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Abstract
Since the first case of COVID-19 was detected in Wuhan, China in December 2019, 
COVID-19 has become a pandemic causing a global economic and public health 
emergency. There is no known treatment or vaccine available for COVID-19 dur-
ing the initial period of the outbreak. Immunotherapy and plasma therapy has been 
used with satisfactory efficacy over the past two decades in many viral infections 
like SARS (Systemic Acute Respiratory Syndrome), MERS (Middle East Respira-
tory Syndrome) and H1N1. Limited data from China show clinical benefit, radio-
logical resolution, reduction in viral loads and improved survival. We aim to create 
a mathematical model for COVID-19 transmission and then apply various control 
parameters to see their effects on recovery from COVID-19 disease. We have formu-
lated a system of non-linear ordinary differential equations, calculated basic repro-
duction R

0
 and applied five different controls (self-isolation, quarantine, herd immu-

nity, immunotherapy, plasma therapy) to test the effectiveness of plasma therapy. 
Control optimality was checked by Lagrangian functions. Numerical simulations 
and bifurcation analysis were carried out. The study concludes that the COVID-19 
outbreak can be controlled up to a significant level in three weeks after applying all 
the control strategies together. These strategies lead to reduction in hospitalization 
and a rise in recovery from infection. Immunotherapy is highly effective initially in 
hospitalized infected individuals however better results were seen in the long term 
with plasma therapy.
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1 Introduction

The first case of unknown pneumonia was detected in Wuhan China in Decem-
ber 2019, and was later identified as COVID-19 spread by SARS COV-2 (severe 
acute respiratory syndrome coronavirus 2) (Cohen and Normile 2020). COVID-
19 was declared a pandemic on  11th March by WHO. It has spread to 210 coun-
tries and as per worldometer (Worldometer 2020) and as of 28th February 2021 
worldwide total cases are around 114,379,825 and total deaths are 2,537,578. 
It caused global economic and public health emergencies. It spreads by direct 
or indirect contact with respiratory droplets from infected individuals (Holshue 
et al. 2020). Several steps like physical distancing, quarantine and other sanitiz-
ing habits have shown some success in slowing down the pandemic but it is still 
far from being contained in most countries.

There is no known treatment or vaccine available in the initial period of the 
outbreak. The antimalarial drug chloroquine and antibiotic azithromycin have 
shown some hope against COVID-19 but its efficacy has been recently debated 
(Syal 2020). Other potential therapeutic agents tried so far include Remdesivir, 
Lopinavir / Ritonavir (Kaletra), Toclizumab (Actemra), Remdesivir have shown 
some promise in controlling the COVID-19 disease. (Holshue et  al. 2020; Lu 
2020; Russell et al. 2020; Wang et al. 2020). Most people in developing countries 
cannot afford costly therapeutic interventions like mechanical ventilators and pro-
longed lockdown, pandemic must be curtailed so that health infrastructure can 
manage it efficiently. In absence of known treatment and proper vaccine, herd 
immunity can help in decreasing its spread. (Syal 2020).

Immunotherapy and plasma therapy has been used effectively as a therapeu-
tic option against many viral infections. The main methods in immunotherapy 
include several vaccines and monoclonal antibody candidates. Convalescent 
plasma (CP) therapy has been used for the prevention and treatment of many 
infectious diseases for more than one century. In both SARS-CoV (Severe Acute 
Respiratory Syndrome Corona Virus), and SARS-CoV-2 viruses’ entry into the 
host cells is mediated by interaction of the receptor-binding domain (RBD) in S 
protein on virus outer-membrane and angiotensin-converting enzyme 2 (ACE2) 
on cell. So, these proteins can be the major potential targets for immunotherapy 
(AminJafari and Ghasemi 2020; Duan et al. 2020b). CP refers to plasma that is 
collected from individuals, following resolution of infection and development of 
antibodies. Over the past two decades, CP therapy was successfully used in the 
treatment of SARS MERS (Middle East Respiratory Syndrome), and 2009 H1N1 
pandemic with satisfactory efficacy and safety (Cheng et  al. 2005; Zhou et  al. 
2007; Hung et al. 2011; Ko et al. 2018).

