

• The sublattice of q-cycles of M∗ contained in U.
• The lattice of q-cycles of M∗

U
.

• The lattice of cycles of Cl(MU)
∗.

• The sublattice of cycles of Cl(M)∗ contained in the cycle R(U) = P(E) − P(U⟂).

Proof From Definition 47, it follows directly that the two first lattices are identical. 
The second and third lattices are isomorphic, by Proposition 21(b). Thus it is suf-
ficient to show that the fourth lattice is isomorphic to any of the three lattices above.

Note that, since U is a q-cycle of M∗ , then R(U) = P(E) − P(U⟂) is a cycle of 
Cl(M)∗ . Furthermore, if V, W are q-cycles contained in the q-cycle U, then V ⊆ W 
if and only if P(V) ⊆ P(W) if and only if R(V) ⊆ R(W) ). Hence the first and fourth 
lattices are isomorphic and we get the desired result.   ◻

By Corollary 61 and Proposition 62 the Möbius functions of all these lat-
tices can be expressed by Betti numbers relating to the single classical matroid 
N = Cl(M∗

C
). In particular the isomorphism between the third and fourth lattices 

above gives that

�
n(X),X = (−1)n(X)�LF(M

∗)(E�X,E) = (−1)n(X)�LC(M)(�,X),
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For the rightmost equality we have used that in general �i,�(M) = �i,�(M|�) for a 
matroid M. We then obtain:

Proposition 63 Given a q-matroid M . Then

for the classical matroid N = Cl(M)∗.

Since we know that there are no other cycles of Cl(M)∗ than those of the form 
R(U), we also know that �(l−1)

i,X
= 0 for all X ⊆ P(E) not of this form. Hence we 

obtain

Theorem 64 Let M be a q-matroid. Then the s-th generalized weight polynomial of 
M is given by

where N = Cl(M)∗ , the dual classical matroid corresponding to M . Consequently, 
the number of codewords of rank weight s in C̃ is

We recall the definition: di(M) = min{dim U|�∗(U) = i}) , valid for all 
q-matroids M . From Proposition 62 we also obtain the following generalization 
of Corollary 54:

Corollary 65 For any q-matroid M we have: di(M) = min{s| degPM,s(X) = i}.

Proof We recall the definition:

But by Proposition 62 (the isomorphism between the first and the third lattice there), 
even the third equality below holds:

�
(l)

i,P(U)
(NU) = �

(l)

i,R(U)
(N|R(U)) = �

(l)

i,R(U)
(N).

PM,s(X) =
∑

dimU=s

k∑
l=0

k∑
i=0

(−1)i(�
(l)

i,R(U)
(N) − �

(l−1)

i,R(U)
)(N))Xl,

PM,s(X) =

k∑
l=0

k∑
i=0

(−1)i(�
(l)

i,[s]
(N) − �

(l−1)

i,[s]
(N))Xl,

AC,s(Q̃) =

k∑
l=0

k∑
i=0

(−1)i(𝛽
(l)

i,[s]
(N) − 𝛽

(l−1)

i,[s]
(N))Q̃l.

PM,s(X) = (−1)
qs−1

q−1

∑
U ⊆ E

dimU = s

∑
𝛾⊆P(U)

(−1)|𝛾|Xn
∗
Cl(MU )

(𝛾)
.
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This proves the corollary.   ◻

Definition 66 Given a Gabidulin rank-metric code C . Then the i-th generalized rank 
weight distribution of C is the integer vector whose u-th component, 0 ≤ u ≤ n , is 
defined by

where, for any U ⊆ E,

The following two results can be viewed as an adaptation to the rank-metric situa-
tion of the arguments given in [22, Lemma 5.4, Prop. 5.28].

Lemma 67 For an element � ∈ C̃ , let M be the corresponding (r × n) matrix, refer-
ring to our fixed basis {g1,… , gr} of �Qr over �Q. Let D be the subspace of C gener-
ated by the rows of the matrix M. Then wt(�) = wt(D) ∶= dim�q

Rsupp(D) , where 
wt(�) denotes the rank weight of �.

