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Abstract
Complex human activity prediction is a difficult problem for computer science. Simple behaviours can be mapped to sequence
prediction algorithms with good results; however, real-world examples of activity are generally stochastic and much more
computationally difficult to infer. One method for solving this problem is to utilise contextual data—clues surrounding the
actual activity—to decipher what is about to happen next; in much the same way humans do. In this paper, we present the
semantic blocks model (SBM), a method for using contextual data to infer the next activity in a smart home environment by
augmenting the inference with contextual data, but also segmenting it into time-windowed sections of activity—or semantic
blocks. Our proof-of-concept produces 74.55% accuracy on the CASAS smart home dataset, an increase on the comparable
CRAFFT algorithm which produces 66.91% on the same dataset. We detail how our experimental prototype works using
intersecting contextual data, and explore opportunities for further work by the research community.

Keywords Human activity prediction · Smart environments · Ambient intelligence

1 Introduction

In recent years, there have been great strides taken towards
ubiquitous computing and Ambient Intelligence (AmI) [8],
most notablywith remarkable advances in pervasive comput-
ing technologies [1,10,24],machine learning and datamining
[23], networking [14], and mobile devices [25,27]. We have
started to see the beginnings of this permeate through to con-
sumer markets in the form of smart home assistants such
as Amazon’s Alexa and Google Home, Internet of Things
(IoT) devices, and mobile applications that use edge com-
puting, e.g. face recognition built into mobile apps. There is
still much work to be done to join up all these dots to form
coherent AmI, and also to make these systems into predic-
tive rather than purely reactive request and response smart
environments.
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It is this latter challenge that forms the basis of this
research. There are many ways to approach the problem of
human activity prediction in smart environments. Machine
Learning methods using time-series prediction with LSTMs
are common in the literature [23], as are probabilistic
approaches usingMarkovModel [21] and BayesianNetwork
variants [17]. These approaches all tackle the fundamental
component of this problem which is inference of the next
event in a sequence. Sometimes extending this to predict
many steps ahead. However, this gives us a very simplistic
form of computational inference which is difficult to map the
complex, multi-faceted, stochastic nature of everyday life.
To produce better prediction systems we need to enrich them
with more data—contextual data that can enable more accu-
rate analysis of a situation [5,13,20].

In this paper, we present the semantic blocks model
(SBM). A method for using contextual time-windowed data
for next activity prediction. This can be used as a standalone
model or on conjunction with another predictive model that
shortlists potential next activities, e.g. a Dynamic Bayesian
Network (DBN).We show improved accuracy over a compa-
rable system—the CRAFFT algorithm [17], and detail how
the SBMworks and can be extended to accommodate further
contextual data.
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1.1 Background

At The University of Manchester, we have been working on
computational methods of human behaviour modelling and
prediction. In this paper, we present work on the next step
in that research, which goes beyond simple sequence pre-
diction, and presents a proof-of-concept method for refining
prediction results by creating an extensible model of con-
textual data to enable more accurate inference systems for
smart environments. The SBMbuilds upon previous research
which indicates that contextual data is key to improving the
accuracy of predictive models in this field.

1.2 Related work

The state of the art in computational methods of human
behaviour prediction falls into three categories: machine
learning (ML), statistical forecasting and trend analysis, and
Probabilistic Graphical Models (PGM). ML predictive mod-
els use sequence prediction with Recurrent Neural Networks
(RNN), and more specialised subsets of RNNs such Long
Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) [3,23]. These all produce good results for simple
data with accuracies > 90%. Statistical methods such as
AutoRegressive Integrated Moving Average (ARIMA), Sea-
sonal ARIMA (SARIMA), and Facebook’s Prophet library
tend to look at macro level behaviours for higher level trends
in human behaviour [22]. Lastly, PGMswhich are essentially
graph data structures with probability functions on the graph
edges representing state transitions from one vertex, or state,
or another. These take many forms depending on the proba-
bility method and nuances of modelling behaviour. Dynamic
Bayesian Network (DBN) is good for representing a chain of
causal events [17]. If we only want the current state observ-
able in determining the next state, then a Markov Model
(MM) can be used. HiddenMarkovmodels (HMM) allow for
representation of hidden states in influencing state transition
[15,21]. There are many variations of PGMs in the literature
that represent the different facets of behaviour.Many of these
have accuracy results of > 90% for simple behaviours such
as moving from one location. Human activities, however, are
complex stochastic processes, which overlap, stop, start, and
can be difficult to predict. Adding contextual data to a model
can provide an insight into this complexity and disambiguate
the inference process [1,9]. PGMs are adept at extension and
augmentationwith data due to the flexibility of the graph data
structure. A significant research contribution in the field of
Ambient Intelligence (AmI) and smart environments is the
CRAFFT algorithm [17]. A PGM in the form of a Bayesian
Network that uses current activity and features to predict next
features, by augmenting with contextual data. Context aware
ontologies and semantic representation frameworks for intel-
ligent and smart environments exist in the literature and could

