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Abstract
In this work, we present a modified linear approximation for solving the first and 
the second kind Abel–Volterra integral equations. This approximation was used by 
the author to approximate a weakly singular integral on the curve. Noting that this 
new technique gives a good approximation of these solutions compared with several 
methods in several numerical examples.
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1 Introduction

Many numerical methods are developed for solving weakly singular integral equa-
tions in particular Abel’s integral equations, where in [1] the authors construct a 
numerical technique for solving these equations by the use of the spectral colloca-
tion method, in [2] the authors present a Method to approximate solution of the First 
kind Abel’s integral equation using Navot’s quadrature and Simpson’s rule where 
they transform this equation to the second kind integral equation. The authors of 
[3] use the fractional calculus properties for solving Abel’s integral equations, they 
approximate the functions by Chebyshev polynomials and using the collocation 
method to obtain the system of linear equations.

Also in [5] we find a numerical method based on the normalized Bernstein poly-
nomials for solving singular integral equations of Abel type where the authors use 
the orthogonality to reduce the integral equation to a system of algebraic equations. 
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On the other hand, the author in [7–9] presents a new method based on a linear 
and quadratic approximations in order to solve weakly and logarithmic integral 
equations.

A general Abel’s integral equation of the first kind can be written as

where f(x) is the data with f (a) = 0 and the function �(t) is the unknown function to 
be determined, noting that, the exact solution for � =

1

2
 is given by

On the other hand, a general Abel’s integral equation of the second kind is given by

where k(x,  t) is a map from [a, b] × [a, b] into ℝ, the unknown �(t) is defined on 
[a, b]. We can put the Eq. (3) in the linear functional equation form

where the operator A is given by

2  The quadrature

Consider that N is an arbitrary natural number and divide the interval [a, b] into N 
equal subintervals of [a, b]

denoted I1 to IN , so that, we have I�+1 = [t� , t�+1], with the relation

For an arbitrary number � = 0, 1, 2, ...,N − 1, we define the spline function S1(�;t) 
depending of �, t and let � represent the linear approximation of the function density 
�(t) on the subinterval [t� , t�+1] of the interval [a, b]. The interpolation of the density 
function �(t) with respect to the values �(t�) and �(t�+1) at the points t� and t�+1 
respectively with a linear polynomial are given by the following formula

For t� ≤ t ≤ t�+1

(1)�
x

a

1

(x − t)𝛼
𝜑(t)dt = f (x), 0 ≤ 𝛼 < 1

(2)�(x) =
Γ(�)

Γ(1 − �)

d

dx ∫
x

a

1

(x − t)1−�
f (t)dt.

(3)𝜑(x) − �
x

a

k(x, t)

(x − t)𝛼
𝜑(t)dt = f (x), 0 ≤ 𝛼 < 1.

(4)�(x) − A�(x) = f (x),

(5)A�(x) = ∫
x

a

k(x, t)

(x − t)�
�(t)dt

[a, b] = {a = t0 < t1 < ..... < tN = b},

t� = a + �
l

N
, l = b − a , � = 0, 1, 2, ....,N.
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This spline function exists and is unique also called a linear interpolating polyno-
mial. Define the function ��(�;t, x) depending on �, t and x by

where the function U�(�;t, x) represents a modified linear interpolation of the func-
tion density �(t) on the subinterval [t� , t�+1].

and the function V�(�;t, x) is given as an approximate function of �(x) on the last 
subinterval [t� , x] where x = t�+1 by

Denote ��(�;t, x) the approximation of the density �(t) at the point t ∈ [t� , t�+1], and 
0 ≤ � ≤ N − 1

and replace this latter in the Abel integral

so that, we obtain the following approximation

3  Main results

Theorem Let � be a function density continuous on[a, b], �(x) ∈ C([a, b]) then, the 
following estimation 

holds, where C is a positive constant.

(6)S1(�;t) =

(
t�+1 − t

)

(
t�+1 − t�

)�(t�) +

(
t − t�

)

(
t�+1 − t�

)�(t�+1).

