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Abstract
Over the past two decades several different approaches to defining a geometry over
F1 have been proposed. In this paper, relying on Toën and Vaquié’s formalism
(J.K-Theory 3: 437–500, 2009), we investigate a new category Sch

˜B of schemes admit-
ting a Zariski cover by affine schemes relative to the category of blueprints introduced
by Lorscheid (Adv. Math. 229: 1804–1846, 2012). A blueprint, which may be thought
of as a pair consisting of a monoid M and a relation on the semiring M ⊗F1 N, is
a monoid object in a certain symmetric monoidal category B, which is shown to be
complete, cocomplete, and closed.We prove that every˜B-scheme� can be associated,
through adjunctions, with both a classical scheme �Z and a scheme � over F1 in the
sense of Deitmar (in van der Geer G., Moonen B., Schoof R. (eds.) Progress in mathe-
matics 239, Birkhäuser, Boston, 87–100, 2005), together with a natural transformation
� : �Z → � ⊗F1 Z. Furthermore, as an application, we show that the category of
“F1-schemes” defined by Connes and Consani in (Compos. Math. 146: 1383–1415,
2010) can be naturally merged with that of ˜B-schemes to obtain a larger category,
whose objects we call “F1-schemes with relations”.
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1 Introduction

1.1 A quick overview of F1-geometry

The nonexistent field F1 made its first appearance in Jacques Tits’s 1956 paper Sur les
analogues algébriques des groupes semi-simples complexes [26].1 According to Tits,
it was natural to call “n-dimensional projective space over F1” a set of n + 1 points,
on which the symmetric group �n+1 acts as the group of projective transformations.
So, �n+1 was thought of as the group of F1-points of SLn+1, and more generally it
was conjectured that, for each algebraic group G, one ought to have W (G) = G(F1),
where W (G) is the Weyl group of G.

A further strong motivation to seek for a geometry over F1 was the hope, based
on the multifarious analogies between number fields and function fields, to find some
pathway to attack Riemann’s hypothesis by mimicking AndréWeil’s celebrated proof.
The idea behind that, as explicitly stated in Yuri Manin’s influential 1991–92 lectures
[21] and in Kapranov and Smirnov’s unpublished paper [13], was to regard SpecZ, the
final object of the category of schemes, as an arithmetic curve over the “absolute point”
SpecF1. Manin’s work drew inspiration from Kurokawa’s paper [14] together with
Deninger’s results about “representations of zeta functions as regularized infinite deter-
minants [7–9] of certain ‘absolute Frobenius operators’ acting upon a new cohomology
theory”. Developing these insights, Manin suggested a conjectural decomposition of
the classical complete Riemann zeta function of the form [21, eq. (1.5)]
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where the notation
∏

reg

ρ and detreg refers to “zeta regularization” of infinite products
and the last hypothetical equality “postulates the existence of a new cohomology
theory H•

? , endowed with a canonical ‘absolute Frobenius’ endomorphism �”. He
conjectured,moreover, that the functions of the form s−ρ

2π inEq. 1.1 couldbe interpreted
as zeta functions according to the definition

Z
(

T
ρ, s

) = s − ρ

2π
, ρ ≥ 0 ,

where “Tate’s absolutemotive”Twas to be “imagined as amotive of a one-dimensional
affine line over the absolute point, T

0 = • = SpecF1”.

1 For a more detailed and exhaustive account of the development of F1-geometry we refer to [15] and [17].
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The first full-fledged definition of variety over “the field with one element” was
proposed by Christophe Soulé in the 1999 preprint [24]; five years later such definition
was slightly modified by the same author in the paper [25]). Taking as a starting point
Kapranov and Smirnov’s suggestion that F1 should have an extension F1n of degree
n, Soulé insightfully posited that

F1n ⊗F1 Z = Z[T ]/(T n − 1) =: Rn .

Let R be the full subcategory of the category Ring of commutative rings generated by
the rings Rn , n ≥ 1 and their finite tensor products. An affine variety X over F1 is then
defined as a covariant functor R → Set plus some extra data such that there exists a
unique (up to isomorphism) affine variety XZ = X ⊗F1 Z over Z along with an immer-
sion X ↪→ XZ satisfying a suitable universal property [25, Définition 3]. In particular,
one has a natural inclusion X(F1n ) ⊂ (X ⊗F1 Z)(Rn) for each n ≥ 1. A notable result
proven by Soulé was that smooth toric varieties can always be defined over F1.

To formalize F1-geometry Anton Deitmar adopted, in 2005, a different approach,
which can be dubbed as “minimalistic” (using the evocative terminology introduced
by Manin in [22]). In his terse paper [4], Deitmar associates to each commutative
monoid M its “spectrum over F1” Spec M consisting of all prime ideals of M , i.e. of
all submonoids P ⊂ M such that xy ∈ P implies x ∈ P or y ∈ P . The set Spec M
can be endowed with a topology and with a structure (pre)sheaf OM via localization,
just as in the usual case of commutative rings. A topological space X with a sheaf
OX of monoids is then called a “scheme over F1”, if for every point x ∈ X there is
an open neighborhood U ⊂ X such that (U ,OX |U ) is isomorphic to (Spec M,OM )

for some monoid M . The forgetuful functor Ring → Mon has a left adjoint given by
M �→ M ⊗F1 Z (in Deitmar’s notation), and this functor extend to a functor - ⊗F1 Z

from the category of schemes over F1 to the category of classical schemes over Z.
Tit’s 1957 conjecture stating that GLn(F1) = �n can be easily proven in Deitmar’s
theory. Indeed, since F1-modules are just sets and F1n ⊗F1 Z has to be isomorphic Z

n ,
it turns out that F1n can be identified with the set {1, . . . , n} of n elements. Hence

GLn(F1) = AutF1(F1n ) = Aut(1, . . . , n) = �n .

It is not hard to show, moreover, that the functor GLn on rings over F1 is represented
by a scheme overF1 [4, Prop. 5.2]. As for zeta functions, Deitmar defines, for a scheme
X over F1 and for a prime p, the formal power series

Z X (p, T ) = exp

( ∞
∑

n=1

T n

n
#X

(

Fpn
)

)

,

where Fpn stands for the field of pn elements with only its monoidal multiplicative
structure and X(Fpn ) denotes the set of Fpn -valued points of X , and proves that
Z X (p, T ) coincides with the Hasse–Weil zeta function of X ⊗F1 Fpn [4, Prop. 6.3].
Albeit elegant, this result is a bit of a letdown, for—as the author himself is ready to
admit—it is clear that “this type of zeta function [...] does not give new insights”.
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A natural and extremely general formalism for F1-geometry was elaborated by
BertrandToën andMichelVaquié in their 2009 paper [27], tellingly entitledAu dessous
de SpecZ, whose approach appears to be largely inspired by Monique Hakim’s work
[11]. The authors there showed how to construct an “algebraic geometry” relative to
any symmetric monoidal category C = (C,⊗, 1), which is supposed to be complete,
cocomplete and to admit internal homs. The basic idea is that the category CMonC of
commutative (associative and unitary) monoid objects in C can be taken as a substitute
for the category of commutative rings (the monoid objects in the category Ab =
Z -Mod of Abelian groups) to the end of defining a suitable notion of “scheme over
C”. Each object V of CMonC gives rise to the category V -Mod of V -modules and
each morphism V → W in CMonC determines a change of basis functor - ⊗V

W : V -Mod → W -Mod; the category of commutative V -algebras can be realized
as the category of commutative monoids in V -Mod and is naturally equivalent to the
category V /CMonC. An affine scheme overC is, by definition, an object of the opposite
category AffC = CMonopC and the tautological contravariant functor CMonC → AffC is
called Spec( - ). By means of the pseudo-functor M that maps an object V in CMonC
to the category of V -modules and a morphism Spec V → Spec W to the functor - ⊗V

W : V -Mod → W -Mod, one may introduce the notions of “Zariski cover” and “flat
cover” (“M-faithfully flat in Toën and Vaquié’s terminology; see Definition 2.4 and
Remark 2.5 below) and use such notions to equip AffC with two distinct Grothendieck
topologies, called, respectively, the flat and the Zariski topology. These topologies
determine two categories of sheave on AffC, namely Shflat(AffC) ⊂ ShZar(AffC) ⊂
Presh(AffC). At this point, mimicking what is done in classical algebraic geometry,
a “scheme over C” is defined as a sheaf in ShZar(AffC) that admits an affine Zariski
cover (see Definition 2.6 and Definition 2.7 below). If we take as C the category Set
of sets endowed with the monoidal structure induced by the Cartesian product, then
the category AffSet is nothing but the category Monop and the objets of the category
SchSet can be thought of — as remarked by Toën and Vaquié — as “schemes over
F1”. Actually, as proven by Alberto Vezzani in [28], such schemes, that we shall call
monoidal schemes, turn out to be equivalent to Deitmar’s schemes.

Deitmar’s schemes appear therefore to constitute the very core of F1-geometry, not
just because their definition is rooted in the basic notion of prime spectrumof amonoid,
but especially because they naturally fit into the categorical framework established by
Toën andVaquié in [27], which admits generalizations inmany directions (e.g. towards
a derived algebraic geometry overF1). Nonetheless, they are affected by some intrinsic
limitations, which are clearly revealed by a result proven by Deitmar himself in 2008
[6, Thm. 4.1]:

Theorem Let X be a connected integral F1-scheme of finite type.2 Then every irre-
ducible component of XC = XZ ⊗Z C is a toric variety. The components of XC are
mutually isomorphic as toric varieties.

Since every toric variety is the lift XC of anF1-scheme X , the previous theorem entails
that integral F1-schemes of finite type are essentially the same as toric varieties. Now,

2 A Deitmar’s F1-scheme X is said to be of finite type, if it has a finite covering by affine schemes
Ui = Spec Mi such that each Mi is a finitely generated monoid. Deitmar proved in [5] that an F1-scheme
X is of finite type if and only if XZ is a Z-scheme of finite type.
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semisimple algebraic groups are not toric varieties, so it is apparent that Deitmar’s
F1-schemes are too little flexible to implement Tits’s conjectural program.

A possible generalization of Deitmar’s geometry over F1 was proposed by Olivier
Lorscheid, who introduced the notions of “blueprint” and “blue scheme” [16]. The
basic idea can be illustrated through the following example. The affine group scheme
(SL2)Z over the integers is defined as

(SL2)Z = Spec (Z [T1, T2, T3, T4] / (T1T4 − T2T3 − 1)) .