Proof Let � = (c1,… , cn) ∈ C̃, and cj =
r−1∑
i=0

ci,jgi , so that the ijth entry of � is ci,j . 

From definitions of rank weight and rank support, it follows that wt(�) = wt(D) .   ◻

Proposition 68 Let C be a [n, k]qm Gabidulin rank-metric code.

Then

where [r, s]qm is the number of Fqm-linear subspaces of dimension s contained in Fr
qm
.

Proof Here AC,w(q
mr) is the number of codewords of C̃ = C⊗�qm

�qmr of rank weight 
w, which we get by substituting T = qmr in the polynomial AC,w(T) . Now we do the 
counting in another way. Let � be an element of C̃ which corresponds to a (r × n)

min{s| degPM,s(X) = i}

= min{s| there exist 𝛾 ,U with dim(U) = s and 𝛾 ⊂ P(U) and n∗
Cl(MU )

(𝛾) = i}

= min{s| there exists U with dim(U) = s and n∗
Cl(MU )

(P(U)) = i}

= min{s| there exists U with dim(U) = s and 𝜂∗
M
(U) = i}

= di.

A
(i)

C,u
∶=

∑
U ⊆ E

dim U = u

A
(i)

C,U
,

A
(i)

C,U
∶= |{D ⊆ C ∶ dim(D) = i,Rsupp(D) = U}|.

AC,w(q
mr) =

k∑
s=0

[r, s]qmA
(s)

C,w
,
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-matrix � with rows in C . Let D be the subcode of C generated by the rows of � and 
it has rank weight w and dimension s. On the other hand, for any subcode D1 ⊆ C of 
dimension s and rank weight w, we consider �1 to be a generator matrix of D1 . Then 
left multiplication of a r × s matrix of rank s with �1 gives an element of Cr , which 
has the same rank weight w. The number of r × s matrices in �qm of rank s is equal to 
[r, s]qm = Πs−1

i=0
(qmr − qmi) . Therefore, the number of codewords of C̃ of rank weight 

w is equal 
k∑

s=0

[r, s]qmA
(s)
w

 .   ◻

Definition 69 Given a q-matroid M . For each j ∈ {0, 1,… ,
qn−1

q−1
} and 

l ∈ {0, 1,… , k} we set

referring to Betti numbers of Cl(M)∗ and its elongations. We set �j = �
(0)

j
.

Theorem 70 The following 4 sets of data are equivalent for a Gabidulin rank-metric 
code C with the associated q-matroid M:

• The s-th generalized weight polynomial PM,s(X) of M for all s,
• The s-th generalized weight polynomial AC,s(X) of C for all s,
• The j-th generalized weight distribution ( A(j)

C,s
 ) of C for all j,

• The alternative sum of (elongated) Betti numbers �(l)

j
 of Cl(M)∗ for all j, l.

Proof By definition, the two polynomials PM,s(X) and AC,s(X) of C are same. The 
equivalence between the AC,s(X) and the A(j)

C,s
 is given by Proposition 68. By Theo-

rem 64 the PM,s(X) are determined by the �(l)

j
 . Moreover, Theorem 64 shows that 

one, starting with l = 0 , can determine the �(l)

j
 recursively for all l if one knows the 

PM,s(X) .   ◻

We also obtain:

Corollary 71 For a q-matroid M in general the following are equivalent:

• The PM,s(X) for all s.
• The �(l)

j
 for all j, l.