A meta-analysis from 32 studies of SARS coronavirus infection and severe 
influenza showed a statistically significant reduction in the pooled odds of mor-
tality following CP therapy, compared with placebo or no therapy (odds ratio, 
0.25; 95% confidence interval, 0.14–0.45) (Mair-Jenkins et  al. 2015). Since 
SARS, MERS, and COVID-19 share similar virologic and clinical symptomatol-
ogy (Lee and Hsueh 2020), CP therapy might be a promising treatment option 
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for COVID-19 treatment (Chen et  al. 2020). Studies were done by Cheng et  al 
in 2005,(Cheng et  al. 2005) in Hong Kong reported that in 2003 during SARS 
outbreak, patients who received convalescent plasma had a lower mortality rate 
(12.5%) compared with the overall SARS-related mortality for admitted patients 
(n = 299 [17%]).

Convalescent plasma (CP) has also been used in the COVID-19 pandemic; lim-
ited data from China suggest clinical benefit, radiological resolution, reduction in 
viral loads and improved survival (Bloch et  al. 2020). While fractionated plasma 
products (e.g. hyperimmune globulin, monoclonal antibodies) and/or vaccination 
may offer durable therapeutic options, human anti-SARS-CoV-2 plasma is the only 
therapeutic option that is immediately available for use to treat COVID-19 (Bloch 
et al. 2020). A study was done by Shen et al, (2020) and Duan et al. (2020b) con-
cluded that convalescent plasma therapy is well tolerated and could potentially 
improve the clinical outcome. They collected CP from patients three weeks after 
they recovered from COVID-19, and from the patients who were having normal 
body temperature for > 3 days, not having respiratory symptoms and their two con-
secutive PCR SARS COV-2 test 24 hours apart has been negative. Their study result 
showed a decline in inflammatory markers, improvement in the patient’s antibody 
titre and PCR SARS COV-2 became negative. CFR (Case Fatality Rate) was 0 in 
the study done by Duan et al., however, there were several limitations of the study 
including small sample size, lack of randomized double blind controlled study, those 
patients received another medication like antivirals (kaletra), steroids at the same 
time, and it is difficult to attribute all improvement to plasma therapy alone. Their 
study indicates that convalescent plasma therapy could be the most critical weapon 
in the fight with COVID-19 in severe cases. Survivors of the COVID-19 may play 
a key role in both herd immunity as well as the availability of plasma therapy. (Syal 
2020).

Since, the effective vaccine and specific antiviral medicines are unavailable 
before 2021, people use mathematical modeling for analysis of the COVID-19 trans-
mission and alternative strategy for COVID-19 treatment, especially among severe 
patients. Ndaïrou et al. (2020) have proposed a new epidemiological compartment 
model, with a special focus on the transmissibility of super-spreaders individuals. 
Our aim for the present study is to create a compartmental mathematical model for 
the spread of COVID-19 with specific transmissibility of active spreaders and super 
active spreaders of the infection. Moreover, various control parameters are applied 
in the model like self-isolation, quarantine of infected individuals and hospitaliza-
tion to receive medication (immunotherapy and convalescent plasma therapy) and 
see their effects on recovery from COVID-19 disease.

2  Mathematical model

In this section, a basic model for COVID-19 transmission dynamics among humans 
is constructed. Infected individuals who regularly come in contact with exposed 
class, for example, vegetable vendor, grocery store-keeper, policeman or security 
man, delivery man, etc., all unknowingly spread infection at a high rate. Hence, 
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these population classes are considered to be super active spreaders of the infection. 
Remaining all infected (symptomatically and asymptomatically) individuals who are 
capable to infect others are considered to be active spreaders of COVID-19 infec-
tion. The model contains these two different classes of infected who are the spreader 
of the infection and accelerate the intensity of the COVID-19 outbreak. In some 
cases, the strong immunity of an infected individual can defeat the infection, making 
the individual infection free without hospitalisation. Moreover, there are particular 
cases in which recovered individuals present the symptoms of the disease and hence 
they need to get hospitalisation again. These two situations are also considered in 
the present model.