As the relation T1T4−T2T3 = 1 does not make sense in themonoidF1[T1, T2, T3, T4],
any naive attempt to adapt the previous definition to get a scheme over F1 will nec-
essarily be unsuccessful. The notion of “blueprint” just serves serves the purpose of
getting rid of this difficulty:

Definition A blueprint is a pair B = (R, A), where R is a semiring and A is a
multiplicative subset of R containing 0 and 1 and generating R as a semiring. A
blueprint morphism f : B1 = (R1, A1) → B2 = (R2, A2) is a semiring morphism
f : R1 → R2 such that f (A1) ⊂ A2.

The rationale behind this definition can be explained by considering the following
situation: if one is given a monoid A and some relation which does not makes sense in
A but becomes meaningful in the semiring A⊗F1 N, then one can look at the blueprint
(A ⊗F1 N, A).

In the same vein as Deitmar’s approach, Lorscheid [16] associates to each blueprint
B its spectrum Spec B, which turns out to be a locally blueprinted space (i.e. a topo-
logical space endowed with a sheaf of blueprints, such that all stalks have a unique
maximal ideal). An affine blue scheme is then defined as a locally blueprinted space
that is isomorphic to the spectrum of a blueprint, and a blue scheme as a locally
blueprinted space that has a covering by affine blue schemes. Deitmar’s schemes over
F1 and classical schemes over Z are recovered as special cases of this definition.

1.2 About the present paper

A natural question arises: do blue schemes fit into Toën and Vaquié’s framework? This
problem was addressed by Lorscheid himself in his 2017 paper [18] and answered in
the negative. Nonetheless, it is possible—as already pointed out in [18]—to define a
category of schemes (here called B-schemes) relative (in Toën and Vaquié’s sense) to
the category of blueprints. Our first aim is to study these schemes by introducing the
category of blueprint in a purely functorial way, as the category of monoid objects in
a closed, complete and cocomplete symmetric monoidal category B.

There is a natural adjunction ρ 	 σ : AffB → AffSet∗ between the category of
affine B-schemes and that of affine monoidal schemes. However, since the functor
ρ is not continuous w.r.t. the Zariski topology, this adjunction does not give rise to
a geometric morphism between the corresponding category of schemes. This hurdle
may be sidestepped by introducing a larger category˜B containing B and by considering
the category of those schemes in Sch

˜B that admit a Zariski cover by affine B-schemes.
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Such schemes, by a slight abuse of language,will be called˜B-schemes. It will be proved
that the adjunction ρ 	 σ above induce an adjunction ρ̂ 	 σ̂ between the category
of ˜B-schemes and that of affine monoidal schemes. Moreover, it will be shown that
every˜B-scheme � generates a pair (�,�Z), where � is a monoidal scheme and �Z

a classical scheme, together with a natural transformation � : �Z → � ⊗F1 Z.
More in detail the present paper is organized as follows.
After briefly recalling in Sect. 2 the fundamental notions of “relative algebraic

geometry” and fixing our notation, in Sect. 3 we define the full subcategory B of the
category N[ - ]/Mon0 (where the functor N[ - ] : Set∗ → Mon0 is left adjoint to the
forgetful functor | - | from the category Set∗ of pointed sets to the category of monoids
with “absorbent object”; see Sect. 2.2), whose objects (X , N[X ] → M) satisfy the
conditions:

a) the morphismN[X ] → M is an epimorphism;
b) the composition X → |N[X ]| → |M | is a monomorphism.

As proven in Theorem 3.5, the category B—which corresponds to the category of
pointed set endowed with a pre-addition structure introduced in [18, §4]—carries a
natural structure of symmetric monoidal category. Moreover, this structure is closed,
complete, and cocomplete. So, the category B possesses all the properties necessary
to carry out Toën and Vaquié’s program.

It is quite straightforward to show (Proposition 3.6) that the category Blp of monoid
objects in B coincides with the category of blueprints (this result was already stated,
in equivalent terms, in [18, Lemma 4.1], but we provide a detailed and completely
functorial proof). Thus, by applying Toën and Vaquié’s formalism to the category B,
we define the category AffB = Blpop of affine B-schemes and then the category SchB
of B-schemes.

The core of our paper is Sect. 4. The natural adjunction between the categoryMon0

and the category Set∗ gives rise to an adjunction AffMon0 | - | AffSet∗

-⊗F1N

that factorizes

as shown in the following diagram

AffMon0
| - |

G

AffSet∗

-⊗F1N

σ

AffB

ρ

F

(1.2)

In Proposition 4.4 it is proven that the functor F in the diagram 1.2 is continuous
w.r.t. the Zariski topology and that the induced functor ̂F : Sh(AffB) → Sh(AffMon0)

determines a functor ̂F : SchB → SchMon0 between the category of B-schemes
and that of semiring schemes. Similarly, in Proposition 4.5 it is shown that the
functor σ : AffSet∗ → AffB in the diagram 1.2 is continuous w.r.t. the Zariski topol-
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ogy and that the induced functor σ̂ : Sh(AffSet∗) → Sh(AffB) determines a functor
σ̂ : SchSet∗ → SchB between the category of monoidal schemes and that of B-
schemes. One would like the functor σ̂ to have a left adjoint determined by the functor
ρ : AffB → AffSet∗ (see diagram 1.2). However, the functor ρ, although it preserves
Zariski covers, does not commute with finite limits. This difficulty may be overcome
by introducing the categories ˜B and ˜Blp containing, respectively, B and Blp (Defini-

tion 4.7), and by defining the category S̃ch
˜B of˜B-schemes as the subcategory of Sch

˜B
whose objects admit a Zariski cover by affine schemes in AffB (Definition 4.15). So,
a˜B-scheme is locally described by blueprints. In this way, one shows (Theorem 4.14)
that there is a geometric morphism

ρ̂ 	 σ̂ : S̃ch
˜B → SchSet∗ .

It follows (see Definition 4.16 and the ensuing remarks) that each ˜B-scheme �

determines the following geometric data:

• a monoidal scheme � = ρ̂(�);
• a scheme �Z = ̂FZ(�) over Z;
• a natural transformation � : �Z → � ◦ | - | ∼= � ⊗F1 Z.

In Sect. 5, as an application of our approach, we investigate the relationship of
˜B-schemes and F1-schemes in the sense of Alain Connes and Caterina Consani [1].
According to their definition [1, Def. 4.7], an F1-scheme is a triple (�,�Z,�), where
� is a monoidal scheme, �Z is a scheme over Z, and � is natural transformation
� → �Z◦( -⊗F1Z), such that the induced natural transformation�◦| - | → �Z, when
evaluated on fields, gives isomorphisms (of sets). Thus, the category of˜B-schemes and
that ofF1-schemes can be combined into a larger category, namely their fibered product
over the category of monoidal schemes, whose objects will be called F1-schemes with
relations (Definition 5.3). In more explicit terms, a˜B-scheme � determining the pair
(�,�Z) and an F1-scheme (�,�′

Z
,�) will give rise to a F1-scheme with relations

denoted by the quadruple (�,�Z, �′
Z
,�). Themainmotivation behind this notion is to

combine in a single geometric object both the advantages of blueprint approach and the
benefits of Connnes and Consani’s definition (cf. Remark 5.4 for a better explanation).
Each F1-scheme with relations (�,�Z, �′

Z
,�) (with a slight modification of our

terminology, see Convention 5.5) determines a natural transformation

�1 : �Z → �′
Z

and a natural transformation
�2 : �′

B → �′
Z

,

where �′
B is a certain pullback sheaf on the category Ring (defined by the diagram

5.4). This implies that, given a˜B-scheme � underlying a F1-scheme with relations,
we can think of its “F1q−1 -points” in two different senses, and therefore count them
in two different ways, as stated in Proposition 5.6 and in Theorem 5.7. An interesting
case is when the F1n -points of the underlying monoidal scheme � are counted by a
polynomial in n. Theorem 4.10 of [1] shows that, if (�,�′

Z
,�) is an F1-scheme such
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that the monoidal scheme � is noetherian and torsion-free, then #�(F1n ) = P(�, n),
where

P
(

�, n
) =

∑

x∈�

# Hom(O×
�,x , F1n ) .

For an F1-scheme with relations (�,�Z, �′
Z
,�) such that the underlying˜B-scheme

� is noetherian and torsion-free (Definition 5.11), we introduce the polynomial

Q
(

�, n
) =

∑

x∈�

# HomB

(

O×
�,x , F1n

)

,

and prove (Proposition 5.14) that Q(�, n) ≤ P(�, n).
Finally, we would like to emphasize that our approach to blueprints, being entirely

functorial, seems to be appropriate to carry out a “derived version” of the category of
B-schemes. In fact, in quite general terms, a definition of “derived B-scheme” could be
obtained by replacing, in our definition of B-scheme, the category Set (resp. Set∗) by
the category S of spaces (resp. S∗ of pointed spaces) and the notion of monoid object
by that of E∞-algebra. This issue will be the object of future work.

2 The general setting

2.1 Schemes over amonoidal category

For the reader’s convenience, we start by giving a quick résumé of some of the basic
constructions of the “relative algebraic geometry” developed in [27, §2].

Let C = (C,⊗, 1) be a symmetric monoidal category (1 is the unit object), and
denote by CMonC the category of commutative (associative and unitary) monoid
objects in C.

We assume that C is complete, cocomplete, and closed (i.e., for every pair of objects
X , Y , the contravariant functor HomC( - ⊗ X , Y ) is represented by an “internal hom”
set Hom(X , Y )).

The assumptions on C imply, in particular, that the forgetful functor

| - | : CMonC → C

admits a left adjont
L : C → CMonC , (2.1)

which maps an object X to the free commutative monoid object L(X) generated by
X .

For each commutative monoid V in CMonC one may introduce the notion of V -
module (cf. [12, p. 478]). The categoryV -Mod of such objects has a natural symmetric
monoidal structure given by the “tensor product” ⊗V ; this structure turns out to be
closed. Given a morphism V → W in CMonC, there is a change of basis functor

- ⊗V W : V -Mod → W -Mod ,
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whose adjoint is the forgetful functor W -Mod → V -Mod. Note that the category of
commutative monoids in V -Mod— i.e. the category of commutative V -algebras —
is naturally equivalent to the category V /CMonC.

The category AffC of affine schemes over C is, by definition, the category CMonopC .
Given an object V in CMonC the corresponding object in AffC will be denoted by
Spec V .

To define, in full generality, the category of schemes over C one follows the standard
procedure of glueing together affine schemes. To this end, one first endows AffC with
a suitable Grothendieck topology. Let us recall the general definition.

Definition 2.1 Let G be any category. A Grothendieck topology on G is the assignment
to each object U of G of a collection of sets of arrows {Ui → U } called coverings of
U so that the following conditions are satisfied:

i) if V → U is an isomorphism, then the set {V → U } is a covering;
ii) if {Ui → U } is a covering and V → U is any arrow, then there exist the fibered

products {Ui ×U V } and the collection of projections {Ui ×U V → V } is a covering;
iii) if {Ui → U } is a covering and for each index i there is a covering {Vi j → Ui }

(where j varies in a set depending on i), each collection {Vi j → Ui → U } is a
covering of U .