Proof In the part of the proof of Theorem 70 which is relevant here, we use Theo-
rem 64, which is valid for all q-matroids.   ◻

�
(l)

j
=

k∑
i=0

(−1)i�
(l)

i,j
,
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Remark 72 One is sometimes interested in q-matroids M , such that all q-flats of the 
same rank have the same dimension, for all fixed ranks. These are called q-perfect 
matroid designs (q-PMD), e.g., see [3]. This is the same as Cl(M) having all flats of 
a given fixed rank the same cardinality, and the same as N = Cl(M)∗ having all its 
cycles of each fixed nullity the same cardinality. This is equivalent to saying that in 
the resolution of the Stanley–Reisner ring of N, we have �i,j ≠ 0 for only if one j (say 
j = di ) for each i = 1,… , rk(M) (and then �di

= �i,di ). Hence the resolution is pure 
in this sense if and only all q-flats of the same rank of M have the same dimension. 
In this case all Stanley–Reisner rings of the elongations of N also have pure resolu-
tions, and it is particularly easy to find all �(l)

j
 in terms of the di , due to the Herzog-

Kühl equations, see, for example, [15] or [1, Def. 3.1 and Remark 3.2]

Remark 73 

• Theorem 70 is a q-analogue of [20, Corollary 17], which applies to Hamming 
codes and associated matroids. In both [20] and [21] one found all the �(l)

j
 , and 

using this corollary, one found all the weight spectra, i.e. all the A(j)
s  for two kinds 

of Veronese codes. It is unclear whether such techniques are useful for Gabidulin 
rank-metric codes, as it is for Veronese Hamming codes.

• Corollary 71 indicates an extended range of applications for the reasoning above, 
including an extension of Theorem 70. One could imagine q-matroids coming 
from a wider class of objects than that of Gabidulin rank-metric codes. An exam-
ple could be any subset C of the space of (m × n)-matrices over � q , such that the 
subset C(U) had cardinality qms = Qs for some s = s(U) for all �q-subspaces U of 
� n
q
 . And C̃ could be defined as just Cr . The rank function logQ|C| − logQ|C(U⟂)| 

could then be used to give results like Corollary 71 and possibly to Theorem 70 
also, for such “almost affine Gabidulin rank-metric codes”, as one could call 
them. To obtain a full extension of Theorem 70 to such codes, one must also then 
define, and successfully treat, some hierarchy of natural “almost affine Gabidu-
lin subcodes” from which one could define the A(j)

s  . Generalizations from linear 
Hamming codes to almost affine codes were treated in [2] and [19]. It is not clear 
to us how interesting it will be to extend the class of linear (usual), rank-metric 
Gabidulin rank-metric codes to such an analogous, bigger class of codes.

• One may wonder whether the same or similar techniques can be used to express 
generalized weights and weight spectra for Delsarte rank-metric code by Betti 
numbers. This is in general difficult, since then we must then handle (q, m)-poly-
matroids M instead of q-matroids. The axiom (P1) 

 for subspaces X ⊂ E = � n
q
, for (q, m)-polymatroids does not imply (R1) of Defi-

nition 1: 0 ≤ r(S) ≤ |S| then, but only 0 ≤ r(S) ≤ m|S| , for � = �� defined as in 
Definition 14. So, in order to have some hope to get a classical matroid, one is 
led to redefine: 

0 ≤ �(X) ≤ m dimX,
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 for any set S of 1-dimensional subspaces of E. Then axiom (R1) holds. But 
we have no guarantee that 𝜌(< S >) is a multiple of m for all X for an arbitrary 
(q,  m)-matroid, and then r 𝜌(S) =

1

m
𝜌(< S >) may not be an integer, and then 

Cl(M) defined via Definition 1 is not a matroid even if �� would satisfy the three 
axioms (R1),(R2),(R3).

  Example: For (q, m)-polymatroids coming from Delsarte rank-metric codes C 
we have �(X) = dimC − dimC(X⟂) , and the values dimC and dimC(X⟂) , which 
are dimensions over �q , could very well give a �-value, that is not divisible by m. 
They are on the other hand guaranteed to be multiples of m if C is a Gabidulin 
rank-metric code.

  On the other hand, it is shown in [9, Theorem 3.9] how a q-matroid can be 
associated to a (q,  m)-polymatroid so that certain sets of independent spaces 
coincide. We do not rule out the possibility that this can be useful also in a set-
ting like ours.

