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Abstract
The maturity of machine learning (ML) development and the decreasing deployment cost of capable edge devices have
proliferated the development and deployment of edge ML solutions for critical IoT-based business applications. The combi-
nation of edge computing and ML not only addresses the development cost barrier, but also solves the obstacles due to the
lack of powerful cloud data centers. However, not only the edge ML research and development is still at an early stage and
requires substantial skills normally missed in resource-constrained communities, but also various infrastructure constraints
w.r.t. network reliability and computing power, and business contexts from the resource-constrained environments require
different considerations to make edge ML applications context aware through smart and intelligent runtime strategies. In
this paper, we analyze representative real-world business scenarios for edge ML solutions and their contexts in resource-
constrained communities and environments. We identify and map the key distinguished contexts of distributed edge ML and
discuss the impacts of these contexts on data and software components and deployment models. Finally, we present key
research areas, how we should approach them, and possible tooling for making edge machine learning solutions smarter in
resource-constrained communities and environments.

Keywords Machine learning · Edge computing · Context awareness · Resource-constrained communities and environments

1 Introduction

Finding and developing novel ICT solutions for resource-
constrained communities and environments are important
activities for sustainable development goals [63]: such solu-
tions would help to democratize the technological gaps
in the world and foster economic growth and innovation.
Given the abundant evidences demonstrating how machine
learning (ML) has changed the landscape of smart solu-
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tions in various application domains, there is no doubt that
ML will substantially impact societal and business solu-
tions in resource-constrained communities and environments
[21,51]. Resource-constrained communities and environ-
ments (RCCE), identified and characterized by various
studies [10,31], often lack (1)mature technical infrastructure,
such as powerful Internet access, network and computing
facilities, (2) high skill workforces in cutting-edge ICT tech-
nologies, such as AI/ML and cloud engineering, and (3)
clear policies and guidelines about data regulation and policy
enforcement. Such communities and environments exist not
only in least developed countries, but also in countries with
highly developed economy. With the maturity of ML devel-
opment ready for the production of real-world solutions, the
lack of powerful data centers and network connectivities,
and the substantial cost reduction of powerful edge devices,
combining edge computing, distributed ML with edge ML
[20,25,29,45,52,66] becomes an important research direction
that can provide various ML-based solutions for resource-
constrained communities and environments. Furthermore,
this helps to make ML solutions more accessible and afford-
able to communities lacking strong ML workforces.
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While powerful cloud-based ML has already attracted
a huge amount of research effort, we have not seen the
same dedication to studying distributed edge ML (DEML)
in RCCE. Our motivation is to understand specific contexts
of DEML in RCCE to suggest foundational development
and research focuses for context-aware DEML, where we
interpret “context aware” as how DEML solutions should
be fitted into business, operational and infrastructure con-
texts, in this paper, RCCE. The need to focus on DEML is
due to its potentials for RCCE: DEML naturally fits into
RCCE due to the lack of centralized and powerful data cen-
ters, while DEML can be achieved via commodity resources
for certain classes of applications. However, in our view,
the work on distributed edge ML in resource-constrained
communities and environments (DEML-RCCE) has several
distinguishing characteristics. Various forms of distributed
edge ML [28,39] are new, but it is unclear which ones can be
adopted for RCCE. For example, solutions based on power-
ful edge computation and strong network connectivity with
low latency (like 5G) will not be feasible in RCCE (or still
a long time until 5G will be available for such solutions).
From the perspective of human resources, the developer also
needs to acquire depth knowledge and engineering skills to
work with ML and managing end-to-endML solutions is not
trivial. Motivated by the practical applicability and poten-
tial research of DEML-RCCE, it is not enough if we just
study only the technical aspects of distributed ML, such as
ML models and data, without considering business contexts
and infrastructure contexts, such as business requirements
and key performance indicators (KPIs) for the implementa-
tion of ML solutions. The key reason is that, under various
constraints, DEML-RCCE must show direct practical appli-
cations (the so-called applied, real-world ML).