A category with a Grothendieck topology is a called a site.

Remark 2.2 As it is clear from the definition above, a Grothendieck topology on a
categoryG is introducedwith the aimof glueing objects locally defined, andwhat really
matters is therefore the notion of covering. So, in spite of its name, a Grothendieck
topology could better be thought of as a generalization of the notion of covering rather
than of the notion of topology (notice, for example, that, though the maps Ui → U in
a covering can be seen as a generalization of open inclusions Ui ⊂ U , no condition
generalizing the topological requirement about unions of open subsets is prescribed).�

Given a site G and a covering U = {Ui → U }i∈I , we denote by hU the presheaf
represented by U and by hU ⊂ hU the subpresheaf of those maps that factorise
through some element of U .
Definition 2.3 Let G be a site. A presheaf F : Gop → Set is said to be a sheaf if, for
every covering U = {Ui → U }i∈I , the restriction map Hom(hU , F) → Hom(hU , F)

is an isomorphism.

Coming back to our symmetric monoidal category C, the associated category of affine
schemes AffC can be equipped with two different Grothendieck topologies by means
of the following ingenious definitions (which, of course, generalize the corresponding
usual definitions in “classical” algebraic geometry).

One says [27, Def. 2.9, 1), 2), 3)] that a morphism f : Spec W → Spec V in AffC
is

• flat if the functor - ⊗V W : V -Mod → W -Mod is exact;
• an epimorphism if, for any Z in CMonC, the functor
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f ∗ : HomCMonC(W , Z) → HomCMonC(V , Z)

is injective ;
• of finite presentation if, for any filtrant diagram {Zi }i∈I in V /CMonC, the natural
morphism

lim−→HomV /CMonC(W , Zi ) → HomV /CMonC

(

W , lim−→Zi

)

is an isomorphism.

Definition 2.4 [27, Def. 2.9, 4); Def. 2.10] a) A collection of morphisms

{ f j : Spec W j → Spec V } j∈J

in AffC is a flat cover if

i) each morphism f j : Spec W j → Spec V is flat and
ii) there exists a finite subset of indices J ′ ⊂ J such that the functor

∏

j∈J ′
- ⊗V W j : V -Mod →

∏

j∈J ′
W j -Mod

is conservative.

(b) A morphism f : Spec W → Spec V in AffC is an open Zariski immersion if it is a
flat epimorphism of finite presentation.
(c) A collection of morphisms { f j : Spec W j → Spec V } j∈J in AffC is a Zariski cover
if it is a flat cover and each f j : Spec W j → Spec V is an open Zariski immersion.

Remark 2.5 The previous definition is actually a particular case of a more general con-
struction. Indeed, as shown in [27], to define a topology on a complete and cocomplete
category D is enough to assign a pseudo-functor M : Dop → Cat satisfying the the
following conditions:

i) for each morphism q : X → Y in D, the functor M(q) = q∗ : M(Y ) → M(X)

has a right adjoint q∗ : M(X) → M(Y ) which is conservative
ii) for each Cartesian diagram

X ′

r

q ′
Y ′

r ′

X q Y

in D, the natural transformation q∗r ′∗ �⇒ r∗q ′∗ is an isomorphism.
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In terms of such a functor one can define the notion of M-faithfully flat cover [27,
Def. 2.3] and the associated pretopology [27, Prop. 2.4], which induces a topology on
D.

In the classical theory of schemes, D is the category Ringop of affine schemes and,
for each X = Spec A, M(A) is the category of quasi-coherent sheaves on X . When
starting with a monoidal category C satisfying our assumptions, D is the category AffC
and the pseudo-functor M maps an object V in CMonC to the category of V -modules
and a morphism Spec V → Spec W to the functor - ⊗V W : V -Mod → W -Mod.
Whatwehave called “flat cover” correspond toToën-Vaquié’s “M-faithfullyflat cover”
(cf. [27, Def. 2.8, Def. 2.10]).
When D is endowed with a topology, a natural question that arises is how the pseudo-
functor M behaves with respect to it. It can be proven ([27, Th. 2.5] that M is a stack
with respect to that topology (for the notion of a stack, the reader may consult [29]).�

Bymaking use of flat covers and Zariski covers introduced inDefinition 2.4 wemay
equip the categoryAffCwith two distinct Grothendieck topologies, called, respectively,
the flat and the Zariski topology. Correspondingly, there are two categories of sheaves
on AffC, namely

Shflat (AffC) ⊂ ShZar (AffC) ⊂ Presh (AffC) .

Notice that, for each affine scheme �, the presheaf Y (�) given by the Yoneda embed-
ding Y ( - ) : AffC → Presh(AffC) is actually a sheaf in Shflat(AffC) ⊂ ShZar(AffC) [27,
Cor. 2.11, 1)]; this sheaf will be denoted again by �.

The next and final step is to define the category of schemes over the category C. We
first have to introduce the notion of affine Zariski cover in the category ShZar(AffC).

Definition 2.6 [27, Def. 2.12] a) Let� be an affine scheme in AffC. A subsheafF ⊂ �

is said to be a Zariski open of� if there exists a collection of open Zariski immersions
{�i → �}i∈I such that F is the image of the sheaf morphism

∐

i∈I �i → �.
(b) A morphism F → G in ShZar(AffC) is said to be an open Zariski immersion if,
for any affine scheme � and any sheaf morphism � → G, the induced morphism
F ×G � → � is a monomorphism whose image is a Zariski open of �.

(c) LetF be a sheaf in ShZar(AffC). A collection of open Zariski immersions {�i →
F}i∈I , where each �i is an affine scheme over AffC, is said to be an affine Zariski
cover of F if the resulting morphism

∐

i∈I

�i → F

is a sheaf epimorphism.

It should be noted that, in the case of affine schemes over C, the definition of open
Zariski immersion in Definition 2.6, (b) does coincide with that previously introduced
in Definition 2.4, (b) [27, Lemma 2.14].

Definition 2.7 A scheme over the category C is a sheaf F in ShZar(AffC) that admits
an affine Zariski cover. The category of schemes over C will be denoted by SchC.
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2.2 Notation and examples

Primarily to the purpose of fixing our notational conventions, we now briefly describe
the basic examples of symmetric monoidal categories we shall work with in the sequel
of the present paper.

• The category Set of sets can be endowed with a monoidal product given by
the Cartesian product. Then (Set,×, ∗) is a symmetric monoidal category and
CMonSet = Mon is the usual category of commutative, associative and unitary
monoids.

• The category Set∗ of pointed sets can be endowed with a monoidal product given
by the smash product ∧; in this case, the unit object is the pointed set S

0 con-
sisting of two elements. Then (Set∗,∧, S

0) is a symmetric monoidal category
and CMonSet∗ = Mon0 is the category of commutative, associative and unitary
monoids with “absorbent object” (such an object will be denoted by 0 in multi-
plicative notation and by −∞ in additive notation).

• The category Mon can be endowed with a monoidal product ⊗ defined in the
following way: R ⊗ R′ is the quotient of the product R × R′ by the relation ∼
such that (nr , r ′) ∼ (r , nr ′) for each (n, r , r ′) ∈ N × R × R′. Clearly, the unit
object is the additive monoid (N,+). Then (Mon,⊗, N) is a symmetric monoidal
category and CMonMon = SRing is the category of commutative, associative and
unitary semirings.

• The category Ab = Z -Mod of Abelian groups can be endowed with a monoidal
product ⊗Z given by the usual tensor product of Z-modules. Then (Ab,⊗Z, Z) is
a symmetric monoidal category and CMonAb = Ring is the category of commu-
tative, associative and unitary rings.

For the functor L : C → CMonC defined in Eq. 2.1 as left adjoint to the forgetful
functor | - | : CMonC → C we shall adopt the following special conventions:

• if C = Set, L will be denoted by

N[ - ] : Set → Mon ; (2.2)

• if C = Mon, L will be denoted by

- ⊗U N : Mon → SRing , (2.3)

whereU is themonoid consisting of just one element (the notation beingmotivated
by the identity U ⊗U N = N);

• if C = Mon0, L will be denoted by

- ⊗F1 N : Mon0 → SRing , (2.4)

where F1 is the object of Mon0 consisting of two element, namely F1 = {0, 1} in
multiplicative notation (also in this case, the notation is motivated by the identity
F1 ⊗F1 N = N);
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• if C = Ab, L will be denoted by

Z[ - ] : Ab → Ring . (2.5)

All symmetric monoidal categories Set, Set∗,Mon,Mon0, Ab described above are
complete, cocomplete, and closed, so we can apply the machinery of Toën-Vaquié’s
theory illustrated in Subsect. 2.1 and define, for each of these categories, the corre-
sponding category of schemes over it. In this way, when C = Ab, one unsurprisingly
recovers the usual notion of classical scheme. A more intriguing example is provided
by the case of C = Set.

Example 2.8 Monoidal schemes An object of the category SchSet is a “scheme over
F1” in the sense of [4]. The equivalence between the two definitions was proved in
[28]. We recall that, if M is a commutative monoid, its “spectrum over F1” Spec M
can be realized as the set of prime ideals of M and given a topological space structure.

In the present paper we shall call an object in SchSet a monoidal scheme and use
the name of “F1-scheme” for a different kind of algebro-geometric structures (see
Definition 5.1). �

3 The category of blueprints

The notion of blueprint was introduced by Olivier Lorscheid in his 2012 paper [16].

Definition 3.1 A blueprint is a pair B = (R, A), where R is a semiring and A is
a multiplicative subset of R containing 0 and 1 and generating R as a semiring. A
blueprint morphism f : B1 = (R1, A1) → B2 = (R2, A2) is a semiring morphism
f : R1 → R2 such that f (A1) ⊂ A2.

Notice that, given a blueprint morphism f : B1 = (R1, A1) → B2 = (R2, A2), its
restriction f |A1 : A1 → A2 is a monoid morphism that uniquely determines f on the
whole of R1.

The idea underlying the notion of blueprint can be illustrated as follows. Some
equivalence relations that do not make sense in a monoid A may be expressed in
the semiring A ⊗F1 N. Now, any equivalence relation R on a semiring S induces a
projection S → S/R and can indeed be recovered by such a map. So, the assignment
of a pair (A, A ⊗F1 N → R) is to be interpreted as the datum of a monoid A plus the
relation on A ⊗F1 N given by the epimorphism A ⊗F1 N → R.