• For classical matroids the �j play a role as certain coefficients of the two-variable 
coboundary polynomials, as is shown in [17, Proposition 5]. It is conceivable that 
they may play a similar role for q-matroids. One may raise the question whether 
the MacWilliams identities (See [12, Theorem 1]) in the case of Gabidulin rank-
metric codes can be formulated in terms of Betti numbers. It is possible by writ-
ing the weight distributions of a code and its dual in terms of Betti numbers. 
But at the present stage it is unclear if doing it, using Betti numbers connected 
to matroids derived from two dual q-matroids will give any new insight. So we 
leave it for further investigation.

6  Two different ways of determining rank‑weight spectra

In this section, we demonstrate with concrete examples how to determine (gen-
eralized) rank-weight spectra of Gabidulin rank-metric codes. While in the first 
example we use the expression in Theorem 64 to determine the rank-weight dis-
tribution and Proposition 68 to determine the higher weight spectra, in the second 
example we consider the class of MRD codes and determine the weight spectra 
directly from the corresponding (uniform) q-matroids.

Example 74 Consider the field extension �24∕�2 of degree 4, and let a be a root in �24 
of the irreducible polynomial X4 + X + 1 in �2[X] so that �24 = �2(a) . Let C be the 
rank-metric code of length 4 over the extension �24 of �2 such that a generator matrix 
of C is given by

r𝜌(S) =
1

m
𝜌(< S >),

G ∶=

⎛⎜⎜⎝

a2 + a + 1 a2 a3 + a + 1 a3 + a2 + a + 1

a2 + a + 1 a3 + 1 a a + 1

a2 + 1 1 a2 + 1 a3 + 1

⎞⎟⎟⎠
.
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Let MC be the q-matroid over � 4
2
 corresponding to the rank-metric code C and let N 

be the classical matroid Cl(MC)
∗ . We consider the simplicial complex ΔN associated 

to the matroid N.
We remark that this is a case, where m = n(= 4), but we are not making any con-

siderations here, about what happens if we look at column spaces instead of row 
spaces. We just follow the recipe described above and find the weight spectrum of 
the code, as described, using row spaces as supports. Here we list the (elongated) 
Betti numbers of the Stanley–Reisner ring associated to the simplicial complex ΔC.

The Betti numbers here are computed using Magma [25], and a program code 
where one finds the numbers via a certain adaptation of Hochster’s formula [13], 
which here may be used to express these numbers in terms of relevant homological 
invariants.

We use �i,[j] to denote the Betti number �i,qn−1+qn−2+⋯+qn−j . By Theorem  36, the 
minimum weight of C is 1 as min{j | �1,[j] ≠ 0} = 1 . Now we determine the weight 
spectrum (A0,A1,A2,A3,A4) of C by substituting the values of the Betti numbers in 
the expression of AC,s(q

m) as proved in Theorem 64.
For ease of calculation we expand the expression for AC,s(q

m) as follows.

A0(2
4) = 1, A1(2

4) = 15, A2(2
4) = 420, A3(2

4) = 2460, and A4(2
4) = 1200.

Example 75 Let C be an [n, k, d] MRD code over �qm = �Q and let C̃ be its extended 
code C̃ = C⊗�Q

�Q̃ . Let the q-matroid associated to the MRD code C is the uniform 
q-matroid M.

Step 1
Recall that the s-th generalized rank-weight polynomial of M is

�0,0 = 1

�1,8 = 1

�1,12 = 28

�2,14 = 76 �
(1)

1,14
= 15

�3,15 = 48, �
(1)

2,15
= 14 �

(2)

1,15
= 1

As(q
m) = (−�

(0)

1,[s]
+ �

(0)

2,[s]
− �

(0)

3,[s]
) + qm(−�

(1)

1,[s]
+ �

(1)

2,[s]

− �
(1)

3,[s]
) − qm(−�

(0)

1,[s]
+ �

(0)

2,[s]
− �

(0)

3,[s]
)

+ q2m(−�
(2)

1,[s]
+ �

(2)

2,[s]
− �

(2)

3,[s]
) − q2m(−�

(1)

1,[s]
+ �

(1)

2,[s]
− �

(1)

3,[s]
).