In this paper, we will concentrate on the aspects related to
distributed ML software components, distributed edge ML
tasks, and resource provisioning and data for DEML. Fig-
ure 1 outlines the focus of our work. DEML-RCCE develops
ML software products based on various requirements. Such
requirements are the source for extracting business context
(denoted by B ). On the other hand, the infrastructures
in RCCE have many constraints; they are the source for
extracting Infrastructure Context (denoted by I ). Able to
understand DEML-RCCE operational context (denoted by
O ), built from business context and infrastructure context,
will help us to steer the development of data and software
components and to decide suitable deployment models. To
this end, we analyze a set of application scenarios, widely
seen in different businesses, to investigate business context
of DEML-RCCE. Then we identify and focus on some key
DEML operational contexts derived from business contexts
and infrastructure contexts. One aspect is that DEML-RCCE
has to deal with the diversity of constraints and require-
ments for real-world business, reflecting the elasticity of
servicemodels inmany aspects ofDEML, including resource
and data usage/sharing. Another aspect is to have suitable
designs for resilience where certain limited performance can
be accepted for businesses. Our contributions are:

• Use cases and business context analysis: present elastic
business demands and their consequences for technical
and scientific requirements.

• Context identification and impact: present key opera-
tional contexts for DEML-RCCE and analysis of their
impacts on software components and deployments

• Research directions: identify important research focuses
for achieving runtime context awareness for DEML-
RCCE.

Fig. 1 Overall view of the context
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Fig. 2 An SME with multiple business venues sharing the same cloud-based system for customer experience management

The rest of this paper is organized as follows. Section 2
outlines representative application scenarios. Section 3 per-
forms context identification and impact. Section 4 explains
in detail research topics. We present further related work in
Sect. 5. Section 6 summarizes the paper.

2 Application scenarios and business context

We will focus on the business domain, due to its active and
important role that attracts ML development in RCCE. Fur-
thermore, we will focus on applications leveraging IoT data
and technologies to work with ML. We investigate three
representative application scenarios and their use cases to
highlight key aspects of DEML-RCCE. In particular, we
concentrate on analyzing the differences between DEML
in RCCE and other (developed) communities/environments,
basedon scenarios fromVietnam, to derive business contexts.

2.1 Geographically distributed customer experience
management

Application description: Customer experience management
is a known business where ML is increasingly used [58].
In particular, let us examine the business venues such as
coffee shops, fashion halls, or food and beverage stalls in
city/town settings. These businesses are from small and
medium enterprises (SMEs), which play a crucial role in
RCCE, and the required ML solutions naturally exhibit
distributed computing and management. Currently, these

businesses increasingly use IoT data from cameras, beacons,
and smart loyal cards to verify whether a customer visited
their venues in the past or not and to serve the customer better,
e.g., offering or suggesting preferred services and dishes. A
common scenario is that an SMEhasmultiple venues in cities
or towns, e.g., a coffee brand has multiple houses located
in different shopping malls. Since all the shops or houses
belong to the same SME, they will use the sameML solution
for customer experience management. A naive solution is to
deploy a cloud-based system for data storage and ML train-
ing, whereas edge systems located in these venues are used
only for analytics and prediction. To serve customers visiting
different venues, network conditions,MLmodel training and
synchronization, and computing resource scaling are impor-
tant issues. In Fig. 2, we present a business model of this
scenario.

Similar use cases: customer shopping prediction [19],
advanced image recognition shopping cart [1].

Characteristics in RCCE: Customer behaviors are differ-
ent. For example, coffee shops in developing countries like
Vietnam is a placewhere customers can spend a fewhours for
relaxing, talkingwith friends and collaborators or even study-
ing and working.1 This leads to two aspects that distinguish
the coffee business in RCCE from those in resource-rich
communities. First, customer behaviors in a coffee shop are
diverse, as customers come to the coffee shops with different
objectives. Second, to satisfy different customer demands,

1 It is worth mentioning that coffee shop businesses are very popular in
Vietnam.Many families do their owncoffee shopbusiness by converting
their garden into a well-designed outlet.
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coffee shops serve not only coffee or drinks, but also other
types of foods for breakfast, lunch, and dinner, thus expand-
ing their business. However, potential ML solutions face
various challenges:

• The update of the customer recognition model is chal-
lenging. With a large number of customers, frequently
retraining the recognition model incurs a very high cost
that the business owner may not be able to afford. On the
other hand, delaying the retraining could lead to business
loss as the customer cannot be recognized by the system.