Example 3.2 Consider the monoid AT = N∪{−∞} (in additive notation, correspond-
ing to {T i }i∈N∪{−∞} in multiplicative notation) and the corresponding free semiring
AT ⊗F1 N of polynomials in T with coefficient in N (the functor - ⊗F1 N has been
introduced in eq. 2.4). Notice that Spec AT has two points, namely the prime ideals
{−∞} and (N\{0})∪{−∞}, which embed in Spec AT ⊗F1 N (we are loosely thinking
of Spec AT ⊗F1 N as the underlying topological space).
Now, if one takes a closed subset of Spec AT ⊗F1 N and intersects it with Spec AT ,
one could naively think that the intersection is nonempty only when the chosen closed
subset is defined by some relation in AT . However, this is not the case: for instance,
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the relation 2T = 1, which makes the ideal (T ) trivial, cannot be expressed in the
monoid AT . According to Lorscheid’s idea, one can represent this affine “monoidal
scheme” by considering the pair (AT , AT ⊗F1 N → AT ⊗F1 N/(2T = 1)). �

The category of blueprints can be given a handier description, whichmakes it easier
to characterise it as the category of commutative monoids in a suitable symmetric
monoidal category.

Let us consider the functor - ⊗F1 N : Mon0 → SRing (introduced in eq. 2.4)

Definition 3.3 The category Blp is the full subcategory of - ⊗F1 N/SRing whose
objects (A, A ⊗F1 N → R) satisfy the conditions:

a) the morphism A ⊗F1 N → R is an epimorphism;
b) the composition A → |A ⊗F1 N| → |R|, is a monomorphism
(the first map being the unit of the adjunction).

(3.1)

It is immediate that the category Blp is equivalent to the category of blueprints intro-
duced in Definition 3.1

Consider now the forgetful functor | - | : Mon0 → Set∗; for each monoid M with
absorbent object 0 (in multiplicative notation), the base point of the associated set |M |
is clearly the element corresponding to 0. Its adjoint functor is the functor

N[ - ] : Set∗ → Mon0 .

We can now form the full subcategory B of N[ - ]/Mon0 whose objects (X , N[X ] →
M) are described by conditions formally identical to those in eq. 3.1

a) the morphismN[X ] → M is an epimorphism;
b) the composition X → |N[X ]| → |M | is a monomorphism.

(3.2)

Remark 3.4 The category B above corresponds to the category of pointed set endowed
with a pre-addition structure, as described in [18, §4]. �
Theorem 3.5 The category B carries a natural structure of symmetric monoidal cate-
gory. Moreover, this structure is closed, complete, and cocomplete.

Proof In the category B there is a natural symmetric monoidal product given by

(X , N[X ] → M) ⊗ (

X ′, N[X ′] → M ′) = (

X ∧ X ′, N[X ∧ X ′] → M ⊗ M ′) ,

(3.3)
where the map N[X ∧ X ′] → M ⊗ M ′ is the composition

N[X ∧ X ′] → N[X ] ⊗ N[X ′] → M ⊗ M ′ ;

the first morphism maps n(x, x ′) to nx ⊗ x ′ and is an isomorphism (in other words,
the functor N[ - ] is monoidal).

Since M ⊗M ′ is generated as amonoid by elements of the form x ⊗x ′, and since the
twomapsN[X ] → M andN[X ′] → M ′ are surjective, themapN[X ∧X ′] → M ⊗M ′
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is also surjective. Moreover, by the definition of tensor product in the category Mon,
for any x, y ∈ X \ {∗} and x ′, y′ ∈ X ′ \ {∗} one has x ⊗ x ′ = y ⊗ y′ if and only if
(x, x ′) = (y, y′), so that the map

X ∧ X ′ → |M ⊗ M ′|

is a monomorphism. Conditions 3.2 are therefore satisfied.
We now show that the monoidal category B is closed. Let us define the internal hom

functor by setting

Hom ((X , N[X ] → M) , (Y , N[Y ] → N ))

=
(

Y X ×|N |X |N M |, N

[

Y X ×|N |X |N M |
]

→ Ñ M
)

, (3.4)

where Ñ M is the image of the map

N

[

Y X ×|N |X |N M |
]

→ N

[

|N M |
]

→ N M

(the second map above is the counit of the adjunction). Let us check the adjunction
property. For each map

(X , N[X ] → M) ⊗ (Y , N[Y ] → N )

= (X ∧ Y , N [X ∧ Y ] → M ⊗ N ) → (Z , N[Z ] → L) , (3.5)

the first component corresponds, by the exponential law in Set∗, to a map X → ZY ,
while the second component is given by a commutative square

N[X ∧ Y ] N[Z ]

M ⊗ N L

(3.6)

where the arrow on the left is the product map N[X ] ⊗ N[Y ] → M ⊗ N and the top
arrow is the image of themap in the first component through the functorN[ - ]. By using
the property thatN[ - ] is the left adjoint to the forgetful functor and by noticing that the
bottom arrow in 3.6 corresponds to a map M → L N , it is immediate that assigning the
commutative diagram 3.6 is equivalent to assigning the two commutative diagrams

X ZY

|L|Y

X

|M | |L N |

together with the condition that the diagonal morphism of the first coincides with the
composition of the diagonal morphism of the second and the morphisms |L N | ↪→
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|L||N | → |L|Y (the second map being induced by the map Y → |N |). Summing up, a
map as in eq. 3.5 is equivalent to a map from X to the pullback defined by the diagram

ZY

|L N | |L|Y

along with a compatible map M → L N in such a way that the following diagram
commutes:

X |L N | ×|L|Y ZY ZY

|M | |L N | |L|Y
This shows that the internal hom functor in eq. 3.4 is indeed a right adjoint to the
monoidal product functor in eq. 3.3.

We wish now to show that the category B is complete and cocomplete. First we
prove that it admits colimits. Given a diagram whose objects are (Xi , N[Xi ] → Mi ),
we claim that its colimit is the object

B =
(

l̃im−→Xi , N

[

l̃im−→Xi

]

→ lim−→Mi

)

,

where l̃im−→Xi denotes the image of the natural map lim−→Xi → |lim−→Mi |; the maps from
the diagram to B are the obvious ones. It is immediate that B is an object of B. The
injectivity condition is satisfied by definition. As for the surjectivity condition, one
has that, since the functor N[ - ] preserves colimits (being a left adjoint), the map
N[lim−→Xi ] → lim−→Mi is surjective (by [20], Theorem V.2.1, it is enough to show that
for arbitrary coproducts and coequalizers, in which cases it is a consequence of the
surjectivity of the maps N[Xi ] → Mi ), so that the image of lim−→Xi generates lim−→Mi ;

hence, the map ˜N[lim−→Xi ] → lim−→Mi is surjective.
Consider a map from the given diagram to an object C of B. In the cat-

egory N[ - ]/Mon0 such a map factorises in a unique way through the object
(lim−→Xi , N[lim−→Xi ] → lim−→Mi ) because of the colimit properties in the categories
Set∗ and Mon0 and because the functor N[ - ] preserves colimits. If two elements
x, y ∈ lim−→Xi have the same image m ∈ lim−→Mi , then their images in the first compo-
nent of C are mapped by the morphism in the second component to the same element.
So, the images of x and y do coincide, just because C is an object of B. It follows
that the map from the diagram in C uniquely factorises through B, so that our claim
is proved.

Second we prove that B admits limits. Given a diagram as above, we claim that its
limit is the object

B ′ =
(

lim←−Xi , N

[

lim←−Xi

]

→ l̃im←−Mi

)

,

123



770 São Paulo Journal of Mathematical Sciences (2021) 15:754–789

where l̃im←−Mi is the image of the natural map N[lim←−Xi ] → lim←−Mi , which is adjoint
to the map lim←−Xi → lim←−|Mi | ∼= |lim←−Mi | (the last isomorphism holds since | - |
preserves limits, being a right adjoint) induced by the maps Xi → |Mi |; the maps
from B ′ to the diagram are the obvious ones. It is clear that B ′ is an object of B:
the surjectivity condition holds by definition, while for the injectivity condition it
is enough to note that it holds when the limit is either an arbitrary product or an
equalizer (see [20], Theorem V.2.1). Consider now a map from an object C to the
given diagram. In the categoryN[ - ]/Mon0 such amap uniquely factorises through the
object (lim←−Xi , N[lim←−Xi ] → lim←−Mi ), because of the limit properties in the categories
Set∗ and Mon0. Since the second component of C is a surjective morphism, this map
uniquely factorises through B ′. Thus, B ′ satisfies the limit condition, as claimed. ��
Proposition 3.6 The category Blp of blueprints is equivalent to the category CMonB of
monoids in the symmetric monoidal category B.

Proof To begin with, notice that, for each monoid object ((X , N[X ] → M), μ) in B,
the domain of the multiplication map

μ : (X , N[X ] → M) ⊗ (X , N[X ] → M) → (X , N[X ] → M)

is defined in eq. 3.3 as

(X , N[X ] → M) ⊗ (X , N[X ] → M) := (X ∧ X , N[X ∧ X ] → M ⊗ M) .

So the first component of μ is a map

m : X ∧ X → X

which defines a (multiplicative) monoid structure on the set X , while the second
component of μ yields a commutative diagram

N[X ∧ X ] N[m]
N[X ]

M ⊗ M M

whose bottom arrow induces an associative and commutative multiplication on the
monoid M compatible with its monoidal sum; in other words, it induces a semiring
structure on M .

Similarly, the top arrow induces a semiring structure one the monoid N[X ]. In this
case, since the multiplication is given by the application of the free monoid functor
N[ - ] to the multiplication m of X , the resulting semiring is nothing but the free
semiring X ⊗F1 N generated by the monoid (X , m). The commutativity of the diagram
ensures that the multiplication on X is consistent with that on M , so that X can still
be seen as a subobject of |M |.
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In conclusion, a monoid object in the category B is a blueprint, and it is also obvious
that any blueprint can be obtained this way. ��
Remark 3.7 Theorem 3.5 and Proposition 3.6 should hopefully provide a full elucida-
tion of [18, Lemma 4.1]. �

We have shown that the category of blueprints fits in with the general framework
proposed by Toën and Vaquié, so we can apply the formalism of Subsection 2.1 to
define the category of schemes over B.

Definition 3.8 An affine B-scheme is an object of the category AffB = Blpop, a B-
scheme an object of the category SchB (see Definition 2.7).

Remark 3.9 A“B-scheme” corresponds towhat is called a “subcanonical blue scheme”
in [18]. �

4 Adjunctions

4.1 B-schemes

This sections aims to show that the natural adjunction between the categories AffMon0
and AffSet∗ factorizes through an adjunction between the categories AffMon0 and AffB
and an adjunction between the categories AffSet∗ and AffB, whose right adjoints induce
functors between the corresponding categories of relative schemes.