Table 1 CRAFFT prediction accuracies using the CASAS smart home
datasets

CASAS dataset apartment id Accuracy

HH101 64.18%

HH102 74.57%

HH103 61.98%

Averaged 66.91%

be leveraged in combination with theML, PGM, and statisti-
cal approaches to provide improved contextual data support
to a predictive system [2,6,11,18].

The CRAFFT algorithm is the closest benchmark to the
semantic blocks model and achieves an average accuracy of
66.91% over three of the CASAS smart home datasets, as
shown in Table 1.

CRAFFT differs from many of the inference models by
augmenting a well known algorithm with added contextual
data. The SBM model presented here further extends this
novelty by applying data clustering via time windows to add
another dimension to the inference model.

1.3 Motivation

The shift from reactive to predictive smart environment sys-
tems is a rapidly growing area of research, particularly with
AmbientAssistiveLiving (AAL)use cases, such as determin-
ing behavioural trends or anomalous activity [12], but also
in supporting activities of daily living (ADL) such as using
electronic devices, cooking, and dressing [16]. The research
findings presented here build on previous human activity pre-
diction research questions conducted by this research team
at the University of Manchester in the Interaction Anal-
ysis and Modelling Laboratory (https://archive.is/cQZ98)
and Advanced Interfaces Group Laboratory (https://archive.
is/igPa), which is focussed on developing these computa-
tional capabilities in the context of realising the potential of
Ambient Intelligence [7,19] by improving smart environment
technology.

There are many approaches to Human Activity Prediction
(HAP) including Bayesian Networks [17], Markov Model
variants [26], and Deep Learning such as RNNs and LSTMs
[23]. All of which are capable of producing results with vary-
ing degrees of accuracy depending on the complexity of the
activity and number of occupants in the observed space. The
motivation for our work here is that a broad range of different
methods have been applied to this prediction problem, and
what is now needed is a refinement of the inference capa-
bility to make this technology more accurate and robust. To
enable more accurate predictive models, we can make bet-
ter use of secondary data outside of the event or activity
sequences. This contextual data support the inference pro-
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cess by enabling differentiation between similar sequences
of data. The SBM proposes one method which can be used
towards this research goal.

1.4 Contribution to research

We present a novel proof-of-concept model which improves
prediction accuracy of human activity in a smart home,
demonstrated using the CASAS smart home datasets [4], and
benchmarked against an established method in this area; see
Table 1. The model calculates the probability intersection of
the next activity label, and sets of contextual labels, based
on previously observed data from the same environment. We
demonstrate improved prediction accuracy against a leading
peer in this area—the Bayesian Network CRAFFT model—
and also demonstrate a novel contribution to research by
building upon CRAFFT and adding time window data clus-
tering to improve the inference model.

1.5 Data availability

The experimentation code and results data that support
the findings of this study are available in the Mendeley
Data repository: a semantic blocks model for contextually
enhanced human activity prediction, with the identifier DOI
10.17632/jm28kgt7tm.1 available online and open access1.

2 Methods

The methodology for testing and analysing our SBM proof-
of-concept includes several stages. We describe the hypoth-
esis we will test—namely that we can improve prediction
accuracy with a probability model based on contextual data.
We then outline the research method used, our choice of
dataset for testing, and benchmarks using existing algorithms
against that dataset. Finally, we detail the experimentation
method used to verify the conjectures made in our hypothe-
sis.