• ML model synchronization is challenging. Each venue
(an edge point) is equipped with a recognition module
that performs recognition in an online manner without
sending customer data to the central entity that is used
only for the retraining model. Using a sole MLmodel for
the entire system will face the scheduling challenge as
discussed above, while deploying a separate ML model
under a separate ML service for each venue raises the
synchronization issue as a customer may visit different
venues at different time instants.

• Diversity in the quality of the data captured is a problem.
We note that though these venues belong to the same
chain/branch, they are operated by different owners who
have different financial capabilities to invest in their cus-
tomer experience management system. This means that
the devices used for capturing customer data are hetero-
geneous and producing data with different quality levels.

Key business contexts: First, B1 -low development and
operation costs are a major KPI. The gross revenue obtained
from the business when using the system must be much
higher than the cost incurred for the system operation and
maintenance. Apart from a one-time cost for system deploy-
ment and hardware cost (infrastructure cost), a recurring
operation cost including Internet subscription and comput-
ing resources for model retraining is another factor. Second,
B2 —slow inference response time is tolerated. For exam-
ple, the recognition for customer experience management in
coffee chains may not be required to provide a fast recogni-
tion in the order of seconds, since customers usually spend
several minutes to enter the shop, if not hours.

2.2 Cross-business data for ML of an SME network

Application description: SMEs need a mechanism to reuse
and share data. For example, the data collected from the
increasingly popular cashless payment service in RCCE
[46,64] brings a lot of information for businesses such as
usual shopping time, location of shopping malls, online or
off-line purchasing, and purchased item types. Businesses,
such as mobile service providers, shopping malls, and shops

in the malls, want to analyze data to improve their service
quality. Building a complete centralized dataset of customer
behaviors crossing different business domains may not be
possible in RCCE due to multiple reasons including the scale
of business, operational cost, data privacy, business privacy,
and sharing incentive. Thus, a promising solution is that each
business owner has its own database and a sharing protocol is
required to enable the search and extraction of specific data
to be shared. This will also strongly support the elastic busi-
ness model—join and leave - of SMEs in RCCE. The data
marketplace and sharing data have been used increasingly in
RCCE (also due to economic and cultural factors) [42]. This
leads to cross-business data for ML through a sharing mech-
anism for different datasets of customer behaviors owned by
different SMEs. Figure 3 presents a business model of this
scenario.

Similar use cases: patient data analysis [5] and intrusion
detection systems [50].

Characteristics in RCCE: Data sharing has to come with a
data contract specifying the agreed constraintswith respect to
the data usage, e.g., how the data consumer will pay the data
owner. Similar to developed worlds, data privacy is the first
challenge that has great importance as customer information
is highly sensitive. The data owners, therefore, may not want
their data to leave their premise when sharing the data with
third parties. On the other hand, they do not have a suitable
infrastructure to enable third-party training code running on
their premise (e.g., follow the federated machine learning).
Solving this dilemma is difficult in the context of RCCEwith
limited computing resources at the edge points.

Key business contexts: The key business context is B3

- elastic, direct, secure data sharing with privacy assurance
for model training according to marketplace principles. A
company has different models so it will train these models
with its own capabilities. SMEs want to have elastic, direct
solutions to empower each company to share certain data
for improving training processes in other companies. Thus,
trusted federated service/platforms are needed for facilitating
direct data sharing.

2.3 Mobile concrete batching plant optimization

Application description: Due to traffic issues, the lack of
strong construction infrastructure, and typical requirements
of SMEs in construction, mobile concrete batching plants
(CBPs) are common in developing countries. A company
owns CBPs, but the software monitoring and controlling
CBPs would be provided by another company, since the
software and hardware of CBPs are offered by only a few
vendors. For each concrete mix (a batch), many parameters
must be optimized, such as the amount ofwater and additives,
based on a recipe of concrete batches. Such parameters are
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Fig. 3 SMEs with edge resources for inference

important to make sure that the quality of the batch is met,
especially with the requirements of slump [4]. If the slump
test is met but the water and additives are not optimal, the
company incurs additional cost. On the other hand, the con-
crete batch becomeswaste that needs to be dumped, incurring
costs and creating environmental problems. Based on a large
data set, differentMLmodels can be built and deployed in the
edge and cloud. Before running a batch, at the CBP, the oper-
ator of a CBP will provide input parameters about the batch
and the MLmodels will infer important parameters. The ML
service from the software company relies on a third-party
cloud or the company’s edge systems for ML serving and the
ML models are invoked via unstable 4G networks from the
CBP site.