Lemma 4.1 The functor F̃ : N[ - ]/Mon0 → Mon0 mapping an object (X , N[X ] →
M) to the monoid M admits a right adjoint

G̃ : Mon0 → N[ - ]/Mon0 , (4.1)

mapping a monoid M to the object (|M |, N[|M |] → M), where the second compo-
nent is the counit of the adjunction N[ - ] 	 | - |. The adjunction F̃ 	 G̃ induces an
adjunction between the associated categories of monoids

SRing
G

- ⊗F1 N/SRing

F

, (4.2)

where F maps an object (A, A ⊗F1 N → R) to the semiring R and its right adjoint G
maps a semiring R to the object (|R|, |R| ⊗F1 N → R), where the second component
is the counit of the adjunction - ⊗F1 N 	 | - |.
Proof Let (X , N[X ] → M) be an object of N[ - ]/Mon0 and N a monoid. Let us
consider a morphism

(X , N[X ] → M) → (|N |, N[|N |] → N )
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in the category N[ - ]/Mon0 and denote by f : X → |N | the induced set morphism.
In the commutative square

N[X ] N[ f ]
N[|N |]

M N

(4.3)

the map N[ f ], because of the property of the vertical arrow on the right (which is the
counit of the adjunction), amounts to the same as a map N[X ] → N . Such a map,
by adjunction, must be induced by the map f : X → |N |. Thus, the assignment of
the map f and the commutative square 4.3 are equivalent to the assignment of the
commutative triangle

N[X ]

M N

But this diagram is equivalent to the assignment of a map M → N , since the vertical
map is given. We have therefore the adjunction F̃ 	 G̃, as claimed. The last statement
is now straightforward. ��

Since image of the functor G̃ : Mon0 → N[ - ]/Mon0 is contained in the subcate-
gory B, the adjunction 4.2 restricts to the adjunction

SRing
G

Blp

F

. (4.4)

It is immediate that the adjunction SRing | - | Mon0

-⊗F1N

factorises through the

adjunction 4.4 and the adjunction

Mon0
σ

Blp

ρ

, (4.5)

where ρ(A, A ⊗F1 N → R) = A and σ(A) = (A, A ⊗F1 N
=

A ⊗F1 N ).
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The adjunctions above induce opposite adjunctions between the corresponding
categories of affine schemes. We have therefore the following diagram

AffMon0
| - |

G

AffSet∗

-⊗F1N

σ

AffB

ρ

F

(4.6)

associated to the diagram

Mon0
| - |

G̃

Set∗

N[ - ]

σ̃

B

ρ̃

F̃

(4.7)

We now wish to show that the functors in diagram 4.7 satisfy the conditions that
are required to apply [27, Prop. 2.1, Cor. 2.2]. Of course, it will be enough to check
that for the adjunctions F̃ 	 G̃ and ρ̃ 	 σ̃ .

Lemma 4.2 In the adjunction Mon0
G̃

B

F̃

(1) the left adjoint F̃ is monoidal;
(2) the right adjoint G̃ is conservative;
(3) the functor G̃ preserves filtered colimits.

Proof (1) and (2) are straightforward.
As for (3), we have to show that the right adjoint preserves filtered colimits, which

is also quite obvious. The colimit of a filtered diagram (Xi , N[Xi ] → Mi ) is indeed
given by

(

lim−→Xi , N

[

lim−→Xi

]

→ lim−→Mi

)

provided that it belongs to our category (notice that N[lim−→Xi ] ∼= lim−→N[Xi ] since N[ - ]
is a left adjoint). But it does, because the map N [lim−→Xi ] → lim−→Mi is surjective due
to the fact that so are the maps N[Xi ] → Mi and the injectivity condition is satisfied
since the diagram is filtrant. ��
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Lemma 4.3 In the adjunction B
ρ̃

Set∗

σ̃

(1) the left adjoint σ̃ is monoidal;
(2) the right adjoint ρ̃ is conservative;
(3) the functor ρ̃ preserves filtered colimits.

Proof The functors σ̃ , ρ̃ are defined as follows: σ̃ (X) = (X , N[X ] =
N[X ] ) and

ρ̃(X , N[X ] → M) = X . (1) is then straightforward. As for (2), we know that a map
(X , N[X ] → M) → (Y , N[Y ] → N ) is determined by the first component, so that ρ̃
is conservative. Finally, (3) is proved by proceeding as in the proof of Lemma 4.2. ��
Proposition 4.4 The functor F : AffB → AffMon0 is continuous w.r.t. the Zariski and
the flat topology; morevover, the functor

̂F : Sh (AffB) → Sh
(

AffMon0

)

(4.8)

preserves the subcategories of schemes and so induces a functor

̂F : SchB → SchMon0

� �→ ̂F(�)
(4.9)

Proof a) We first note that, given objects X M = (X , N[X ] → M), X ′
M =

(X , N[X ] → M ′) in B, if X M → X M ′ is a flat morphism in B, then in the asso-
ciated diagram

M -Mod X M -Mod

M ′ -Mod X M ′ -Mod

the natural transformation between the two compositions is an isomorphism. We wish
to prove that an analogous property holds when one considers a flat morphism in the
category Blp. As usual, it will be enough to work in the category - ⊗F1 N/SRing. Let
AR = (A, A ⊗F1 N → R) and AS = (A, A ⊗F1 N → S) be objects in this category,
and consider a flat morphism AR → AS . An AR-module is given by a pair

(N , M) ∈ Set∗ × Mon0

such that N is a subset of |M | and generates it as a module, together with an action of
A on N and an action of R on M , such that the former is the restriction of the latter.
If M is an R-module M , its associated AR-module is the (R, R ⊗F1 N → R)-module
(|M |, M), whose AR-module structure is induced by the map

AR → (

R, R ⊗F1 N → R
)

123



São Paulo Journal of Mathematical Sciences (2021) 15:754–789 775

given by the pair of immersions ι : A ↪→ R and ι⊗F1 id : A ⊗F1 N → R ⊗F1 N, where
the latter fits in the commutative square

A ⊗F1 N

ι⊗F1 id
R ⊗F1 N

R
idR

R

The category R -Mod can therefore be identified with the full subcategory of the
category of

(

A ⊗F1 N, A ⊗F1 N → R
)

-Mod

whose underlying objects in Mon0/Mon0 are of the kind (M, M = M).
We have now to show that, for any flat morphism AR → AS in - ⊗F1 N/SRing, in

the associated diagram

R -Mod AR -Mod

S -Mod AS -Mod

the natural transformation between the two compositions is an isomorphism.As for the
first component, the commutativity up isomorphism of the above diagram is straight-
forward. As for the second component, that can be easily shown by adapting the
argument in proof of Prop. 3.6 of [27]. The statement then follows from [27, Cor. 2.22].

��

Proposition 4.5 The functor σ : AffSet∗ → AffB is continuous w.r.t. the Zariski and the
flat topology; morevover, the functor

σ̂ : Sh (

AffSet∗
) → Sh (AffB) (4.10)

preserves the subcategories of schemes and so induces a functor

σ̂ : SchSet∗ → SchB
� �→ σ̂ (�)

(4.11)

Proof Consider a flat morphism A → B in the categoryMon0, and denote by AA⊗F1N

the object (A, A⊗F1 N = A⊗F1 N) in - ⊗F1 N/SRing. Each AA⊗F1N
-module is given

by a pair (N , M) ∈ Set∗ × Mon0 together with an action of A on N and an action of
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A ⊗F1 N on M , the two actions being compatible in the obvious sense. In the diagram

AA⊗F1N
-Mod A -Mod

BB⊗F1N
-Mod B -Mod

the horizontal map sends an object (N , M) to the set N endowed with an action
of the monoid A. Since tensor products are defined “componentwise”, the diagram
commutes. ��

4.2 ˜B-schemes

By Proposition 4.5 there is an induced functor σ̂ : SchSet∗ → SchB. One would like
this functor to have a left adjoint determined by the functor ρ : AffSet∗ → AffB. The
functor ρ may be easily shown to preserve Zariski covers, but it does not commutewith
finite limits (in other words, it is not continuous w.r.t. the Zariski topology, according
to the usual terminology).

Example 4.6 Let us consider the free monoid M = 〈X , Y 〉 and the blueprint B defined
by the free monoid 〈T , T1, T2, S, S1, S2〉 with the relations T = T1 + T2 and S =
S1 + S2. Let f , g : M → B be the morphisms mapping (X , Y ), respectively, into
(T1, T2) and (S1, S2). The coequalizer of f and g is the blueprint B ′ defined by the
free monoid 〈X , Y , Z〉 with the relation Z = X + Y , while the coequalizer of ρ f and
ρg is the the free monoid 〈T , S, Z1, Z2〉. The latter is obviously different from ρB ′.

�
This drawback may be sidestepped by proceeding as follows: 1) omit the require-

ment that the map A → |A ⊗F1 N| → |R| is a monomorphism in Definition 3.3 and
define a category ˜Blp that contains the category Blp of blueprints; analogously, by
omitting the second condition in eq. 3.2, define a category˜B containing B; 2) prove
that there is a functor ρ : AffSet∗ → Aff

˜B that is continuous w.r.t. the Zariski topology;
3) define the category of schemes Sch

˜B associated to this new category; 4) restrict our
attention to the subcategory of Sch

˜B consisting of schemes that admit a cover by affine
schemes in the category AffB.

More precisely, the categories˜B and ˜Blp are defined in the following way.

Definition 4.7 The category˜B is the full subcategory of N[ - ]/Mon0 whose objects

(X , N[X ] → M)

satisfy the condition that the morphism N[X ] → M is an epimorphism.
The category ˜Blp is the category CMon

˜B of monoids in the symmetric monoidal cate-
gory˜B.
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We denote again by ρ : ˜Blp → Mon0 the forgetful functor, ρ(A, A ⊗F1 N → R) =
A; analogously to adjunction 4.5, there is an adjunction

Mon0
σ

˜Blp

ρ

, (4.12)

where σ(A) = (A, A ⊗F1 N
=

A ⊗F1 N ).

Lemma 4.8 (a) Given an object (A, A ⊗F1 N → R) of ˜Blp, any diagram X : I →
A − Mod can be lifted to a diagram I → (A, A ⊗F1 N → R) − Mod.

(b) Given a diagram X : I → Mon0 and a sieve I0 of I , any lift of X |I0 to a diagram
I0 → ˜Blp can be extended to a diagram I → ˜Blp.

Proof (a) Let X : I → A − Mod be a diagram. For each object i of I , consider the
(A, A ⊗F1 N → R)-module (Xi , N[Xi ] → M0

i ), where M0
i is the quotient of

N[Xi ] by the equivalence relation generated by am = bm, for each m ∈ N[Xi ]
and for each pair (a, b) in the relation defining the quotient R.