(7)��(�;t, x) = U�(�;t, x) − V�(�;t, x),

U�(�;t, x) =

(
t�+1 − t

)

(
t�+1 − t�

)�(t�)
(x − t)�

(x − t�)
�
+

t − t�(
t�+1 − t�

)�(t�+1)
(x − t)�

(x − t�)
�
,

V�(�;t, x) = S1(�;x)
(x − t)�

(x − t�)
�

(8)��(�;t, x) = �(x) + ��(�;t, x),

A(x) = ∫
x

a

k(x, t)

(x − t)�
�(t)dt,

(9)A�(�;x, t) =

N−1∑

�=0
∫

t�+1

t�

k(x, t)
��(�;t, x)

(x − t)�
dt

|
|A(x) − A�(�;x, t)

|
| ≤ C

N2
,
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Proof

 

�
�A(x) − A�(�;t, x)

�
� =

��
�
�
�
�

N−1�

�=0
�

t�+1

t�

k(x, t)
�(t) − �(�� ;t, x)

(x − t)�
dt

��
�
�
�
�

=

�
�
�
�
�
����
���
��

∑N−1

�=0
∫ t�+1
t�

�(t) −

�
t�+1 − t

�

�
t�+1 − t�

��(t�)
(x − t)�

(x − t�)
�

−
t − t��

t�+1 − t�
��(t�+1)

(x − t)�

(x − t�)
�
×

k(x, t)

(x − t�)
�
dt

+
∑N−1

�=0
∫ t�+1
t�

S1(�;x)
(x − t)�

(x − t�)
�
− �(x) ×

k(x, t)

(x − t�)
�
dt

�
�
�
�
�
����
���
��

� □

or still

and therefore

Corollary For all �(x) ∈ C([a, b]), we have the standard result

where �(x) is the solution of the Eq. (4)

and ��(x) is the solution of the approximate equation

��A(x) − A�(�;t, x)
�� ≤

���
����
���

∑N−1

�=0
∫ t�+1
t�

�(t) −

�
t�+1 − t

�

�
t�+1 − t�

��(t�)
(x − t)�

(x − t�)
�

−
t − t��

t�+1 − t�
��(t�+1)

(x − t)�

(x − t�)
�
×

k(x, t)

(x − t�)
�
dt

���
����
���

+

��
���
�

N−1�

�=0
�

t�+1

t�

S1(�;x)
(x − t)�

(x − t�)
�
− �(x) ×

k(x, t)

(x − t�)
�
dt

��
���
�

��A(x) − A�(�;t, x)
�� ≤

���
����
��

∑N−1

�=0
∫ t�+1
t�

k(x, t)

(x − t�)
�

�

�(t) −

�
t�+1 − t

�

�
t�+1 − t�

��(t�) −
t − t��

t�+1 − t�
��(t�+1)

�

dt

���
����
��

+

�
��
��
�

N−1�

�=0
�

t�+1

t�

k(x, t)

(x − t�)
�

�
S1(�;x) − �(x)

�
dt

���
���

= O
�
N−2

�
.

‖
‖� − ��

‖
‖ = O

(
N−2

)
,

�(x) − A(�) = f (x)

��(x) − A�(�;t, x) = f (x).
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Indeed, it is sufficient to use the theorem above.

4  Numerical experiments

In this section we describe some of the numerical experiments performed in solving the 
Abel–Volterra integral Eq. (3). In all cases, the interval is [0, 1] and we chose the right 
hand side f(x) in such way that we know the exact solution. This exact solution is used 
only to show that the numerical solution obtained with the method is correct.

In each table, � represents the given exact solution of the Abel–Volterra integral 
equations and �� corresponds to the approximate solution of the equation produced by 
our linear approximation method.

Example 1 Consider the Abel–Volterra integral equation

where the function f(x) is chosen so that the solution �(x) is given by

Table 1 we present the exact solution �(x) and the approximate one ��(x) obtained 
by our approximation of the equation in the Example 1 in some arbitrary points and 
compared with the orthogonal Functions method [4], the error is given for N = 20.