Similar use cases: ML-based OCR in ports and mobile
work [27,53].

Characteristics inRCCE:Onemajor difference is that both
infrastructures for running edge ML and networks are unre-
liable. Another aspect is that the cloud part of the ML is very
limited. A preferable deployment model is that the entire
infrastructure for ML is managed by the SME.

Key business contexts: Since humans play an important
role in the control of CBPs, human-in-the-loop is needed.
Therefore, it is acceptable that the inference can take a B4

-longer response time to provide highly accurate prediction,
as any wrong recommendation would lead to a huge cost of
waste processing. Overall, the key requirements are centered
around the human-in-the-loop, ML accuracy, unreliable net-
works, and complete edge infrastructures.

3 Operational context identification and
impacts

In this section, we first identify important operational con-
texts for DEML-RCCE and derive the key performance
indicators (KPIs) for making DEML-RCCE smarter and
intelligent under the influences of such operational contexts.
We then analyze the impact of such operational contexts on
software components and deployments.

3.1 Infrastructure contexts

Constrained infrastructure for ICT and ML, especially in
RCCE, has been discussed intensively. In Table 1, we sum-
marize the key factors related to infrastructures, extracted
from business contexts, and their importance and impact on
ML solutions. We define the importance and impact of each
factor with three levels: strong, medium and low. As
we can observe, edge resources and network conditions are
the two common factors that have the highest importance
and impact on the performance and business outcome for all
the use cases. While edge resources are usually constrained,
network conditions in RCCE are not always reliable. This
requires a proper design of system infrastructure and schedul-
ing algorithms for system operation. Data-related factors,
such as data privacy and data sharing, are important for all
the scenarios that require customer/client information such
as customer experience management. Thus, it is important
to design and develop algorithms and services to serve these
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Table 1 Summary of application scenarios

Factors in business contexts Customer experience management Cross-business data Concrete batching plant

Distributed data Strong Strong Low

Data sharing Medium Strong Low

Edge resources Strong Strong Strong

Network demands Strong Strong Strong

Use of clouds Medium Medium Low

Response time Medium Medium Medium

Model performance Medium Medium Strong

purposes. From another point of view, we also observe that
the scenario of cross-business data sharing is required to take
into consideration almost all the issues of DEML. Therefore,
solving these issues and enable DEML for these scenarios
leads to a huge improvement of business outcomes of SMEs
in RCCE.

From the above discussion and the literature on RCCE
infrastructure, we identify three main infrastructure contexts
that are crucial for DEML-RCCE: (1) constrained compute
and storage resources, (2) limited networks, and (3) disparate
data quality and robustness.
I1 -Constrained computing resources: It is understood that

RCCE will lack the access to powerful computing resources.
Furthermore, various SMEs exploring ML solutions will
consider the resource cost factor as a key constraint [24].
Therefore, the expected expensive ML training and serving
like in powerful companies will not be suitable for SMEs
in our context [6,61]. Furthermore, most edge devices are
usually resource constrained in terms of memory as well as
CPU power. Various enterprises deploying ML consider the
resource cost factor as a key constraint [24]. Due to prob-
lems of costs, the infrastructure situation will not be changed
very soon in RCCE. Although distributed ML can still be
deployed at the production level with such an infrastructure
of resource-constrained devices, we should not expect to use
it to support complex, high-performanceML such as training
ImageNet in 1 hour [26]. This leads to the challenging task
of selecting appropriate MLmodels that do not sacrifice per-
formance for the training cost to deploy in DEML systems
in RCCE.
I2 - Unreliable/weak networks: RCCE are facing the prob-

lem of network bandwidth shortage. On one hand, wired
connections cannot reach all areas of the countries and are
partially covered by optical networks. On the other hand, cel-
lular networks, mostly with 3G/4G networks, are not strong
due to lack of network spectrum or the distribution of base
stations. The network usage, therefore, becomes an impor-
tant factor that needs to be taken into account for DEML in
RCCE. Latency incurred due to intermittence and low band-

width of network connections [15] prevents advanced ML
solutions that require many data exchanges.
I3 -Disparate data quality: Due to the infrastructure cost

constraints, diverse types of devices/equipment and adequate
maintenance processes of ICT lead to many issues of quality
and robustness. These issues coupled with limited networks
and resource constraints create a huge impact on system per-
formance and quality. For instance, a previous study [49]
reported that the quality of devices and networks causes a
big problem for GPS data for real-time analytics. The prob-
lem of poor data in developing countries has been reported
intensively [36]. ML solutions must be built atop processes
and techniques dealing with such problems of data quality
and reliability.