In the proposed model, the total population is divided into seven compartments: 
exposed (not infectious) individuals (E) , infected individuals (I) , infected individuals 
who are active spreaders (A) , infected individuals who are super active spreaders (S) , 
quarantined individuals (Q) , hospitalised individuals (H) and recovered individuals 
(R) . Using Fig.  1, the model is formulated as dynamics of non-linear differential 
equation as given below.

Here �2 and �3 are ratio of active spreader and super active spreader respectively 
to the total infected individuals. �4 is the ratio of number of individuals who become 
super-active spreader from active spreader to the total number of active spreaders. Sim-
ilarly, �5 is the ratio of number of super-active spreaders who become active spreaders 
to the total number of super-active spreaders. Rate �6 is the ratio of quarantined active 
spreaders to the total number of active spreaders and �8 is the ratio of quarantined 

(1)

E� = B − �1EI

I� = �1EI − �2IA − �3IS

A� = �2IA − �4A + �5S − �6A − �7A

S� = �3IS + �4A − �5S − �8S − �9S

Q� = �6A + �8S − �10Q − �13Q

H� = �7A + �9S − �11H + �12R + �13Q − �dH

R� = �10Q + �11H − �12R

Fig. 1  System diagram of COVID-19 transmission model
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super-active spreaders to the total number of super-active spreaders. Similarly, �7 and 
�9 are the hospitalisation rates of active spreaders and super-active spreaders. Recovery 
rates �10 and �11 are the ratio of number of recovered from the respective compartment 
to the number of quarantined and hospitalised individuals respectively. And �12 is the 
ratio of hospitalised individuals after recovered from COVID-19 infection to the total 
recovered individuals. Parameters used in the model are listed in the Table 1.

2.1  Well‑posedness of the solution

In this sub-section, we observe that the solutions of the system (1) are non-neg-
ative and bounded if initial conditions are non-negative (Mahrouf, M. et  al., 
2021). Since the model contains only human population, only non-negative ini-
tial conditions are used. Also, all the parameters used in the model are consid-
ered non-negative. We know that (E(t), I(t),A(t), S(t),Q(t),H(t),R(t)) ≥ 0 if 
(E(0), I(0),A(0), S(0),Q(0),H(0),R(0)) ≥ 0 . Based on system (1), we have 
N = B − �dH . Where N = E + I + A + S + Q + H + R . When t → ∞ , we have 
N ≤ B , since �d ≥ 0 . Hence N is bounded and the feasible region is Λ:

(2)Λ =
{
(E, I,A, S,Q,H,R) ∈ R7

+
∶ E + I + A + S + Q + H + R ≤ B

}

Table 1  Parameters used in the model. Note that, data for total number of infected cases, critical cases, 
hospitalised cases and deaths due to COVID-19 are taken from worldometers on 25th April, 2020, 
(Worldometer 2020)

Approximate parametric values are calculated using the data available and some are assumed

Parameters Parametric value

B Recruitment rate of exposed individuals 0.60
�
1

Recruitment rate of infected individuals 0.17
�
2

Rate at which infected individuals become active spreader 0.40
�
3

Rate at which infected individuals become super active spreader 0.20
�
4

Rate at which active spreader become super active spreader 0.05
�
5

Rate at which super active spreader become active spreader 0.30
�
6

Rate at which active spreader moves to quarantine 0.02
�
7

Rate at which active spreader moves to hospitalisation 0.70
�
8

Rate at which super active spreader moves to quarantine 0.30
�
9

Rate at which super active spreader moves to hospitalisation 0.70
�
10

Recovery rate of quarantined individuals without hospitalisation 0.07
�
11

Recovery rate of hospitalised individuals 0.44
�
12

Rate at which recovered individuals again moves to hospitalisation 0.30
�
13

Rate at which quarantined individuals get hospitalisation 0.60
�
d

Mortality rate of COVID-19 0.1077
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2.2  Basic reproduction number

The basic reproduction number R0 is defined as the average number of secondary 
infected cases rising from an average primary case in an entirely exposed/suscepti-
ble population.