Example 2 Consider the Abel–Volterra integral equation

where the function f(x) is chosen so that the solution �(x) is given by

�(x) − ∫
x

0

1

(x − t)
1

2

�(t)dt = x +
2

�

√
x,

�(x) =
2

�

√
x.

�(x) − ∫
x

0

1

(x − t)
1

3

�(t)dt = x
7

6 ,

Table 1  We present the 
exact solution �(x) and the 
approximate one ��(x) obtained 
by our approximation of the 
equation in the Example 1 
in some arbitrary points and 
compared with the orthogonal 
Functions method [9], the error 
is given for N = 20

Points of t Exact sol � Approx sol �� Error Error [4]

0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 6.51e−02
2.0000e−01 2.8470e−01 2.8530e−01 6.0478e−04 2.45e−03
4.0000e−01 4.0263e−01 4.0295e−01 3.1824e−04 4.12e−03
6.0000e−01 4.9312e−01 4.9333e−01 2.0971e−04 5.19e−03
8.0000e−01 5.6941e−01 5.6956e−01 1.5322e−04 1.36e−03
1.0000e+00 6.3661e−01 6.3673e−01 1.1895e−04
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Table 2 we present the exact solution �(x) and the approximate one ��(x) obtained 
by our approximation of the equation in the Example 2 in some arbitrary points and 
compared with the approximate solution method [6], the error is given for N = 20.

Example 3 Consider the Abel–Volterra integral equation

where the function f(x) is chosen so that the solution �(x) is given by

Table 3 we present the exact solution �(x) and the approximate one ��(x) obtained 
by our approximation of the equation in the Example 3 in some arbitrary points and 
compared with the collocation methods [5], the error is given for N = 20.

Example 4 Consider the Abel–Volterra integral equation

�(x) =
7Γ(

1

6
)

18
√
�Γ(

2

3
)

√
x.

�(x) − ∫
x

0

1
√
(x − t)

�(t)dt = 1,

�(x) = exp(�x)erf(
√
�x).

Table 2  We present the 
exact solution �(x) and the 
approximate one ��(x) obtained 
by our approximation of the 
equation in the Example 2 
in some arbitrary points and 
compared with the approximate 
solution method [5], the error is 
given for N = 20

Points of t Exact sol � Approx sol �� Error Error [6]

0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 7.11e−03
2.0000e−01 4.0334e−01 4.0477e−01 1.4298e−03 7.11e−03
4.0000e−01 5.7041e−01 5.7130e−01 8.9100e−04 7.11e−03
6.0000e−01 6.9861e−01 6.9924e−01 6.3152e−04 7.11e−03
8.0000e−01 8.0669e−01 8.0716e−01 4.7845e−04 7.11e−03
1.0000e+00 9.0190e−01 9.0228e−01 3.7827e−04 7.11e−03

Table 3  We present the 
exact solution �(x) and the 
approximate one ��(x) obtained 
by our approximation of the 
equation in the Example 3 
in some arbitrary points and 
compared with the collocation 
methods [4], the error is given 
for N = 20

Points of t Exact sol � Approx sol �� Error Error [5]

0.0000e+00 1.0000e+00 1.0000e+00 0.0000e+00 2.21e−03
2.0000e−01 4.9164e−01 1.0000e+00 3.2078e−03 2.21e−03
4.0000e−01 3.9665e−01 3.9486e−01 1.7852e−03 2.21e−03
6.0000e−01 3.4367e−01 3.4246e−01 1.2079e−03 2.21e−03
8.0000e−01 3.0815e−01 3.0726e−01 8.9611e−04 2.21e−03
1.0000e+00 2.8205e−01 2.8135e−01 7.0234e−04 2.21e−03
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where the function f(x) is chosen so that the solution �(x) is given by

Table 4 We present the exact solution �(x) and the approximate one ��(x) obtained 
by our approximation of the equation in the Example 4 in some arbitrary points and 
compared with the expansion method [10], the error is given for N = 20.