By induction, the (A, A ⊗F1 N → R)-module (Xi , N[Xi ] → Mα+1
i ) is defined

by setting Mα+1
i to be the quotient of N[Xi ] by the equivalence relation generated

by the equations defining Mα
i and by the equations N[ f ]m = N[ f ]n, where

f : X j → Xi is any map in the diagram and where m = n w.r.t. the relation
defining Mα

j . When α is a limit ordinal, Mα
i is defined as the obvious colimit

lim−→β<α Mβ
i . Finally, let Mi = lim−→α Mα

i . It is clear that the diagram X can be lifted
in a unique way to a diagram (Xi , N[Xi ] → Mi ).

(b) The proof is analogous to that of point (a). ��
Remark 4.9 A particular case of Lemma 4.8(b) is the following. Given an object

(A, A ⊗F1 N → R) of ˜Blp, any diagram A
f

g
B can be lifted (w.r.t. ρ) to a

diagram (A, A ⊗F1 N → R) (B, B ⊗F1 N → S) . �
Remark 4.10 Should one admit the existence of the zero monoid and of the zero ring
(i.e. the possibility that 0 = 1), in the proof of Lemma 4.8 it would be enough to set
Mi = 0 and S = 0, respectively �
Proposition 4.11 The functor ρ : AffSet∗ → Aff̃B preserves Zariski covers.

Proof Let

{

Spec
(

Ai , Ai ⊗F1 N → Ri
) → Spec(A, A ⊗F1 N → R)

}

i∈I

be anyZariski cover in the categoryAff
˜B.Wehave toprove that {Spec Ai → Spec A}i∈I

is a Zariski cover in AffSet∗ . To do that, by taking into account [27, Déf. 2.10], we have
to check the following four points:
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(1) To show that, for each i , Spec Ai → Spec A is flat, that is that

- ⊗A Ai : A − Mod → Ai − Mod

is exact. By applying Lemma 4.8(a) to any finite diagram, this follows from the
flatness of the morphism Spec(Ai , Ai ⊗F1 N → Ri ) → Spec(A, A ⊗F1 N → R)

and from the fact that ρ preserves limits, being a right adjoint.
(2) To show that there is a finite subset J ⊂ I such that

∏

j∈J

- ⊗A A j : A − Mod →
∏

j∈J

A j − Mod

is conservative. This follows fromLemma 4.8(a) in the casewhere I is the category
• → •.

(3) To show that ρ preserves epimorphisms. This is consequence of Lemma 4.8(b)
(see Remark 4.9).

(4) To show that ρ preserves the finite presentation property. This fact follows from
Lemma 4.8(b).

��
Proposition 4.12 The functor ρ : AffSet∗ → Aff̃B preserves finite limits.

Proof We will show the equivalent statement that the opposite functor from ρ : ˜B →
Set∗ preserves finite colimits. As usual, it is enough to show that it preserves finite
coproducts and coequalizers.
Let (A, A ⊗F1 N → R) and (B, B ⊗F1 N → S) be objects in˜B and take the coproduct
(A

∐

B, (A
∐

B)⊗F1 N → R ⊕ S) in the category - ⊗F1 N/SRing: we have to show
that the second component is surjective. This follows from the fact that, being - ⊗F1 N

a left adjoint, one has (A
∐

B) ⊗F1 N ∼= (A ⊗F1 N) ⊕ (B ⊗F1 N).
Let f , g : (A, A ⊗F1 N → R) → (B, B ⊗F1 N → S). Analogously as above, the
domain of the second component of the coequalizer C of f , g in - ⊗F1 N/SRing is
the coequalizer of

f ⊗F1 N, g ⊗F1 N : A ⊗F1 N → B ⊗F1 N .

Because of the universal property of colimits, there is a commutative diagram giving
rise to a commutative diagram

A ⊗F1 N B ⊗F1 N C

R S T

in SRing, whose rows are coequalizers and where the map C → T is the second
component of the coequalizer of f , g in the category - ⊗F1 N/SRing. As the middle
vertical map and the bottom right one are surjective, so is the map C → T . ��
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Proposition 4.11 and Proposition 4.12 entail the following result.

Corollary 4.13 The functor ρ : AffSet∗ → Aff̃B is continuous w.r.t. the Zariski topology,
and the adjunction 4.12 gives rise to a geometric morphism

Sh(Aff̃B) ρ̂
Sh(AffSet∗)

σ̂

(4.13)

Theorem 4.14 The functor ρ̂ : Sh(Aff̃B) → Sh(AffSet∗) preserves the subcategories of
schemes and so induces a functor

ρ̂ : Sch̃B → SchSet∗ . (4.14)

Hence, the adjunction 4.13 induces an adjunction ρ̂ 	 σ̂ : Sch̃B → SchSet∗ .

Proof We already proved that σ̂ preserves the relevant subcategory of schemes in
Proposition 4.5. So all we have to prove is that ρ̂ preserves the relevant subcategory
of schemes. In view of [27, Proposition 2.18], it suffices to observe that the following
properties of ρ̂ are satisfied:

• it preserves coproducts (for it is a left adjoint), and affine schemes;
• it preserves finite limits (by Proposition 4.12) and Zariski opens of affine schemes
(by Lemma 4.8(b) and by the fact that ρ̂ preserves finite limits);

• it preserves images (since it preserves finite limits and colimits) and diagonal
morphisms;

• it preserves quotients, since it preserves colimits.

��
Definition 4.15 A scheme � in Sch

˜B that admits a Zariski cover by affine schemes in
AffB will be called (by a slight abuse of language) a˜B-scheme. The category of such

schemes will be denoted by S̃ch
˜B.

The rationale behind this definition is that, while˜B-schemes retain all good local prop-
erties of B-schemes (namely, the properties of blueprints), one gains the advantages
of working in the wider and more comfortable environment of the category Sch

˜B.
Notice that the adjunction in Theorem 4.14 obviously restrict to an adjunction

ρ̂ 	 σ̂ : S̃ch
˜B → SchSet∗ . (4.15)

Morevover, one can define a functor

SchB
̂FZ SchAb , (4.16)

obtained by composing the functor ̂F : SchB → SchMon0 in eq. 4.9 with the functor

- ⊗N Z : SchMon0 → SchAb
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defined in [27, Prop. 3.4]. Of course, this functor restricts to a functor

S̃chB
̂FZ SchAb . (4.17)

A ˜B-scheme gives rise, through the functors ρ̂ and ̂FZ, to a pair consisting of a
monoidal scheme and a classical scheme.

Definition 4.16 Given a˜B-scheme �, we set

• �Z := ̂FZ(�), which is an object of SchAb (i.e. a classical scheme);
• � := ρ̂(�), which is an object of SchSet∗ (i.e. a monoidal scheme).

There is a natural transformation �Z → � ⊗F1 Z, which is obtained via the unit of
the adjunction ρ̂ 	 σ̂ and by applying the functor ̂FZ. By definition, there is indeed a
map

̂FZ� → ̂FZσ̂ ρ̂ � ∼= � ⊗F1 Z ,

where the isomorphism is given by the natural isomorphism ̂FZ ◦ σ̂ = - ⊗F1 Z.
In the affine case, such a map is simply realized as the bottom arrow of the map

between arrows

A ⊗F1 Z A ⊗F1 Z

A ⊗F1 Z R ⊗N Z

where the top and the left map are identities.
Summing up, a˜B-scheme � induces therefore the following objects:

• a monoidal scheme�; (4.18)

• a (classical) scheme�Z overZ; (4.19)

• a natural transformation � : �Z → � ◦ | - | ∼= � ⊗F1 Z . (4.20)

We shall say that the˜B-scheme � generates the pair (�,�Z), the natural transforma-
tion 4.20 being omitted.

5 An application: ˜B-schemes and F1-schemes

The geometric data 4.18, 4.19, 4.20 appear to be similar to (but different from) those
used by A. Connes and C. Consani [1] in their definition of F1-scheme, which is as
follows.
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Definition 5.1 [1, Def. 4.7] An F1-scheme is a triple (�,�Z,�), where

(1) � is a monoidal scheme;
(2) �Z is a (classical) scheme;
(3) � is a natural transformation � → �Z ◦ ( - ⊗F1 Z), such that the induced natural

transformation � ◦ | - | → �Z, when evaluated on fields, gives isomorphisms (of
sets).3

A manifest difference between˜B-schemes and F1-schemes is, of course, the direc-
tion of the natural transformation linking the monoidal scheme and the classical
scheme. Moreover, the condition on � in Definition 5.1(3) may fail to be fulfilled
in the case of˜B-schemes, as shown by the following example.

Example 5.2 Consider a pair (A, R → A ⊗F1 Z) defining an affine F1-scheme in the
sense Definition 5.1. Notice that, in this case, the natural transformation � calculated
on a field k corresponds to mapping a prime ideal p of A ⊗F1 Z plus an immersion
A ⊗F1 Z/p ↪→ k to their restrictions to R; the requirement is that this is a bijection.

On the other hand, according to the general idea underlying the notion of blueprint,
if the pair (A, R) is associated with an affine B-scheme (which is, of course, the same
thing as an affine˜B-scheme), then the ring R encodes the information of a relationR
intended to reduce the number of ideals of A. Take for instance the case (A, A⊗F1 Z →
R), with A = N ∪ { −∞} (additive notation) and R = A ⊗F1 Z/(2T − 1). Then, N

is an ideal not coming from any ideal of R, since T is invertible (in more algebraic
terms, we are saying that the map to any field k sending T to 0 can not be lifted to a
map from R to k). �

The category S̃ch
˜B and that of F1-schemes may be combined into a larger category.

Definition 5.3 The category of F1-schemes with relations is the fibered product

of the category S̃ch
˜B of ˜B-schemes and that of F1-schemes over the category of

monoidal schemes. Thus, a˜B-scheme� generating the pair (�,�Z) and anF1-scheme
(�,�′

Z
,�) will determine a F1-scheme with relations denoted by the quadruple

(�,�Z, �′
Z
,�).

Remark 5.4 Recall that the aim of Lorscheid’s definition of blueprint is to increase
the amount of closed subschemes of a monoidal scheme. If we loosely refer to the
features of the underlying topological space as “shape” of the scheme, we could say
that the category of B-schemes (or that of˜B-schemes) adds “extra shapes” to Deitmar’s
category of monoidal schemes.

Consider now F1-schemes, and let us restrict our attention to the affine case. So,
we just have a ring R, a monoid M , and a map R → M ⊗F1 Z. Since it is required,
by definition, that points remain the same, the monoid is not enriched with “extra
shapes”. However, if we think of the given map as a restriction map between the
spaces of functions of the affine schemes M ⊗F1 Z and R, we can interpret the datum
of the F1-scheme as an enlargement of the space of functions of the affine monoidal
scheme M .

3 In [1] the functor - ⊗F1 Z is denoted by β and its right adjoint | - | by β∗.
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In conclusion, an F1-scheme with relation, according to the definition 5.3, allows
us both to add “extra shapes” to the underlying monoidal scheme and to enlarge its
space of functions.