The solution of the system (1), the endemic equilibrium point 
E∗
p
= (E∗, I∗,A∗, S∗,Q∗,H∗,R∗) is as follow:

where,
p = �d�10�6(�3r − �5) − �d�10�4�8 + �11(�6 + �7)(�3r − �5)(�10 + �13)

+(�8 + �9)
(
�11(�6 + �7)(�10 + �13) + �11�4(�10 + �13) + �d�10�6

)  , 

q = (�6 + �7)(�3r − �5) − (�8 + �9)(�4 + �6 + �7) and r is the highest root of a poly-
nomial m(z) = a0z

2 + a1z + a2 = 0 , coefficients of the polynomial are: a0 = �2�3 , 
a1 = −

(
�2(�5 + �8 + �9) + �3(�4 + �6 + �7)

)
 and 

a2 = �5(�6 + �7) + (�8 + �9)(�4 + �6 + �7) . This R0 based on endemic equilibrium 
point can be calculated using next generation matrix method (Diekmann et al. 1990; 
Garba et al. 2008). The above system (1) can be written in the following form using 
matrices.

Note that, matrix F shows the new infectious rates and matrix V  shows other rates 
transferred in between the compartments, are given respectively by:

(3)

E∗ =
B

r�1
, I∗ = r, A∗ =

B(�3r − �5 − �8 − �9)

q
, S∗ = −

B�4

q

Q∗ =
B
(
(�3r − �5)�6 − �6(�8 + �9) − �4�8

)
q(�10 + �13)

, H∗ =
B

�d

, R∗ =
pB

q(�10 + �13)�d�12

(4)f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1EI

�2IA

�3IS

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and v =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�2IA + �3IS

�4A − �5S + �6A + �7A

−�4A + �5S + �8S + �9S

−B + �1EI

−�6A − �8S + �10Q + �13Q

−�7A − �9S + �11H − �12R − �13Q + �dH

−�10Q − �11H + �12R

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(5)F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�1E
∗ 0 0 �1I

∗ 0 0 0

�2A
∗ �2I

∗ 0 0 0 0 0

�3S
∗ 0 �3I

∗ 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦



350 São Paulo Journal of Mathematical Sciences (2021) 15:344–364

1 3

Hence, the basic reproduction number (R0) , is given by

where � is the dominant eigenvalue in magnitude of the matrix FV−1 . After substi-
tuting all parametric values from Table 1, we get the threshold value R0 = 3.4709 
which represent the average number of secondary cases generated by an infected 
individual in completely susceptible population. From this calculation, we can say 
the model or the current outbreak is in highly unstable (Driessche & Watmough, 
2002), hence, certain control strategies are very essential to impose to come out 
from pandemic situation.

3  Optimal control

In this section, we extend the system (1) to include five time dependent control strat-
egies, u1(t) , u2(t) , u3(t) , u4(t) and u5(t) , regarding isolation of infected individuals 
and medication to improve immunity to fight against the COVID-19 outbreak.

Here, control variables u1(t) and u2(t) measure the quarantine or isolation of the 
individuals who are spreader and super spreader respectively. We can provide herd 
immunity or herd protection to those who are not immune to the COVID-19 disease 
by improving immunity in most of the population. Also strong immunity of large 
mass can control further spread of COVID-19 infection. The control variable u3(t) 
indicates the strategy which increases the herd immunity which helps quarantined 
individuals to get recovered without medication. The control variable u4(t) suggests 
to provide proper immunotherapy (include several types of vaccines, monoclonal 
antibody candidates, etc.) to hospitalised individuals which helps them to fight 
against the viral infection. In present situation, where proper vaccination is not avail-
able for the COVID-19, a convalescent plasma therapy have sparked a ray of hope. 
The Convalescent plasma therapy’s effects as treatment for Covid-19 has been tested 
positive with no severe adverse effects (Duan et al. 2020a, b; Shen et al. 2020). The 
control variable u5(t) is used to support convalescent plasma therapy to improve 
immunity of critically infected individuals. However, the limitation of this control 
strategy is, if plasma therapy is not used properly and carefully, it can create more 
serious complications.