2.1 Hypothesis

Human activity prediction in smart environments can be
improved by enriching the data with contextual labels and
a time window, to enable differentiation between similar
events.We hypothesise that addingmore contextual data will
improve the prediction accuracy of the next activity label.

In this paper, we propose the semantic blocks model
(SBM), a deep contextual data probability model, which will
improve inference accuracy by taking a list of next activity

1 SBM data and code, https://data.mendeley.com/v1/datasets/
jm28kgt7tm

labels, which could be the causal probability output of a pre-
dictive model, e.g. a Dynamic Bayesian Network (DBN) and
then calculating the intersection of the set of current contex-
tual labels, the current set of time (current time window), and
the set of next activity labels. The “deep” descriptor refers
to the layers of contextual data, as opposed to a “shallow”
model which only uses the event sequence data.We posit that
this method is extensible by adding more sets of contextual
data which would improve the accuracy further.

The set of sequential time values indicating the current
time window, simply the start and end for the time window:
T = {t1, t2}
N = {n1, . . . , nn}
The set of potential activities where each element is an activ-
ity that could occur next. This could be a shortlist output from
a sequential prediction model, e.g. a set of causal activities
from a DBN. Or a less optimal list of all activity labels:

C = {c1, . . . , cn}

The set of contextual labels present in the current time win-
dow, as obtained from the smart environment data:

P = {p1, . . . , pn}

The set of person metadata for the person being observed, as
obtained from the smart environment data:

X = {x1, . . . , xn}

Any other sets of data, so that the system is extensible:

D = [[tn, n ∈ N , c ∈ C, P, X ]]

Previously observed data, the historic dataset of the smart
environment:

We then select the event data from the specified time win-
dow, and calculate the intersection value of the other sets
of contextual data within that time window, to determine the
likelihood of the next activity label occurring after the current
activity label.

f (D, N , T ,C, P, X) =
∏

n∈N
(E ⊂ D : e1 ≥ t1 ∧ en ≤ t2)

= Pr(n ∩ E ∩ C ∩ P · · · ∩ X)

In the equation above, where N is the set of next activities
(e.g. a shortlist of known activity labels output by a DBN),
and C is the set of current contextual labels, and T is the cur-
rent time window (start and end time), it is possible to take
the set N of next activity labels and return a set of probabil-
ities of the likelihood that the activity label will be next, by
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calculating the probability intersection of contextual labels,
next activity, and person metadata. A large overlap or high
intersection between the sets outputs a high probability, and
inversely lower overlap produces a lower probability. In plain
English, if these groups of data are not usually seen together
at this time then the activity label has a low probability of
being the next activity—but if all the contextual labels are
seen at this time and location with this person, then it has a
high probability that activity label is going to occur next. The
activity n ∈ N with the highest probability is returned as the
inferred next activity.

This model can be extended by adding more sets of dif-
ferent kinds of data to the probability intersection. Lastly,
if the next activity labels N do not intersect with the set of
time values (the current timewindow) T , then the probability
must be zero, Pr(N ∩ T ) = 0, as those labels have never
been observed in the time window previously.

We will test this hypothesis using the original CASAS
datasets from the CRAFFT model experiments, by compar-
ing the accuracy of next activity inferences to the actual next
activity label in the dataset.

2.2 Dataset

For our experiment, we used the CASAS smart home dataset
[4] made publicly available and open access by the Centre of
Advanced Studies in Adaptive Systems at Washington State
University (https://archive.md/EQRrK). This is the same
dataset used by the CRAFFT research and we are able to
use the data from three apartments to compare our results
to the CRAFFT benchmark. The CASAS dataset uses sev-
eral smart home apartments fitted with sensors and single
occupants who continuously generate data.We selected three
single occupancy apartments (HH101, HH102, and HH103)
to simplify our inference model, as multiple occupancy pre-
diction is out of scope of this research. In Fig. 1, we can
see the floorplan of one of the apartments with sensor loca-
tions throughout the rooms. These are the data points we use
for our event states and constitute the activity labels in our
dataset, e.g. Leave_Home, Enter_Home, Watch_TV, Cook.

