Skip to main content
Log in

Explicit construction of irreducible modules for \(U_q(\mathfrak {gl}_n)\)

  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We construct new families of \(U_q(\mathfrak {gl}_n)\)-modules by continuation from finite dimensional representations. Each such module is associated with a combinatorial object—admissible set of relations. More precisely, we prove that any admissible set of relations leads to a family of irreducible \(U_q(\mathfrak {gl}_n)\)-modules. Finite dimensional and generic modules are particular cases of this construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colarusso, M., Evens, S.: On algebraic integrability of Gelfand–Zeitlin fields. Transform. Groups 15(1), 46–71 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Colarusso, M., Evens, S.: The Gelfand–Zeitlin integrable system and K-orbits on the flag variety. Symmetry Represent. Theory Appl. 257, 85–119 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Drozd, Y., Futorny, V., Ovsienko, S.: Harish–Chandra subalgebras and Gelfand–Zetlin modules. Math. Phys. Sci. 424, 72–89 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Fomenko, A.: Euler equation on finite-dimensional Lie groups. Izv. Akad. Nauk SSSR Ser. Mat. 42, 396–415 (1978)

    MathSciNet  MATH  Google Scholar 

  5. Futorny, V., Grantcharov, D., Ramirez, L.E.: Irreducible generic Gelfand–Tsetlin modules of \((\mathfrak{gl}_n)\). Symmetry Integr. Geom. Methods Appl. 11, 018 (2015)

    MATH  Google Scholar 

  6. Futorny, V., Grantcharov, D., Ramirez, L.E.: Singular Gelfand–Tsetlin modules for \(\mathfrak{gl}(n)\). Adv. Math. 290, 453–482 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Futorny, V., Grantcharov, D., Ramirez, L.E.: New singular Gelfand–Tsetlin \(\mathfrak{gl} (n)\)-modules of index \(2\). Commun. Math. Phys. 355(3), 1209–1241 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Futorny, V., Hartwig, J.: De Concini–Kac filtration and Gelfand–Tsetlin generators for quantum \((\mathfrak{gl}_n)\). Linear Algebra Appl. 568, 1–9 (2018)

    Google Scholar 

  9. Futorny, V., Ovsienko, S.: Galois orders in skew monoid rings. J. Algebra 324, 598–630 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Futorny, V., Ovsienko, S.: Fibers of characters in Gelfand–Tsetlin categories. Trans. Am. Math. Soc. 366, 4173–4208 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Futorny, V., Ramirez, L.E., Zhang, J.: Combinatorial construction of Gelfand–Tsetlin modules for \((\mathfrak{gl}_n)\). Adv. Math. 343, 681–711 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Futorny, V., Ramirez, L.E., Zhang, J.: Irreducible subquotients of generic Gelfand–Tsetlin modules over \(U_q(\mathfrak{gl}_n)\). J. Pure Appl. Algebra 222(10), 3182–3194 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gelfand, I., Graev, M.: Finite-dimensional irreducible representations of the unitary and complete linear group and special functions associated with them. Izv. Rossiiskoi Akad. Nauk. Ser. Mat. 296, 1329–1356 (1965)

    MathSciNet  Google Scholar 

  14. Gelfand, I., Tsetlin, M.: Finite-dimensional representations of the group of unimodular matrices. Dokl. Akad. Nauk SSSR (N.S.) 71, 825–828 (1950)

    MathSciNet  MATH  Google Scholar 

  15. Guillemin, V., Sternberg, S.: The Gelfand–Cetlin system and quantization of the complex flag manifolds. J. Funct. Anal. 52(1), 106–128 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Graev, M.: Infinite-dimensional representations of the Lie algebra \(gl(n, \mathbb{C})\) related to complex analogs of the Gelfand–Tsetlin patterns and general hypergeometric functions on the Lie group \(GL(n, \mathbb{C})\). Acta Appl. Math. 81, 93–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Graev, M.: A continuous analogue of Gelfand–Tsetlin schemes and a realization of the principal series of irreducible unitary representations of the group GL(n, C) in the space of functions on the manifold of these schemes. Dokl. Akad. Nauk. 412(2), 154–158 (2007)