(6)

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�2A
∗ + �3S

∗ �2I
∗ �3I

∗ 0 0 0 0

0 �4 + �6 + �7 −�5 0 0 0 0

0 −�4 �5 + �8 + �9 0 0 0 0

�1E
∗ 0 0 �1I

∗ 0 0 0

0 −�6 −�8 0 �10 + �13 0 0

0 −�7 −�9 0 −�13 �11 + �d −�12
0 0 0 0 −�10 −�11 �12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7)

R0 = �
(
FV−1

)
=

�2�3r
(
(�6 + �7)(�3r − �5) − (�8 + �9)(�4 + �6 + �7)

)

(�6 + �7)
(
�2�5(�3r − �5) − �3�4�5

)
+ (�8 + �9)

(
�3�4(�2r − �4) − �2�4�5

−�2(�8 + �9)
(
�4 + �6 + �7

)
+ (�6 + �7) (�2�3r − 2�2�5 − �3�4)

)
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Under these assumptions, the COVID-19 model (1) is re-constructed by 
including control variables from Fig. 2:

According to this extended model, the optimal control problem with the objec-
tive function is formulated by

The objective is to minimise active and super active spreaders, increase recov-
ery of hospitalised and quarantined individuals. In equation (9), Ai, i = 1, 2, ...7 , 
are weight constants of the state variables and wj, j = 1, 2, ..., 5 are weight con-
stants of respective control variables. Our goal is to determine optimal control 
functions (u∗

1
, u∗

2
, u∗

3
, u∗

4
, u∗

5
) , such that

subject to the modified system (8), where � is a control strategy set. 
� =

{
(u1, u2, u3, u4, u5)∕ui(t) is Lebesgue measurable on [0, T], 0 ≤ ui(t) ≤ 1, i = 1, 2, ..., 5

}

Theorem  1 Consider the objective function (9) with (u1, u2, u3, u4, u5) ∈ Γ subject 
to the constraint state system (8) then there exist (u∗

1
, u∗

2
, u∗

3
, u∗

4
, u∗

5
) ∈ Γ such that 

J
(
u∗
1
, u∗

2
, u∗

3
, u∗

4
, u∗

5

)
= optimise

(
J(u1, u2, u3, u4, u5)∕(u1, u2, u3, u4, u5) ∈ �

)
.

(8)

E� = B − �1EI

I� = �1EI − �2IA − �3IS + u1A + u2S

A� = �2IA − �4A + �5S − �6A − �7A − u1A

S� = �3IS + �4A − �5S − �8S − �9S − u2S

Q� = �6A + �8S − �10Q − �13Q − u3Q

H� = �7A + �9S − �11H + �12R + �13Q − �dH − u4H − u5R

R� = �10Q + �11H − �12R + u4H + u5R + u3Q

(9)

Optimise J
(
u1, u2, u3, u4, u5

)
= ∫

T

0

(
A1E(t) + A2I(t) + A3A(t) + A4S(t) + A5Q(t) + A6H(t) + A7R(t)

+w1u
2

1
(t) + w2u

2

2
(t) + w3u

2

3
(t) + w4u

2

4
(t) + w5u

2

5
(t)
)
dt

(10)
J
(
u∗
1
, u∗

2
, u∗

3
, u∗

4
, u∗

5

)
= optimise

(
J(u1, u2, u3, u4, u5)∕(u1, u2, u3, u4, u5) ∈ �

)

Fig. 2  COVID-19 model with control variables
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Proof The integrand, 
A1E(t) + A2I(t) + A3A(t) + A4S(t) + A5Q(t) + A6H(t) + A7R(t) + w1u

2
1
(t) 

+w2u
2
2
(t) + w3u

2
3
(t) + w4u

2
4
(t) + w5u

2
5
(t) of the objective function (9) is convex in the 

set � . The control strategy set � is also close and convex by definition. Since the 
model (8) is bounded and linear in the control variables, the conditions for the exist-
ence of optimal control are satisfied (Fleming and Rishel 1975).