3.2 Operational contexts

Given the above popular application scenarios in developing
worlds, for smarter solutions, technical design and devel-
opment of DEML must be evaluated carefully considering
contexts of RCCE. Figure 4 outlines key operational con-
texts and their dependencies.
O1 - ability under constrained resources and unreliable

networks: Since the amount of data processed increases
significantly over time due to the business expansion, a
DEML-RCCE solution should be scalable with the increase
in data volume and in the number of edge points. However,
with a limited budget ( B1 ) and weak network infrastructure

( I2 ), deployment of a large-scale distributedML infrastruc-
ture and maintenance of its operation is a challenging task.
Businesses may not have sufficient capital to invest into the
infrastructure while the demand could be intermittent over
time.

The cost issue will not be solved very soon in RCCE, thus
upgrading to a powerful infrastructure will not happen so
early. This consequently needs a proper consideration of (1)
ML technologies deployed in DEML-RCCE, and (2) techni-
cal approach for scaling computational infrastructures. For
the former issue, expected expensive ML training and serv-
ing in developed countries or in big companies (e.g., training

123



Journal of Reliable Intelligent Environments (2023) 9:119–134 125

Fig. 4 Operational contexts and their dependencies on other contexts

ImageNet in 1 h [26]) will not be suitable for SMEs in RCCE
context [6,61]. Yet, most edge devices are usually resource
constrained in terms of memory as well as CPU capacity.
This leads to the challenging task of selecting appropriate
MLmodels that do not sacrifice performance for the training
cost ( B4 ) for DEML solutions in RCCE. For the latter, elas-
ticity will be an important technique to achieve the expected
performance of the systems while reducing/minimizing the
operation cost ( I3 ).
O2 -Resiliency under failures and data quality problems:

Besides dealingwith hardware and software failures,DEML-
RCCE solutions have to additionally deal with the diversity
of data quality and distribution. The heterogeneity of sensor
quality could lead to the heterogeneity of IoT data. Due to
limited budget ( B1 ), businesses in RCCEmay choose cheap
data sensors (e.g., cameras). The heterogeneity of hardware
equipment leads to the heterogeneity of data and its dis-
tribution ( I3 ). This will be a challenge for training ML
models on those heterogeneous datasets. Resilience against
network interruption is also critical, since network condition
in developing countries is very poor and may frequently be
interrupted. This requires the system to be able to properly
operate without any network connections and defer all com-
munication activities till a network connection is available.
O3 -Data exchange under weak communication networks:

RCCE are facing the problem of network bandwidth shortage
( I2 ). Wired connections cannot reach all areas of the coun-
tries and partially covered by optical networks, while cellular
networks mostly with 3G/4G networks are not strong due to
lack of network spectrum or the distribution of base stations.
The network usage, therefore, becomes an important fac-
tor that needs to be taken into account for DEML-RCCE.
Advanced ML solutions that require many data exchanges
will face the latency issue due to intermittence and low band-
width of network connections [15]. To address this constraint,

the data sent over the network for the execution of ML solu-
tions should be minimized. Instead of sending raw data, an
edge point could perform simple data preprocessing such as
extract useful features or transform the data from raw format
to a latent representation before sending it over the network.
This approach could avoid network interruptions and fail-
ures when sending a large amount of data on a poor network
condition in developing countries.
O4 -Real-time responseunder the lackof computing resources:
for IoT-based scenarios, it requires the system operates in
a real-time manner with minimum latency, with also many
dynamic inference situations.However, achieving this design
requirement is challenging in the context of RCCE due to,
e.g., the lack of computing resources to process data on time
( I1 ) or the network delay when transferring data or com-

mand communication between nodes in the system ( I2 ).
The design of system architecture is therefore important so
that delay-sensitive tasks will be executed at the edges near
to the users. Data synchronization among edge nodes also
has to be scheduled properly to avoid network bottlenecks.