Each dataset subset is split into a 90/10 train test split,
where the ‘training’ is done on-the-fly by using the train
dataset as the historic observable data for the smart home,
and the test dataset as the ‘live’ data to assess accuracy of
next activity prediction.

Table 2 shows a sample of the CASAS dataset for the
HH101 apartment shown in Fig. 1, which is floor plan of the

Fig. 1 CASAS smart home HH101 floor plan with sensor locations. Credit: CASAS; casas.wsu.edu
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apartment,with the event timestamp, the sensor code—which
can also be seen on the floor plan, and the event code for
that sensor, e.g. a door opening or closing, or a device being
switched on. These data are the input for both the CRAFFT
study, and our SBM proof-of-concept. The contextual data
extracted and used as input variables in the SBM are: Current
activity, Preceding event, Time window, Day of the week,
Weekend or weekday, Location in the apartment.

2.3 Researchmethod

To test our hypothesis, we used an experimental prototyping
methodology to develop a proof-of-concept. To enable this
we created a test framework, as shown in Fig. 2, in which we
loaded the CASAS smart home datasets in a 90/10 train test
split into separate tables. Using Python we coded the SBM
to read the events sequentially from the test table, calculate
the intersections of the data groups based on the train table,
then output the event with the highest value as the predicted
next activity. This value was logged in a results table in the

database for comparison with the test table for accuracy at
the end.

The SBM is designed to take any list of possible next
activities. We envisage this as a secondary model to exist-
ing predictive models, such as a DBN—that would shortlist
potential next activities. However, the SBM can take any
number of next activities as input and will calculate the prob-
ability of occurrence for each. As there was no requirement
for performance in this initial experiment for the proof-of-
concept (i.e. this isn’t yet a production system)we can simply
pass all known activities for each prediction step and calcu-
late the probabilities and select the highest as the predicted
next activity.

The time complexity of our model is O(n) linear time
dependent on the size of the input, e.g. the length of the list
of next activities. Combining the SBM with another model,
e.g. a DBN, would optimise the performance by shortlisting
or reducing the list of next activities.

The probability intersection for our sets of contextual data
and activities implements the equation in Sect. 2.1 in Python.

Table 2 CASAS smart home
HH101 dataset sample

Event timestamp Sensor Event Label Location

2012-07-20 11:09:59.128578 MA015 OFF Toilet="end" Bathroom

2012-07-20 11:50:04.029817 M008 ON Relax="begin" Lounge

2012-07-20 11:55:40.958827 M008 OFF Relax="end" Lounge

2012-07-20 12:00:43.445554 MA015 ON Personal_Hygiene Bathroom

2012-07-20 12:00:44.634408 MA015 OFF Personal_Hygiene Bathroom

2012-07-20 12:00:45.129838 MA015 ON Personal_Hygiene="begin" Bathroom

2012-07-20 12:05:30.659402 MA015 OFF Personal_Hygiene="end" Bathroom

Fig. 2 Semantic blocks model:
test framework

Event sequence data

SQL
database

Semantic Blocks Model

Docker image

Next activity prediction

Dataset
CASAS smart home dataset.

Results
A sequence of predictions to
compare to the input sequence
for accuracy.

TestTrain
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Fig. 3 A simplified representation of intersecting contextual data

Fig. 4 CASAS smart home HH101 heatmap of all activities

Fig. 5 CASAS smart home HH101 heatmap of activity label ‘bathe’

Table 3 Apartment activity
time windows

Time window Range

Morning 0700–1100

Afternoon 1200–1700

Evening 1800–2100

Night 2200–0600

For each activity observed in the smart home sequence, a time
window is looked up, as shown in Table 3. The data from the
train table (the historic dataset) is selected within this time
window (semantic block). Any contextual data present with
the current activity is passed to the model. The SBM then
calculates for each known activity (or a shortlist if used in
conjunction with another predictive model) how often each
potential next activity occurs after the current one, how often
it occurs in that time window, and how often it is present
with the contextual labels. All these bits of intersecting data
together, as illustrated in Fig. 3, produce a probability score.
The highest score of all processed activities is the predicted
value.