    MathSciNet  Google Scholar 

  18. Jimbo, M.: Quantum R Matrix Related to the Generalized Toda System: An Algebraic Approach, Field Theory, Quantum Gravity and Strings, pp. 335–361. Springer, Berlin (1988)

    Google Scholar 

  19. Kostant, B., Wallach, N.: Gelfand–Zeitlin theory from the perspective of classical mechanics I. In studies in lie theory dedicated to A. Joseph on his sixtieth birthday. Progr. Math. 243, 319–364 (2006)

    Article  MATH  Google Scholar 

  20. Kostant, B., Wallach, N.: Gelfand–Zeitlin theory from the perspective of classical mechanics II. The unity of mathematics in honor of the ninetieth birthday of I. M. Gelfand. Progr. Math. 244, 387–420 (2006)

    Article  MATH  Google Scholar 

  21. Lemire, F., Patera, J.: Formal analytic continuation of Gelfand’s finite dimensional representations of \(\mathfrak{gl}(n, \mathbb{C})\). J. Math. Phys. 20(5), 820–829 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mazorchuk, V.: Tableaux realization of generalized Verma modules. Can. J. Math. 50, 816–828 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mazorchuk, V.: On categories of Gelfand–Tsetlin modules. In: Duplij, S., Wess, J. (eds.) Noncommutative Structures in Mathematics and Physics, pp. 299–307. Springer, Berlin (2001)

    Chapter  Google Scholar 

  24. Mazorchuk, V., Turowska, L.: On Gelfand–Tsetlin modules over \(U_{q}(\mathfrak{gl}(n))\). Czechoslov. J. Phys. 50, 139–141 (2000)

    Article  MATH  Google Scholar 

  25. Molev, A.: Gelfand–Tsetlin bases for classical Lie algebras. In: Hazewinkel, M. (ed.) Handbook of Algebra, vol. 4, pp. 109–170. Elsevier, Amsterdam (2006)

    Google Scholar 

  26. Ovsienko, S.: Finiteness statements for Gelfand–Zetlin modules. In: Third International Algebraic Conference in the Ukraine (Ukrainian), Natsional. Akad. Nauk Ukrainy, Inst. Mat., Kiev, pp. 323–338 (2002)

  27. Ueno, K., Shibukawa, Y., Takebayashi, T.: Gelfand–Zetlin basis for \(U_q(gl_{n+1})\) modules. Lett. Math. Phys. 18(3), 215–221 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ueno, K., Shibukawa, Y., Takebayashi, T.: Construction of Gelfand–Tsetlin Basis for \(U_q(\mathfrak{gl}(N+1))\)-modules. Publ. RIMS Kyoto Univ. 26, 667–679 (1990)

    Article  MATH  Google Scholar 

  29. Zhelobenko, D.: Compact Lie Groups and Their Representations (Translations of Mathematical Monographs), vol. 40. AMS, Providence (1974)

    Google Scholar 

Download references

Acknowledgements

V.F. is supported in part by CNPq (304467/2017-0) and by Fapesp (2014/09310-5). L.E.R. is supported by Fapesp (2018/17955-7) and J. Z. is supported by Fapesp (2015/05927-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav Futorny.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest

Additional information

Dedicated to the 70th birthday of Ivan Shestakov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Futorny, V., Ramirez, L.E. & Zhang, J. Explicit construction of irreducible modules for \(U_q(\mathfrak {gl}_n)\). São Paulo J. Math. Sci. 13, 83–95 (2019). https://doi.org/10.1007/s40863-019-00123-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-019-00123-w

Keywords

Mathematics Subject Classification

Navigation