3.3 Impact on DEML-RCCE software components

Each SME can have a customized context-specific strat-
egy, e.g., resilience-centric optimization due to network
and resource issues versus efficiency-centric optimization.
Therefore, it is possible to have different strategies mapped
onto different software layers and components for DEML.
However, the feasibility of each software layer and com-
ponent for DEML in RCCE is strongly influenced by
operational contexts. Thus, it is critical to analyze the influ-
ences of operational contexts on data, model and software.

Figure 5 presents a generic view on a DEML-RCCE con-
ceptual framework in which we only focus on key aspects of
DEML-RCCE that we will discuss in the rest of the paper;
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Fig. 5 Key distinguished
conceptual components of
distributed edge machine
learning in resource-constrained
communities and environments

other aspects are left for future work. Commonly, we can
have four layers, namely the data and model sharing layer,
ml model management layer, algorithm layer, and resource
layer. This conceptual view reflects the impacts of business
and infrastructure contexts on the development and deploy-
ment of ML solutions in RCCE.
Data and model sharing layer: The data and model shar-
ing layer provides key aspects for sharing data and models
needed by DEML-RCCE.
Impacts: Corporation datalake and community datasets are
common ways for data collection, storage, and sharing in
developed countries. In the conceptual view, we have data
for training and developing ML models and pre-trained ML
models that are ready to be deployed. These ways will also
be employed in RCCE ( B3 ). However, SMEs will face a
great problem with respect to cost and the ability to mas-
ter existing frameworks, as most of them are cloud based.
Providers like Amazon, Google, and Microsoft offer scal-
able solutions for datalake that can be used for ML data,
while SMEs struggle with human skills and networks to
use these solutions. A marketplace is needed for different
stakeholders to trade ML data and models. This marketplace
should provide pricing models as well as incentive models to
encourage different businessmodels. This is a feasible aspect
that is important to DEML-RCCE as sharing data/model is a
great incentive for different application scenarios, e.g., ML
enabling cross-business. It is to be noted that pricing mod-
els and incentive models should not focus only on monetary
values even though business revenue is the most important
factor of SMEs in RCCE. In several cases, the pricing and

incentive models are used to guarantee engagements in com-
munity cohesion and prevent illegal trading/selling of data in
RCCE. Previous marketplaces [13] are relevant but they are
not designed for both data and models.

ML model management layer: The ML model manage-
ment layer describes key aspects related to ML models.
Impacts: Given a distributed and evolvingML system, multi-
ple versions of an ML model have to be stored (e.g., models
trained on different datasets, original models downloaded
from publicly available sources, and models customized
by the companies with different training parameters). With
a DEML solution, different edge points may be deployed
with different models. Consequently, the selection and com-
position of existing models to satisfy the requirements of
DEML-RCCE is also a challenging task [57]. Another aspect
is that DEML-RCCE models can be borrowed or adapted
from existing models in developed worlds or from cloud-
centric environments. Thus, to make sure such models work
well in RCCE infrastructures ( I ) with RCCE data, we
need to spend effort to translate these models.

Algorithm layer: This layer includes different distributed
algorithms used for ML model training and serving that
consists of data preparation algorithms, resource scheduling
algorithms, and model training algorithms.
Impacts: Approaches for distributed ML (training and infer-
ences) are increasingly being investigated [66], but they
are not necessarily suitable for RCCE. Given the lack of
strong concentrated resources (e.g., cloud-based data cen-
ters), loosely distributed computing models, such as embar-
rassingly distributed batch and workflow processing, could
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play a strong role for ML algorithm implementation. Pre-
cisely, a federated learning approach [68] could be applied
for training a shared model on different distributed datasets
[14]. The model owner will interact with the data owners to
schedule the training of the model on the respective dataset
accordingly. Collaborative learning will be applied when the
multiple data owners provide data for a subset of features.
There also exist other techniques such as transfer learning or
split learning [65] that can support trainingmodels while pre-
serving data privacy. We believe that in DEML the resource
scheduling algorithms are the key focus to enable the training
of models on datasets and distributed computing resources.
In RCCE, the scheduling algorithms must take into account
the network condition, location of data as well as computing
resources. Novel cost models may be needed to minimize the
training cost.