As an example, consider the affineF1-schemewith relation given by the freemonoid
on four generators and the data

Z [T1, T2, T3, T4, ε] /(ε
2) → Z [T1, T2, T3, T4]

→ Z [T1, T2, T3, T4] / (T1T4 − T2T3 − 1) .

The B-scheme component on the right has been already taken into consideration in
the Introduction; the F1-scheme component on the left adds a nilpotent component to
the ring of functions. �

Notice that the classical scheme�Z is derived from the˜B-scheme� via the functor
̂FZ : Blp → Ring (Definition 4.16). This means, in particular, that the affine B-scheme
� = (M, M ⊗F1 N → R) generates the affine classical scheme �Z = R ⊗N Z. So
Definition 5.3 indicates that, as long as we wish to investigate a relationship between
this affine B-scheme with an F1-scheme and its associated affine classical scheme �′

Z
,

we are no longer concerned with the “monoid relations” given themap M ⊗F1 N → R,
but only with the “ring relations” given by the map M ⊗F1 Z → R ⊗N Z (cf. eq. 4.20).

From this viewpoint it appears more natural to work with blueprints with “ring
relations”. More precisely, consider the functor

- ⊗F1 Z : Mon0 → Ring

which is the left adjoint to the forgetful functor, and consider the category ( - ⊗F1

Z)/Ring. We shall denote by Z - Blp the full subcategory of ( - ⊗F1 Z)/Ring formally
defined in the same way as the subcategory blueprints Blp of - ⊗F1 N/SRing. Analo-
gously, one defines the category Z - ˜Blp. A Z -˜B-scheme is then a scheme in Sch

Z - ˜Blp
that admits a Zariski cover by affine schemes in (Z - Blp)op. We shall adopt hereafter
the following terminological convention.

Convention 5.5 In what follows, by ˜B-scheme we mean a Z -˜B-scheme, and by F1-
scheme with relations we mean the combination of a Z -˜B-scheme and an F1-scheme
in the sense of Definition 5.3.

Now, Definition 4.16 and Definition 5.1 imply that, for every F1-scheme with
relations (�,�Z, �′

Z
,�), there is a natural transformation �1 : �Z → �′

Z
given by

the composition

�Z

�
� ◦ | - | �

�′
Z

, (5.1)

which will be called the first transferring map determined by the given F1-scheme
with relations. As its name would suggest, the natural transformation �1, loosely
speaking, conveys information on about how many “points” of �′

Z
are compatible

with the˜B-scheme that generates the pair (�,�Z). Actually, there is a different way
to “transfer” this information from the˜B-scheme to the F1-scheme associated with the
fibered object (�,�Z, �′

Z
,�).
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The counit of the adjunction - ⊗F1 Z 	 | - | induces a map

� ◦ | - | → � ◦ || - | ⊗F1 Z| . (5.2)

Moreover, the natural transformation 4.20 induces a map

�′
Z

◦ (| - | ⊗F1 Z
) → � ◦ || - | ⊗F1 Z| . (5.3)

Let �′
B be the sheaf on the category Ring obtained as the pullback of the maps 5.2 and

5.3, i.e.
�′

B �′
Z

◦ (| - | ⊗F1 Z)

� ◦ | - | � ◦ || - | ⊗F1 Z|

(5.4)

By composing the vertical arrow on the left with �, we get a natural transformation

�2 : �′
B → �′

Z
, (5.5)

which will be called the second transferring map determined by the F1-scheme
(�,�Z, �′

Z
,�).

In the case of an F1-scheme (�,�′
Z
,�), the natural transformation � induces an

isomorphism �(|K|) � �′
Z
(K) for every field K. Since for the finite field Fq , one

has |Fq | = F1q−1 , it immediately follows, as observed in [1], that there is a bijective
correspondence between the set of Fq -points of �′

Z
and the set of F1q−1 -points of �;

in others words, one has
#�′

Z
(Fq) = #�

(

F1q−1
)

. (5.6)

This result can be extended to our setting in two different ways, because, for a ˜B-
scheme underlying an F1-scheme with relations, we can think of its “F1q−1 -points” in
two different senses.

On the one hand, the forgetful functor | - | : Ring → Mon0 admits the obvious
factorization

Ring
GZ

Z - Blp
ρ

Mon0 , (5.7)

(cf. eq. 4.5). Clearly, one has

GZ(Fq) = (

F1q−1 , F1q−1 ⊗F1 Z → F1q−1
)

and ρ(GZ(Fq)) = |Fq | = F1q−1 . Now, by definition, the first transferring map �1
factorises as �1 = � ◦ �. Since � gives isomorphisms (of sets) when evaluated on
fields and � is always locally injective, it is immediate to prove the following result.

Proposition 5.6 Let (�,�Z, �′
Z
,�) be an F1-scheme with relations. The first trans-

ferring map �1 : �Z → �′
Z

, when evaluated on a field, gives an injective map (of
sets). In particular, the set of GZ(Fq)-points of the underlying ˜B-scheme naturally
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injects into the set of Fq-points of the scheme �′′
Z

(which is isomorphic to the set of
F1q−1 -points of the monoidal scheme �).

On the other hand, one has the immersion σ : Mon0 ↪→ Z - Blp, with

σ
(

F1q−1
) =

(

F1q−1 , F1q−1 ⊗F1 Z
id−→F1q−1 ⊗F1 Z

)

.

Notice that GZ(Fq) �= σ(F1q−1), while |GZ(Fq)| = |σ(F1q−1)| = F1q−1 .

Theorem 5.7 Let (�,�Z, �′
Z
,�) be an F1-scheme with relations. The set of σ(F1q−1)-

points of the underlying ˜B-scheme is in natural bijection with the set of Fq-points of
the subpresheaf of �′

Z
given by the image of �2 : �′

B → �′
Z

.

Proof Since we can work locally, we assume that the underlying scheme is given by
a monoid M , a ring R, and a map M ⊗F1 Z → R satisfying the usual conditions. An
F1q−1 -point is given by a commutative square

M ⊗F1 Z F1q−1 ⊗F1 Z ∼= |Fq | ⊗F1 Z

id

R F1q−1 ⊗F1 Z ∼= |Fq | ⊗F1 Z

such that the arrow on the top is induced by a map M → F1q−1 .
The datum of a generic commutative square as above is equivalent to the datum of an
Fq -point in Spec R ◦ (| - | ⊗F1 Z).
The fact that the map on the top has the required property is equivalent to the fact that
the image of the point above through the restriction map

Spec R
(|Fq | ⊗F1 Z

) → Spec(M ⊗F1 Z)
(|Fq | ⊗F1 Z

)

is in the image of the map

Spec M
(|Fq |) → Spec(M ⊗F1 Z)

(|Fq | ⊗F1 Z
)

induced by the functor - ⊗F1 Z. ��
We are now interested in the case where the F1n -points of the underlying monoidal

scheme � are counted by a polynomial in n. Some preliminary definitions and results
are in order.

A monoidal scheme � is said to be noetherian if it admits a finite open cover by
representable subfunctors {Spec(Ai )}, with each Ai a noetherian monoid. Recall that,
as it is proved in [10, Theorem 5.10 and 7.8], a monoid is noetherian if and only if it
is finitely generated. This immediately implies that, for any prime ideal p ⊂ M , the
localized monoid Mp is noetherian and the abelian group M×

p of invertible elements
in Mp is finitely generated.
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Remark 5.8 Notice that, given an F1-scheme (�,�′
Z
,�), the fact that the monoidal

scheme � is noetherian does not entail that the scheme �′
Z
is noetherian as well.

Let us consider, for instance, the affine F1-scheme given by Z[X , εi ]/(ε2i ) → Z[X ],
with i ∈ N. The monoidal scheme is noetherian, while the ascending chain of ideals
. . . ⊂ (ε0, . . . , εi ) ⊂ (ε0, . . . , εi+1) ⊂ . . . does not have a maximal element. Observe
that, as for the points of the classical scheme, the presence of the εi ’s is immaterial;
hence, one has the required isomorphismZ[X ](|K|) � Z[X , εi ]/(ε2i )(K) for any field
K. �

Let ˜� the geometrical realization of the monoidal scheme �. Following Connes-
Consani’s definition [1, p. 25], we shall say that � is torsion-free if, for any x ∈ ˜�,
the abelian group O×

�,x is torsion-free.

Lemma 5.9 A noetherian monoidal scheme � is torsion-free if and only if, for any
finite group G with #G = n and for any point x ∈ ˜�, the number # Hom(O×

�,x , G) is
polynomial in n.

Proof Since� is noetherian, the abelian groupO×
�,x is finitely generated by the remark

above. So, if � is also torsion-free, thenO×
�,x is free of rank N (x), and, for any finite

group G with #G = n, we have # Hom(O×
�,x , G) = nN (x).

For the converse, suppose there is a point x such thatO×
�,x is not torsion-free. Being

noetherian,O×
�,x decomposes as a productZn×∏

i∈{1,...m} Zni . For each primenumber
p0 not dividing any of the n1, . . . , nm , say p0 > LCM (n1, . . . , nm), the number of
elements of Hom(O×

�,x , Zp0) is then pn
0 . Since there are infinitely many such prime

numbers, were # Hom(O×
�,x , Zp) a polynomial in p, it would be the polynomial pn .

Take now a prime number p1 dividing n1; in that case, the number of elements of
Hom(O×

�,x , Zp1) is greater than pn
1 . In conclusion, # Hom(O×

�,x , Zp) cannot be a
polynomial in p. ��
By Lemma 5.9, for each noetherian and torsion-free monoidal scheme �, one can
define the polynomial

P
(

�, n
) =

∑

x∈˜�

# Hom
(

O×
�,x , F1n

)

. (5.8)

The following result is proved in [1] (Theorem 4.10, (1) and (2)).

Theorem 5.10 Let (�,�′
Z
,�) be an F1-scheme such that the monoidal scheme � is

noetherian and torsion-free. Then

(1) #�(F1n ) = P(�, n);
(2) for each finite field Fq the cardinality of the set of points of the scheme �′

Z
that

are rational over Fq is equal to P(�, q − 1).

Note that the last statement immediately follows from eq. 5.6, which holds truewithout
any additional assumption on the monoidal scheme.
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For each˜B-scheme � and each abelian group G (in multiplicative notation, with
absorbing element 0), we denote by

HomB

(

O×
�,x , G

)

the subset of Hom(O×
�,x , G) given by the morphisms satisfying the relations encoded

in the blueprint structure of �. Lemma 5.9 prompts us to introduce the following
definition.

Definition 5.11 A˜B-scheme � is said to be noetherian if the monoidal scheme � is
noetherian. A noetherian˜B-scheme � is said to be torsion-free if for any finite group
G, the number # HomB(O×

�,x , G) is polynomial in #G.