PM,s(X) =
∑

dim U=s

k∑
l=0

k∑
i=0

(−1)i(�
(l)

i,R(U)
(N) − �

(l−1)

i,R(U)
)(N))Xl.
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Note that for a subspace U ⊆ E = � n
q
 , we have |R(U)| = |P(E) − P(U⟂)|

= q
n−1 + q

n−2 +⋯ + q
n−s . Therefore,

Step 2 Now we compute the (elongated) Betti numbers of Cl(M)∗ , the dual of the 
classical matroid associated to the q-matroid.

Consider the lattice of cycles of Cl(M)∗ , say, L∗ . We use the following formula 
for computing Betti numbers: ��∗(X),X = |�L∗ (�,X)|, where �∗ is the nullity function 
of Cl(M)∗.

Note that, if M is a q-matroid of rank k, then the cycles of Cl(M)∗ with nullity i 
have cardinalities qn−1 + qn−2 +⋯ + qk−i for 1 ≤ i ≤ k . Let ci denote a cycle of car-
dinality qn−1 + qn−2 +⋯ + qk−i with nullity i. Note that there are 

[
n

k−i

]
 cycles ci of 

nullity i in the lattice L∗ and there are 
[
k−j

k−i

]
=
[
k−j

i−j

]
 many cycles cj of nullity j con-

tained in ci.

Here d = n − k + 1 . As we know that �i,� ≠ 0 if and only if � ∈ Ni (the cycles of 
nullity i), by Corollary 34, the nonzero ℕP(E)-graded Betti numbers of Cl(M)∗ are of 
the form �i,qn−1+⋯+qk−i for 1 ≤ i ≤ k . Thus using the recursive formula for the Möbius 
function of L∗ , we get the expression for the non-zero Betti numbers as follows,

PM,d(X) = �
(0)

1,[d]
X − �

(0)

1,[d]
,

PM,d+1(X) = �
(1)

1,[d+1]
X2 − (�

(1)

1,[d+1]
+ �

(0)

2,[d+1]
)X + �

(0)

2,[d+1]
,

PM,d+2(X) = �
(2)

1,[d+2]
X3 − (�

(2)

1,[d+2]
+ �

(1)

2,[d+2]
)X2 + (�

(1)

2,[d+2]
+ �

(0)

3,[d+2]
)X − �

(0)

3,[d+2]
,

⋮ ⋮

PM,n(X) = �
(k−1)

1,[n]
Xk − (�

(k−1)

1,[n]
+ �

(k−2)

2,[n]
)Xk−1 +⋯ + (−1)k−2(�

(1)

k−1,[n]
+ �

(0)

k,[n]
)X

+ (−1)k−1�
(0)

k,[n]
.

(7)Then hi ∶= 𝜇(�, ci) = −𝜇(�, �) −
∑
cj⊊ci

𝜇(�, cj)

(8)= −1 −

[
k − 1

i − 1

]
�(�, c1) −⋯ −

[
k − i + 1

1

]
�(�, ci−1)

(9)= −1 −

[
k − 1

i − 1

]
h1 −⋯ −

[
k − i + 1

1

]
hi−1.
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We determine the l-th elongated Betti numbers of Cl(M)∗ for a fixed 0 ≤ l ≤ k.