Resource layer: The resource layer includes all types of
resources needed for training and servingMLmodels, includ-
ing data resources, edge-cloud computing resources where
the models are trained, and software artefacts resources used
to develop and compose ML models and ML pipelines as
well as to manage data and models.
Impacts: Data resources consist of publicly available datasets
that the companies downloaded, the datasets shared or pur-
chased from their partners, and the data they have collected
by themselves. Here, the focus is to utilize sharing models
and incentives to enable the availability of data sources. Con-
sider edge-cloud computing resources, which include local
resources, edge clouds, or public clouds, it depends on the
context of the scenarios discussed above to decide which
type of resources can be used. We note that those resources
can jointly be used rather than exclusive mutually depend-
ing on the operational cost. While local resources can satisfy
the immediate computing demands but they may incur high
operational costs due to their underutilization during off-
peak hours. Public clouds could be cheaper but they may be

unavailable due to poor network conditions and budget limits
in RCCE. Different edge system topologies can be employed
in which a high edge system can process the workload from
low edge devices in a timely manner.

3.4 Impact on deployment architectures

The selection of aDEMLdeploymentmodel as themost suit-
able for a business model is a challenging task, as it depends
not only on the nature of the business model but also on the
availability of resources (includingboth human resources and
technical resources). In this section, we present two common
deployment architectures, which could be adopted for busi-
ness models presented in Sect. 2.

3.4.1 Model 1: multi-edge-centralized cloud

A common model is to have multiple edge sites connecting
a centralized cloud. Shown in Fig. 6, such an architecture is
widely used in distributed ML that supports multiple scenar-
ios of IoT data collection and ML training and inference. In
the context of DEML-RCCE, at the regional level, a logically
centralizedmanager is deployed tomanage a number of edge
points located at the lower level. The manager resides in a
regional data center (e.g., a private cloud managed by the
system owner) where computational resources can be elas-
tically provisioned depending on the load at the manager.
The edge points are essentially access points at the busi-
ness venues such as coffee shops, food, and beverage stalls,
etc. connected to the sensors through different communica-
tion protocols such as Ethernet, WiFi, and Bluetooth. The
deployment architecture is suitable for customer experience
management and cross-business data sharing.
ML role distribution: With the multi-edge-centralized cloud
deployment model, the data aggregation and model train-
ing can be done at the regional level. This can be applied

Fig. 6 Multi-edge-centralized
cloud deployment model
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for two scenarios: an ML solution for a single SME and
for a set of cooperative SMEs. First, for a single SME, it
can deploy ML components in both edge and cloud. This
enables many different deployments known in the state of
the art, such as training in the cloud and serving in the edge,
distributed training in the edge and cloud, and distributed
serving using parallelized ML models. Second, for a set of
cooperative SMEs, such as customer experience manage-
ment, depending on the nature of the business models and
data ownership, respective distributed ML techniques will
be applied for training models while preserving data privacy,
e.g., using horizontal federated learning (or sample-based
federated learning) but serving will be individual for each
site. The datasets collected at different edge sites share the
same feature space but differ in the samples [38]. Every edge
site of an SME can maintain an edge model, which may
be different from the regional model (e.g., the edge model
is trained on the data collected within the coverage of the
respective edge site). For cross-business data sharing, verti-
cal federated learning (or feature-based federated learning)
[23,41] can be applied. Since the data samples collected from
various edge sites have distinct features, the features have to
be aggregated to train themodelwhile protecting the data pri-
vacy of the edges. It is also possible to do ML serving across
edge and cloud by partitioning the model in both edge and
cloud. ML at the edge serves only for a particular edge site
whileMLat the cloud serve the functionalities that needmore
data or global visibility of the entire system. For instance, in
[59], Thangavelu et al. developed a distributed ML for IoT
device detection and classification. In their work, each smart
home or office is an edge site in which the ML models only
monitor and perform detection of IoT devices in the cover-
age of the edge, and the ML models at the cloud analyze
traffic features collected by the edge to perform attack detec-
tion, e.g., DDoS originated from the IoT devices of different
edges.
Suitability: With the expansion of business, multiple edge
points will be deployed. Multiple managers can be instanti-
ated, each managing a subset of edge points. This enables the
scalability of the deployment ( O1 ). This distributed archi-
tecture allows ML solutions to be designed in collaborative
manner that significantly reduces the data exchange ( O3 ).
For instance, a customer detection and recognition task can
be done at the edge points while retraining of the models
will be done at the regional manager with more computing
resources. The modular design of the ML solution will also
enable the resilience of the solution against poor conditions or
interruption of the network that connects the edge points and
the regional manager ( O2 ). Depending on the ML solution,
the regionalmanager runs a set ofmodules at the regional data
center; such tasks are either computationally intensive or do
not need immediate inputs from the edge points. Themanager

also has the capacity to push information and instructions to
the edge points; for instance, model updating synchroniza-
tion. It is worthmentioning that processing raw data captured
from the sensors at the edge points allows the framework to
provide analysis output in a real-time manner ( O4 ).