3.1  Optimality system

Let us convert the problem into a problem of maximizing a Lagrangian function L , 
with respect to all control variables u1 , u2 , u3 , u4 and u5 . For necessary condition of an 
optimal control problem, Pontryagins maximum principle (Pontryagin 2018) is used.

For given an optimal control u∗ = (u∗
1
, u∗

2
, u∗

3
, u∗

4
, u∗

5
) and corresponding state solu-

tions of the system (8), there exist adjoint functions, �i , i = 1, 2, ...7 , which are

The terminal conditions are �i(T) = 0 , for i = 1, 2, ...7 . The optimal control vari-
ables u∗

1
 , u∗

2
 , u∗

3
 , u∗

4
 and u∗

5
 can be solves using optimality conditions

(11)

L = A1E
2(t) + A2I

2(t) + A3A
2(t) + A4S

2(t) + A5Q
2(t) + A6H

2(t) + A7R
2(t) + w1u

2

1
+ w2u

2

2
+ w3u

2

3

+w4u
2

4
+ w5u

2

5
+ �1(B − �1EI) + �2(�1EI − �2IA − �3IS + u1A + u2S) + �3(�2IA − �4A + �5S

−�6A − �7A − u1A) + �4(�3IS + �4A − �5S − �8S − �9S − u2S) + �5(�6A + �8S − �10Q − �13Q

−u3Q) + �6(�7A + �9S − �11H + �12R + �13Q − �dH − u4H − u5R) + �7(�10Q + �11H − �12R

+u4H + u5R + u3Q)

��
1
= −

�L

�E
= −2A1E + �1I(�1 − �2)

��
2
= −

�L

�I
= −2A2I + �1E(�1 − �2) + �2A(�2 − �3) + �3S(�2 − �3)

��
3
= −

�L

�A
= −2A3A + (�2I − u1)(�2 − �3) + �4(�3 − �4) + �6(�3 − �5) + �7(�3 − �6)

��
4
= −

�L

�S
= −2A4S + (�3I − u2)(�2 − �4) + �5(�4 − �3) + �8(�4 − �5) + �9(�4 − �6)

��
5
= −

�L

�Q
= −2A5Q + (�10 + u3)(�5 − �7) + �13(�5 − �6)

��
6
= −

�L

�H
= −2A6H + (�11 + u4)(�6 − �7) + �d�6

��
7
= −

�L

�R
= −2A7R + (�12 − u5)(�7 − �6)
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−
�L

�ui
= 0 , for i = 1, 2, ..., 5.

Moreover, optimal control strategies u∗
1
 , u∗

2
 , u∗

3
 , u∗

4
 , u∗

5
 are given by:

4  Numerical simulation

This section attempts to describe the graphical representation of variations in the 
model under influence of optimal control strategies. The initialisation of exposed, 
infected, active and super active spreader, quarantined, hospitalised and recovered is 
given by E(0) = 10 , I(0) = 8 , A(0) = 4 , S(0) = 4 , Q(0) = 3 , H(0) = 4 and R(0) = 2 
respectively.

Figure 3 shows the variation with time in each compartment of the model. In the 
initial week of the outbreak, higher intensity of infected, active, and super active 
spreader is observed, after that, they decrease with time and become negligible in 
5-6 weeks. In this duration, since individuals in exposed and hospitalised class are 
still present, again growth in infection is observed after 7-8 weeks of the outbreak. 
From this graph, we can say that without any control strategies the infection can re-
emerge in society after some time of duration. Hence proper control strategies are 
essential to break the periodic chain of this infection.