�
(l)

k−l,[n]
=
[
n

n

]
q
(
[
n

1

]
q
�
(l)

k−l−1,ck−l−1
−
[
n

2

]
q
�
(l)

k−l−2,ck−l−2
+⋯ + (−1)n−d−l

[
n

n−l

]
q
�
(l)

1,c1
). Step 3

We determine the weight spectra (AC,w) from the weight enumerator poly-
nomials by determining these values for some particular values of w. Since 
AC,w(Q) = PM,w(Q) , thus

and so on. The weight spectra of MRD codes is determined in [4] as follows

For r = d, d + 1 , this gives us

𝛽i,[n−k+i] =

[
n

n − k + i

]

q

hi.

𝛽1,[n−k+1] =

[
n

n − k + 1

]

q

|𝜇L∗ (�,X)|, where X is a cycle of cardinality [n − k + 1].

𝛽2,[n−k+2] =

[
n

n − k + 2

]

q

|𝜇L∗ (�,X)|, where X is a cycle of cardinality [n − k + 2]

=

[
n

n − k + 2

]

q

|∑
X⊊Y

𝜇L∗ (�,X) + 𝜇(�, �)|

=

[
n

n − k + 2

]

q

(

[
d + 1

1

]

q

− 1).

𝛽i,[n−k+i] =

[
n

n − k + i

]

q

|𝜇L∗ (�,X)|, where X is a cycle of cardinality [n − k + i].

�
(l)

1,c1
= 1 �

(l)

1,[d+l]
=

[
n

d + l

]

q

�
(l)

1,c1

�
(l)

2,c2
=

[
d + l + 1

1

]

q

− 1 �
(l)

2,[d+l+1]
=

[
n

d + l + 1

]

q

�
(l)

2,c2

�
(l)

3,c3
=

[
d + l + 2

1

]

q

�
(l)

2,c2
−

[
d + l + 2

2

]

q

�
(l)

1,c1
�
(l)

3,[d+l+2]
=

[
n

d + l + 2

]

q

�
(l)

3,c3

⋮ ⋮

AC,d = PM,d(X)|X=qm = �
(0)

1,[d]
qm − �

(0)

1,[d]

=

[
n

d

]
(qm − 1).

AC,d+1 = PM,d+1(X)|X=qm = �
(1)

1,[d+1]
q2m − (�

(1)

1,[d+1]
+ �

(0)

2,[d+1]
)qm + �

(0)

2,[d+1]

=

[
n

d + 1

]
(q2m −

[
d + 1

1

]
qm +

[
d + 1

1

]
− 1).

AC,r =

[
n

r

] r−d∑
i=0

(−1)iq(
i

2
)
[
r

i

]
(qmk−m(n+i−r) − 1).
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as expected.
Step 4 The higher weight spectra {A(s)

w
} , for s ≥ 2 can be easily obtained by com-

bining Proposition 68 with the knowledge of the AC,w(Q). For example we determine 
the value A(2)

d+1
.

Since Ad+1(q
2m) =

[
n

d+1

]
(q4m −

[
d+1

1

]
q2m +

[
d+1

1

]
− 1) , after extending and simplify-

ing the above equation we get,

7  Virtual Betti numbers

The two examples in Sect.  6 are really different, in the sense that in Example 
74 we work with the Stanley–Reisner ring of the classical matroid N = Cl(M)∗, 
find its independence complex, and cycles, and treat it as any classical matroid, 
regardless of the fact that it “comes from” a q-matroid. In Example 75, how-
ever, we do not touch any classical matroid at all, in our concrete computations. 
The classical matroid basically just serves as a justification there, to work with 
Möbius functions of the lattice of q-cycles of M∗ . We only know how to associate 

AC,d =

[
n

d

]
(qmk−m(n−d) − 1) =

[
n

d

]
(qm − 1).