The CRAFFT algorithm uses the current state (activity)
alongwith the contextual data: activity location, activity time,
activity day, and preceding activity from the CASAS dataset
to augment its prediction calculation. Similarly we use as
our contextual data: location, time, day, and also preceding
activity.We chose to base ourmodel onCRAFFT for its inter-
esting use of contextual data. We determined that it can be
used to create a model that extends the concept of CRAFFT;
improving its performance but also designing it to be cou-
pled with DBN or DL methods to give even better predictive
output than the standalone SBM itself.

To determine where to demarcate the time windows we
generated heatmaps of each dataset to elucidate any patterns
in the occupant’s behaviour. In Fig. 4, we include all the
activity events in the dataset, and we can clearly see bands of
activity and inactivity. For example, the dark band between
0100 and 0600would indicate sleeping. In themorning, there
is the maximum amount of activity, which then reduces dur-
ing the day. If we single out one activity, such as ‘bathe’
we can see in Fig. 5 how this activity always occurs within
the same time window between 0800 and 1200. Ideally we
would dynamically generate time windows for each indi-
vidual occupant perhaps using a clustering algorithm such
as K-means or K-Nearest Neighbour. However, this is out
of scope for our proof-of-concept, so we manually selected
time windows based on the average demarcation of the activ-
ity heatmaps, which are shown in Table 3.

To summarise, the SBM is a three stage process:

1. Calculate environment specific contextual time windows
for activities—what we term ‘semantic blocks’.
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Table 4 Semantic blocks model
sample output

Dataset Time_window Predicted_next_label Inf_score Actual_next_label

hh101 22:00:00–06:59:59 Personal_Hygiene 0.348281 Evening_Meds="begin"

hh101 22:00:00–06:59:59 Evening_Meds="end" 1.05856 Evening_Meds="end"

hh101 22:00:00–06:59:59 Personal_Hygiene 0.305946 Dress="begin"

hh101 22:00:00–06:59:59 Dress="end" 1.09628 Dress="end"

hh101 22:00:00–06:59:59 Personal_Hygiene 0.44534 Personal_Hygiene

hh101 22:00:00–06:59:59 Personal_Hygiene 0.899305 Personal_Hygiene

hh101 22:00:00–06:59:59 Personal_Hygiene 0.899305 Personal_Hygiene="begin"

2. Extract the necessary data from the previously observed
smart home dataset: data with a time window based on
the current activity time.

3. Intersect the sets of data: contextual data, time window,
current activity, and previous activity. The greater the
intersection, the higher is the score. The next activity with
the highest score is the outputted predicted value.

3 Results

When testing the SBM proof-of-concept, we first ran it with
no contextual data, and only used the time window to narrow
down the next activity. This gave a baseline indication of how
the time window worked on its own. As you can see in Table
5, the average accuracy for this across the three apartment
datasetswas 13.456%.Avery lowaccuracy but slightly better
than random selection. When we run the experiment with all
the contextual data added (timewindow, preceding event, day
of the week, weekend or weekday, location in the apartment)
we can see, again Table 5, that we havemuch better accuracy.
As high as 82.3991% for the HH102 apartment dataset, and
an overall average accuracy of 74.552%.

Table 4 shows sample output of the SBM with the pre-
dicted next activity label, the inference score generated
internally where a higher score is greater confidence, and
the actual next label from the dataset. The inference score,
or inf_score, is generated by calculating the how much the
contextual data and each possible next activity label inter-
sects. The higher the score is, the more the sets of contextual
data intersect, and, therefore, the more frequently these con-
textual conditions are observed together in the historic data
from the smart home. The SBM uses this score to determine
which activity has the highest likelihood to be next.