Example 5 Consider the Abel–Volterra integral equation

where the function f(x) is chosen so that the solution �(x) is given by

Table 5 we present the exact solution �(x) and the approximate one ��(x) obtained 
by our approximation of the equation in the Example 5 in some arbitrary points, the 
error is given for N = 20.

�(x) − ∫
x

0

−1

4
√
(x − t)

�(t)dt =
1

√
x + 1

+
�

8
−

1

4
arcsin

�
1 − x

1 + x

�
,

�(x) =
1

√
x + 1

.

�(x) − ∫
x

0

1

(x − t)
3

4

�(t)dt = x + 2 +
16

5
x
5

4 + 8x
1

4 ,

�(x) = x + 2.

Table 4  We present the 
exact solution �(x) and the 
approximate one ��(x) obtained 
by our approximation of the 
equation in the Example 4 
in some arbitrary points and 
compared with the expansion 
method [10], the error is given 
for N = 20

Points of t Exact sol � Approx sol �� Error Error [10]

0.0000e+00 1.0000e+00 1.0000e+00 0.0000e+00 6.00e−04
2.0000e−01 9.1287e−01 9.1302e−01 1.5351e−04 1.00e−03
4.0000e−01 8.4515e−01 8.4526e−01 1.0881e−04 4.00e−04
6.0000e−01 7.9056e−01 7.9064e−01 7.9324e−05 3.00e−04
8.0000e−01 7.4535e−01 7.4541e−01 5.9094e−05 9.00e−04
1.0000e+00 7.0710e−01 7.0715e−01 4.4691e−05

Table 5  We present the 
exact solution �(x) and the 
approximate one ��(x) obtained 
by our approximation of the 
equation in the Example 5 in 
some arbitrary points, the error 
is given for N = 20

Points of t Exact sol � Approx sol �� Error

0.0000e+00 2.0000e+00 2.0000e+00 0.0000e+00
2.0000e−01 2.2000e+00 2.1980e+00 1.9820e−03
4.0000e−01 2.4000e+00 2.3982e+00 1.7221e−03
6.0000e−01 2.6000e+00 2.5984e+00 1.5849e−03
8.0000e−01 2.8000e+00 2.7985e+00 1.4933e−03
1.0000e+00 3.0000e+00 2.9985e+00 1.4254e−03
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Example 6 Consider the Abel–Volterra integral equation

where the function f(x) is chosen so that the solution �(x) is given by

Table 6 we present the exact solution �(x) and the approximate one ��(x) obtained 
by our approximation of the equation in the Example 6 in some arbitrary points, the 
error is given for N = 20.

5  Conclusion

In this work we present a numerical solution of the general Abel–Volterra integral 
equations using a new approximation of the unknown function based on the modi-
fication of the linear spline function, this approximation allows us to eliminate the 
singularity at the endpoint

This numerical results show that the accuracy improves with increasing of 
the number of subdivisions. Finally we confirm that this method lead us to better 
approximation of the exact solution when compared with the methods in papers 
[4–6, 10].
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�(x) − ∫
x

0

1

(x − t)
1

5

�(t)dt = x2 +
125

252
x
14

5 ,

�(x) = x2.

Table 6  We present the 
exact solution �(x) and the 
approximate one ��(x) obtained 
by our approximation of the 
equation in the Example 6 in 
some arbitrary points, the error 
is given for N = 20

Points of t Exact sol � Approx sol �� Error

0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
2.0000e−01 4.0000e−02 3.9806e−02 1.9308e−04
4.0000e−01 1.6000e−01 1.5965e−01 3.4012e−04
6.0000e−01 3.6000e−01 3.5954e−01 4.5853e−04
8.0000e−01 6.4000e−01 6.3944e−01 5.5680e−04
1.0000e+00 1.0000e+00 9.9935e−01 6.4007e−04
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