AC,d+1 =

[
n

d + 1

]
(q2m −

[
d + 1

1

]
qm +

[
d + 1

1

]
− 1)

Ad+1(q
2m) =

k∑
s=0

[r, s]qmA
(s)

d+1

=

k∑
s=0

Πs−1
i=0

(qmr − qmi)A
(s)

d+1

= (q2m − 1)A
(1)

d+1
+ (q2m − 1)(q2m − qm)A

(2)

d+1

= (qm + 1)A
(0)

d+1
+ (q2m − 1)(q2m − qm)A

(2)

d+1

= (qm + 1)

[
n

d + 1

]
(q2m −

[
d + 1

1

]
qm +

[
d + 1

1

]
− 1)

+ (q2m − 1)(q2m − qm)A
(2)

d+1

[
n

d + 1

]
(q4m − q3m − q2m + qm) = (q2m − 1)(q2m − qm)A

(2)

d+1

[
n

d + 1

]
(q2m − 1)(q2m − qm) = (q2m − 1)(q2m − qm)A

(2)

d+1

A
(2)

d+1
=

[
n

d + 1

]
.



239

1 3

São Paulo Journal of Mathematical Sciences (2023) 17:208–241 

Stanley–Reisner rings to the independence complex of classical matroids and 
their elongations. From those rings we have seen that we can derive the Betti 
numbers of minimal resolutions as modules over polynomial rings. Moreover, it 
is clear that, via Corollary 61, we can associate well-defined Möbius-numbers to 
each such Betti number, where these numbers are defined in terms of the lattice 
of cycles of the matroid in question. Equivalently, it can be defined in terms of 
the inverted lattice, in this case the geometric lattice of flats of the dual matroid. 
We now define:

Definition 76 Let L be a lattice with rank function r. For l ∈ {0, 1,… , r(L)}, let L(l) 
be the lattice obtained by replacing all the points of L of rank at most l by a single 
point, which then becomes the zero of L(l) . Then the rank function of L(l) is given by 
r(l)(P) = r(P) − l for any P ∈ L with r(P) ≥ l and 0, otherwise. We set

Here �(l) is the Möbius function of the lattice L(l).

Definition 77 Let L be a lattice with rank function r. Then for a given non-negative 
function f ∶ L → ℕ0, we set

We call V (l),f

i,j
 the l-th elongated virtual ℕ-graded Betti numbers and Vf

i
 the ungraded 

virtual Betti numbers.

For a Gabidulin rank-metric code C , we have already seen that the lattice of 
q-cycles of M∗

C
 and the lattice of cycles of N∗ = Cl(MC)

∗ are isomorphic and if U 
be a q-cycle with dim U = j , then the cardinality of its corresponding cycle R(U) of 
N∗ is qn−1 + qn−2 +⋯ + qn−j . We then associate the functions f1 and f2 to these lat-
tices, respectively, where f1(U) = dim U , and f2(X) = |X| if X is of the form R(U) 
for U a q-cycle of dimension j, and 0 otherwise (or just f2 = |X| for all X ⊆ P(E) ). It 
is then evident that:

for each q-cycle U, and that:

So in Example 74, we really did use the “virtual Betti numbers” V (l)

i,j
= V

(l),f1
i,j

 to deter-
mine AC,w(Q) (or AC,w(Q̃) if one prefers). It is clear in that all results in the previous 
sections, involving the �(l)

i,R(U)
 or the �(l)

[j]
 one can replace these invariants with the vir-

tual Betti numbers, and thus reformulate all these results, only referring directly to 

V
(l)

i,P
=

{
(−1)r(P)−l�(l)(0,P) if r(P) = l + i,

0 otherwise,
and Vi,P = V

(0)

i,P
.

V
(l),f

i,j
=

∑
r(P)=l+i,f (P)=j

V
(l)

i,P
, and V

f

i,j
= V

(0),f

i,j
, and V

f

i
=
∑
j

V
f

i,j
.

�
(l)

i,R(U)
= V

(l),f1
i,U

,

�
(l)

i,[j]
= V

(l),f1
i,j

.



240 São Paulo Journal of Mathematical Sciences (2023) 17:208–241

1 3

the lattice of q-cycles of M∗
C
 . In practical situations, one might prefer to use differ-

ent lattices depending on the tools one has at hand, as explained in Examples 75 and 
74.
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