The results data demonstrate that further work could be
done to generalise the model for higher level activity events.
In Table 4, we can see that some of the predicted_next_label
and actual_next_label data have a partial match, e.g. Per-
sonal_Hygiene and Personal_Hygiene="begin". These have
been classed as an incorrect prediction for this experiment;
however, it shows that the SBM is very close to being correct

Table 5 Semantic blocks model experimental results

Test phase Apartment dataset Accuracy (%)

Time window with
no contextual data

HH101 3.2557

HH102 27.2411

HH103 9.8706

Average accuracy: 13.456

Time window with
added contextual
data

HH101 65.0407

HH102 82.3991

HH103 76.2162

Average accuracy: 74.552

in a large number of cases, and highly encouraging that the
model could be further improved.

4 Conclusion

The CRAFFT benchmark in Table 1 produced an average
accuracy of 66.91%. Our semantic blocks model outper-
formed this over the same datasets with an average accuracy
of 74.552%. A significant increase. Indeed, as you can see
in the results comparisons, in Table 6, the SBM improved on
the prediction accuracies of each dataset it was run against.
These results are highly encouraging, and we believe that
SBMaccuracy could be improved and refined evenmorewith
added contextual data, or when coupled with another predic-
tion model such as a Dynamic Bayesian Network. In Sect. 5,
we detail improvements that could be made in future experi-
ments. Dynamic clustering of the data over longer observed
time periods for apartments occupants would generate the
most optimal time windows for that smart environment. We
have used fixed time windows for the purposes of our proof-
of-concept which may not have been tuned perfectly to the
data.

To reduce overfitting of the models the training data from
multiple different environments could be combined to pro-
duce a generalisedmodel for activity prediction. Similarly, to
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Table 6 Semantic blocks model (SBM) vs CRAFFT benchmark pre-
diction accuracy results on the CASAS dataset

CRAFFT
benchmark

Semantic blocks
model (SBM)

HH101 64.18 65.0407

HH102 74.57 82.3991

HH103 61.98 76.2162

Average 66.91 74.552

produce greater flexibility for the model, a probability distri-
bution of potential next activities could be output to allow
upstream systems to select a group of possible activities.
Internally, the SBM already produces this distribution, but
simple selects the one with the highest score to output as the
prediction.

Therewill always be a limit to how accurate prediction can
be for stochastic events—there will almost always be a small
element of randomness that can’t be account for. However,
by combining DBN or DL models with a model like the
SBM which uses time windowing and contextual data, plus
the optimisations through ML clustering, it appears possible
to create a system which is able to infer activity with a high
level of accuracy.

To conclude, we can confidently state that the hypothe-
sis laid out in Sect. 2.1, that human activity prediction in
smart environments can be improved by enriching the data
with contextual labels and a time window, has been sup-
ported.When comparing our results to the closest benchmark
available—theCRAFFTalgorithm—whichuses similar con-
textual data on the same dataset, but without a time window,
we yield a higher prediction accuracy. The proof-of-concept
developed and tested here clearly demonstrates that cluster-
ing data into time windows, or semantic blocks, is a valid
method for improving accuracy of human activity prediction.

5 Future work

Our successful results indicate that further work could be
done in this area to refine and improve upon this concept.
Areas for further work by the ourselves and the research
community include:

• Automated dynamic clustering of the smart environment
data, so that the most optimal time windows are gener-
ated, bespoke, for each environment based on previously
observed data. Exploring the use of machine learning
clustering algorithms would be a good starting point for
this work.

• Adding more contextual data. The SBM has been
designed to be extensible. Such data may include person

metadata (age, adult/child, gender, religion,
state/emotions), calendar metadata (daily events, calen-
dar events, ritual/cultural/geographical events) that could
influence a person’s activities, andmulti-occupancy envi-
ronment data where interactions with other people are
taken into account.

• Experiment with a data completeness coefficient, that
would alter the prediction calculation based on howmany
of the contextual sets of data were present and complete.

• Pairing with a DBN to account for causality, and short-
listing of possible next activities.

• Pairing with a Deep Learning (DL)model for shortlisting
of possible next activities.

• Comparing the SBM results to a modified CRAFFT
model that includes time-windowed data.

• Analyse the SBM performance when transferring and
applying it to other smart home datasets.

• Determine the SBM accuracy for a range of parameters
including size of the timewindow, and frequency of activ-
ity events.
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