Figure  4a and b displays the effect of super active spreaders on the class of 
exposed and infected individuals respectively. Figure 4a shows that exposed indi-
viduals are getting infected by super active spreaders at a high rate. Figure  4b 
shows that infected individuals are moves towards the super active spreaders and 

(12)
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2w1
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2w2

, u3 =
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2w3
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2w4
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(13)u∗
1
= max

{
0,min

{
1,

A(�3 − �2)

2w1

}}
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(15)u∗
3
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{
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{
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(17)u∗
5
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{
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they have the tendency to becoming super active spreaders, while super active 
spreaders are also moving towards the infected class at a lower intensity. This 
indicates that many super active spreaders getting aware of the disease transmis-
sion and they stop spreading the infection by isolation.

Figure 5a shows the intensity of super active spreaders moves towards hospitali-
sation and Figure 5b shows the recovery frequency of super active spreaders.

Periodic transmission of infection through the compartments concerning time 
(in a week) is observed in Fig.  6. Figure 6a and b show periodic transmission of 
active and super active spreaders respectively, through hospitalisation and recovery 

Fig. 3  Variation in compartment with time

Fig. 4  Effect of super active spreader on transmission of COVID-19
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class. This scenario suggests that after recovery, still there is a chance of infection. 
Figure 6c and d shows the intensity and periodicity of infected individuals getting 
recovered by their strong immunity after self-quarantine. Figure 6e shows periodic 
oscillations between infected, hospitalised and recovered classes. It can be observed 
from Figure  6f that the infection is moving eriodically around the class of active 
spreaders, hence we can say that the largest persisting period of the infection is 
when it is in the class of active spreaders.

Figure 7 shows the oscillations in the model compartments during the outbreak. 
In the initial days of the outbreak, noteworthy oscillations in the model are observed, 
moreover, the figure shows that after 100-120 days, the model shows its asympto-
matic stability.

4.1  Susceptibility of R
0
 with respect to the parameters

To evaluate the intensity of the effect of parameters on the transmission rate of 
COVID-19, change in the basic reproduction number (R0) with respect to the most 
affected parameters of the model is plotted in Fig. 8.

Figure 8a and b shows the change in R0 concerning to the rate at which infected 
individuals become active spreaders and super active spreaders respectively. The 
transmission rate of the infection increases with the rate at which the active spreader 
becomes a super active spreader. Figure 8c and d shows change in R0 concerning to 
the rate at which active spreader moves to quarantine cell and hospitalisation respec-
tively. It is observed from the above figures that transmission of the infection is high 
when rates at which active spreaders are quarantined and hospitalised are low.

Fig. 5  Controlling super active spreaders of COVID-19
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4.2  Simulation influenced by optimal control theory

In this section, effect of all control strategies on transmission of COVID-19 is 
observed graphically.

Figure 9 shows the variation in each compartment under influence of with and 
without control strategies. It is observed that the COVID-19 outbreak can be con-
trolled up to significant level in three weeks after applying all the control strate-
gies together. Super active spreaders are the major threatening problem during this 

Fig. 6  Phase portrait diagram of COVID-19 model
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Fig. 7  Oscillations in the model during the COVID-19 outbreak

Fig. 8  Variation in R
0
 with model parameters
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pandemic outbreak. Figure 9d shows that the intensity of the super active spreader 
is controlled notably after applying the controls which is major factor to reduce the 
spread of COVID-19. Under this controlled situation reduction in hospitalisation 
and raise in recovery from the infection is observed in Figure 9f and g respectively.

Figure 10 shows an individual effect of immunotherapy and plasma therapy on 
the class of recovered individuals. The figure indicates that initially, immunotherapy 
is highly effective on hospitalised infected individuals, moreover, in long term, bet-
ter results are observed on recovered class when plasma therapy is applied.

Deviation in the intensity of control strategies with time is shown in Fig.  11. 
Isolation varies from 10 to 32%, maximum of 21% quarantine facilities should be 
used. Using preventive measures, herd immunity can be attained to be 20%. 33% 
immune therapy and 10% plasma therapy should be applied together to fight back 
the COVID-19 outbreak in around 50 days.

4.3  Bifurcation analysis

In the current section, backward bifurcation theory is analysed to understand the 
behaviour of threshold value of the COVID-19 model. Note that, non-negative equi-
libria (3) of the COVID-19 model satisfies the quadratic in the infected class (E) . 
Positive equilibrium of the system is achieved by solving the quadratic equation for 
(z) . The bifurcation analysis helps to validate the qualitative information about the 
basic reproduction number.