Remark 5.12 While in the case of a noetherian torsion-free monoidal scheme � the
polynomial # HomB(O×

�,x , G) is always amonic monomial, this is not always the case

for a noetherian torsion-free˜B-scheme. The next example illustrates this point. �
Example 5.13 Consider the affine B-scheme � given by the free monoid M =
〈T1, T2, T3, T4〉 generated by four elements with relations given by the natural projec-
tion

Z [T1, T2, T3, T4] → Z [T1, T2, T3, T4] / (T1 − T3 + T2 − T4) .

Let G be a finite group (in multiplicative notation, with absorbing element 0); we look
for maps f : M → G together with compatible maps

Z[T1, T2, T3, T4] G ⊗F1 Z

id

Z[T1, T2, T3, T4]/(T1 − T3 + T2 − T4) G ⊗F1 Z

Since G⊗F1 Z is free, to ensure the compatibility of f with the relation T1+T2 = T3+
T4 one must have that either f (T1) = f (T3) and f (T2) = f (T4) or f (T1) = f (T4)
and f (T2) = f (T3). There are therefore only 3 possible cases for the polynomial
expressing the cardinality of HomB(O×

�,x , G):

• f (T1) = f (T2) = f (T3) = f (T4) = 0; in this case the polynomial is the constant
polynomial 1;

• either f (T1) = 0 and f (T2) �= 0 or f (T1) �= 0 and f (T2) = 0, each case
giving rise to two possible cases; therefore, in each of the four possible cases the
polynomial is n;

• f (T1) �= 0 and f (T2) �= 0; in this case the polynomial is 2n2 − n (the term 2n2

accounts for 2 possible free nonzero choices on f (T1) and f (T2), that have to be
counted twice since either f (T1) = f (T3) or f (T1) = f (T4), and the term −n
accounts for the case f (T1) = f (T2)).

�
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Let (�,�Z, �′
Z
,�) be an F1-scheme with relations such that the underlying ˜B-

scheme � is noetherian and torsion-free. We define the polynomial

Q
(

�, n
) =

∑

x∈�

# HomB

(

O×
�,x , F1n

)

.

Proposition 5.14 In the above hypotheses one has the inequality Q(�, n) ≤ P(�, n).

Proof It is clear that HomB(O×
�,x , F1n ) ⊂ Hom(O×

�,x , F1n ), since the first set contains
only the monoid morphisms that are compatible with the blueprint structure locally
defined around x .

Remark 5.15 Connes and Consani developed, in their papers [2] and [3], an approach
based on �-sets, that generalizes their previous theory of F1-schemes. Since the cate-
gory of �-sets is endowed with a natural monoidal closed structure, one can apply to
that framework the general formalism introduced by Toën and Vaquié in [27]. In [3],
a notion of scheme is defined; this notion is compared to that arising from [27], and
the two are shown to be different. The situation is thus analogous to that occurring
in the case of blue schemes, as described in [18]. Therefore, it seems worth briefly
commenting upon Connes-Consani’s construction.

Recall that a �-set is a functor

M( - ) : �op → Set

from the category �op of pointed finite sets (denoted 0+, 1+, 2+, . . .) to Set. Such a
notion was first introduced by Segal [23], who used spaces instead of sets, in order
to model commutative monoid and group structures up to homotopy. To this aim, he
restricts to the case of “special �-spaces”, that is, those functors such that the natural
map

M
(

n+) → M
(

1+) × . . . × M
(

1+)

is an equivalence. This way, the image of 1+ corresponds to the object M := M(1+)

one is interested in, the map 2+ → 1+ extending the final map 2 → 1 corresponds to
an operation (say, additive)

M × M → M ,

and all the other data correspond to associativity and commutativity conditions. On
the other hand, by using the monoidal structure of the category of �-spaces, one can
define a second operation (say, multiplicative) on M .

Connes-Consani’s basic idea is that it is possible to obtain more general structures
on M by dropping the “special” condition; in particular, one can get a multiplicative
monoid structure as above (but without the addition defined in Segal’s setting). In order
to model such a monoid structure, the only relevant information in the �-set has to be
the image M of 1+; technically, this is implemented by asking the image of an object
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n+, which is just the n fold coproduct of 1+ with itself, to be just the n fold coproduct
of M with itself. It is shown in [3] that, by following a procedure of this kind, the
categories Mon and Ring embed in the category �-sets, as well as does the category
MR as defined in [1]. In the case of rings (realized as objects in the category �-sets),
the corresponding schemes, according to Connes-Consani’s definition, coincide with
the classical ones [3, Prop. 7.9], whilst this is not the case for the schemes obtained
by applying Toën-Vaquié’s formalism [3, Lemma 8.1].

As a general consideration, we could say that the notion of scheme defined [27]
places greater emphasis on the overall category, while that defined in [3] focuses more
on the intrinsic geometric properties of each single object. �
Acknowledgements We would like to thank an anonymous referee for pointing out a couple of mistakes
in a previous version of this paper and for making helpful remarks.

Funding Open access funding provided by Universitá degli Studi di Genova within the CRUI-CARE
Agreement.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Connes, A., Consani, C.: Schemes over F1 and zeta functions. Compos. Math. 146, 1383–1415 (2010)
2. Connes, A., Consani, C.: Absolute algebra and Segal’s �-Rings: au dessous de Spec(Z). J. Number

Theory 162, 518–551 (2016)
3. Connes, A., Consani, C.: On Absolute Algebraic Geometry the affine case, arXiv:1909.09796
4. Deitmar, A.: Schemes over F1. In: Number Fields and Function Fields —Two Parallel Worlds, G.

van der Geer, B. Moonen, R. Schoof (eds.) Progress in Mathematics. 239, Birkhäuser, Boston 87–100
(2005)

5. Deitmar, A.: Remarks on zeta functions and K-theory over F1, Proceedings of the Japan Academy.
Ser. A Math. Sci. 82, 141–146 (2006)

6. Deitmar, A.: F1-schemes and toric varieties. Beiträge zur Algebra und Geometrie 49, 517–525 (2008)
7. Deninger, C.: On the �-factors attached to motives. Invent. Math. 104, 245–261 (1991)
8. Deninger, C.: Local L-factors of motives and regularized determinants. Invent. Math. 107, 135–150

(1992)
9. Deninger, C.: Motivic L-functions and regularized determinants, in Motives (AMS-IMS-SIAM Joint

Summer Research Conference on Motives, Seattle 1991), Proceedings of Symposia in Pure Mathe-
matics 55, American Mathematical Society, Providence (RI) 707–743 (1994)

10. Gilmer, R.: Commutative Semigroup Rings. The University of Chicago Press, Chicago (1980)
11. Hakim, M.: Topos annelés et schémas relatifs, Ergebnisse der Mathematik und ihrer Grenzgebiete 64.

Springer, Berlin (1972)
12. Johnstone, P.T.: Sketches of an Elephant A Topos Theory Compendium, vol. 1. Clarendon Press,

Oxford (2002)
13. Kapranov,M., Smirnov, A.: Cohomology determinants and reciprocity laws: number field case, unpub-

lished typescript

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1909.09796


São Paulo Journal of Mathematical Sciences (2021) 15:754–789 789

14. Kurokawa, N.: Multiple zeta functions: an example, in Zeta Functions in Geometry. In: N. Kurokawa
& T. Sunada (eds.), Advanced Studies in Pure Mathematics 21, Mathematical Society of Japan, Tokyo
219–226 (1992)

15. Le Bruyn, L.: Absolute Geometry, neverendingbooks.org, Universiteit Antwerpen (2011) (http://
macos.ua.ac.be/lebruyn/LeBruyn2011c.pdf)

16. Lorscheid, O.: The geometry of blueprints. Part I: Algebraic background and scheme theory. Adv.
Math. 229, 1804–1846 (2012)

17. Lorscheid, O.: A blueprinted view of F1-geometry. In: Thas, K. (ed.) Absolute Arithmetic and F1-
Geometry, pp. 161–219. European Mathematical Society, Zürich (2016)

18. Lorscheid, O.: Blue schemes, semiring schemes, and relative schemes after Toën andVaquié. J. Algebra
482, 264–302 (2017)

19. Lorscheid, O.: F1 for everyone. Jahresbericht der Deutschen Mathematiker-Vereinigung 120, 83–116
(2018)

20. Mac Lane, S.: Categories for theWorkingMathematician, Graduate Texts inMathematics, 5. Springer,
Berlin (1978)

21. Manin, Yu.: Lectures on zeta functions andmotives (according to Deninger and Kurokawa). Astérisque
228, 121–163 (1995)

22. Manin, Y.: Cyclotomy and analytic geometry, in Quanta of Maths (Conference in honor of Alain
Connes, Paris, March 29–April 6, 2007). In: Blanchard, É. et al. (eds.) Clay Mathematics Proceedings
11, American Mathematical Society, Providence (RI), 385–408 (2010)

23. Segal, G.: Categories and cohomology theories. Topology 13, 293–312 (1974)
24. Soulé, C.: On the field with one element (exposé à l’Arbeitstagung, Bonn, June 1999), preprint

IHES/M/99/55
25. Soulé, C.: Les variétés sur le corps à un élément. Moscow Math. J. 4, 217–244 (2004)
26. Tits, J.: Sur les analogues algébriques des groupes semi-simples complexes [1956]. In: Buekenhout,

F., et al. (eds.) Œuvres/Collected Works, vol. I, pp. 615–643. European Mathematical Society, Zürich
(2013)

27. Toën, B., Vaquié, M.: Au-dessous de SpecZ . J. K -Theory 3, 437–500 (2009)
28. Vezzani, A.: Deitmar’s versus Toën-Vaquié’s schemes over F1. Mathematische Zeitschrift 271, 911–

926 (2012)
29. Vistoli, A.: Grothendieck topologies, fibered categories and descent theory. In: Fantechi, B., Göttsche,

L., Illusie, L., Kleiman, S. L., Nitsure, N., Vistoli A. (eds.) Fundamental Algebraic Geometry—
Grothendieck’s FGA Explained, Mathematical Surveys and Monographs 123, AMS, 1–137 (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://macos.ua.ac.be/ lebruyn/LeBruyn2011c.pdf
http://macos.ua.ac.be/ lebruyn/LeBruyn2011c.pdf

	Some remarks on blueprints and mathbbF-.41-schemes
	Abstract
	1 Introduction
	1.1 A quick overview of mathbbF1-geometry
	1.2 About the present paper

	2 The general setting
	2.1 Schemes over a monoidal category
	2.2 Notation and examples

	3 The category of blueprints
	4 Adjunctions
	4.1 B-schemes
	4.2 widetildeB-schemes

	5 An application: widetildeB-schemes and mathbbF1-schemes
	Acknowledgements
	References