The bifurcation diagram is shown in Fig. 12, where blue vertical line indicates 
the value of the critical point RC , which is 2.23. We can say that this is the point 
from which system’s stability switches from unstable to stable state. To effectively 
control the spread of COVID-19, the basic reproduction number should be brought 
below RC . Red vertical line in the Fig. 12 shows the numerical value of basic repro-
duction number. By observing current situation of this pandemic outbreak, it is very 
hard to bring the value of R0 below RC in short time period.

Figure 13 represents the bifurcation diagram of the model with respect to the rate 
at which infected individuals become super active spreader (�3) . Here, the maximum 
and minimum values of the fluctuations are plotted in blue and red colours respec-
tively. Since the super spreader can create more infection, notable changes in the 
recovery rate are observed when a gradual change made in the parameter �3 , but it 
will reduce later.

5  Discussion and conclusion

Our study showed that in the initial week of the outbreak, there is a large number 
of infected people, and behave as active and super active spreaders but in about 5-6 
weeks they become negligible. Many super active spreaders are becoming aware of 
the mode of disease transmission and stop spreading the infection by self-isolation. 
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Fig. 9  Changes in each compartment with and without controls
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However, there are still exposed and hospitalized individuals who are responsible 
for resurgence or second wave of infection at around 7–8 weeks.

Bifurcation analysis showed that RC (critical point) is 2.23 and R0 is 3.5, and by 
observing current situation of this pandemic, it is very difficult to bring the value 
of R0 below RC in short period of time. All the control measures including self-
isolation, quarantine, herd immunity, immunotherapy and plasma therapy should be 

Fig. 10  Effect of immunotherapy and plasma therapy on recovered class

Fig. 11  Change in control variables with time



361

1 3

São Paulo Journal of Mathematical Sciences (2021) 15:344–364 

applied together to fight back COVID-19 in around 50 days. Effectiveness of self- 
isolation varies between 10 and 32%, quarantine is about 21%, herd immunity is 
about 20%, immune therapy is 33% and plasma therapy is about 10%. The optimal 
timing of the plasma therapy is around 15 days from the infection while immuno-
therapy should be implemented earlier to get maximum benefit.

Thus, we conclude that the COVID-19 outbreak can be controlled up to a sig-
nificant level in three weeks after applying all the control strategies including 

Fig. 12  Bifurcation diagram for the COVID-19 model

Fig. 13  Bifurcation w.r.t �
3
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self- isolation, quarantine and hospitalization together. Furthermore, proper control 
strategies are of paramount importance in breaking this periodic chain of infection 
and preventing resurgence of infection. Super active spreaders are the major threat-
ening problem during this pandemic outbreak. Our results show that the super active 
spreaders can be controlled notably by optimal controls strategies. These strategies 
lead to a reduction in hospitalization and rise in recovery from infection. Immuno-
therapy is highly effective initially in hospitalized infected individuals however bet-
ter results were seen in the long term with plasma therapy.

We also suggest certain policies to make sure that plasma therapy is available 
on a larger scale. Physician can motivate patients at the time of discharge to donate 
plasma in near future (once they are eligible to donate). Furthermore, the govern-
ment should expand plasma collection capabilities. They need to create infrastruc-
ture and remove certain barriers for agencies to prioritize collecting plasma and 
making it available on a larger scale for treatment at subsequent waves of COVID-19 
infection.

Preliminary data using immunotherapy and plasma therapy against the rapidly 
increasing number of COVID-19 cases provides an unprecedented opportunity to 
perform large-scale randomized clinical trials, to study the efficacy of this treatment 
against a viral agent. If the results of rigorously conducted, investigations demon-
strate consistent efficacy, use of these therapies could help change the course of this 
pandemic. The suggestions made here are dependent on model parameters and sus-
pect to vary depending on the intensity of disease spread and geographical area of 
the study.
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