In RCCE, 5G and beyond networks are deployed step-
by-step, enabling real-time and high connections for con-
nected IoT devices and edge sites. The communication delay
between IoT devices/edges to base stations still depends on
the location of the base stations decided by the telecom oper-
ators. SMEs have to decide the necessity of edge systems
based on their individual business models by considering
the trade-off between capital expenditure (CAPEX) to own
a private edge system and operational expenditure (OPEX)
to pay cloud computing resources and network bandwidth
consumption for data transmission.

3.4.2 Model 2: edge to multiple edges

Fig. 7 shows the edge-to-multi-edge deployment model.
In thismodel, at various edge sites,MLservices are deployed.
The ML service only supports inferences for the local input
data. At the edge site, data collector is used to collect input
data and inference/prediction results, which are pushed to the
centralized edge system for training. Possible use cases are
concrete batching plant.
ML role distribution: Similar to the multi-edge-centralized
cloud model, various learning techniques can be applied to
exploit the data collected at different edge sites while pro-
tecting data privacy if required. In this deployment, we focus
on given edges belonging to the sample deployment of an
SME. Therefore, it is possible to have: (1) distributed train-
ing but multiple, individual instances of serving in the edge,
and (2) distributed training and distributed serving through
the partition ofMLmodels across edges. In the first case, it is
similar to distributed training in the cloud-edge deployment
model, but the serving is only at the edge. In the second case,
the modular design of ML solutions and the corresponding
ML algorithms are important to guarantee the efficiency of
the deployed ML solution in terms of communication and
computation overhead [60]. A naive solution to speed up the
computation and reduce the workload on edge nodes is to
enable parallelism of computation (i.e., model training and
inference) onmultiple edgenodes.However, significant com-
munication overhead among edges may prevent us to carry
out the parallelization of ML models. For example, layer-
wise parallelism in [33] allows each layer of a deep learning
model to be trained on a separate IoT device but the outputs
from computing IoT devices need to be aggregated before
dispatch again for the computation of the next layer.
Suitability:This architecture is suitable for SMEswhere they
do not rely on cloud services for training and model man-
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strong on-premise edge systems
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Fig. 7 Edge to multiple edges deployment

agement. It still satisfies the scalability requirement ( O1 )
as more edge sites can be deployed depending on business
expansion. As all the tasks are performed at the edge sites,
this architecture will also support resiliency ( O2 ), mini-
mum data exchange under weak communication networks (
O3 ), and real-time response ( O4 ). However, theMLmodels
deployed with this architecture might not be very complex
to require powerful infrastructures for training (e.g., no need
of a lot of CPU and GPU). Another reason is that cloud
is still expensive and especially the connection to external
clouds (Google, Amazon) is still hard. In terms of supported
software, two approaches could be followed: (1) using differ-
ent edge site management (such as Kubernetes) and building
solutions to connect edge sites, and (2) using linked edge site
solutions. For connecting an edge site to another edge site,
Kubermatic techniques [2] could be leveraged. The recent
development of AI-enabled edge devices such as NVIDIA
Jetson Kit allows further flexibility of ML deployment at
edges.

4 Key areas for smarter DEML-RCCE

To design smarter DEML-RCCE solutions for given opera-
tional contexts, specific characteristics of ML in RCCE need
specific research to define suitable activities and interactions
to meet the business and technical constraints. Cataloging
important use cases and applications in RCCE is an impor-
tant task. This avoids the situations that ML models (and
correspondingML algorithms/methods) with excellent qual-
ity requiring substantial data and computing resources and

energy consumption are adopted for unsuitable RCCE infras-
tructures. In ML development activities, two important
aspects are (1) how do developers in RCCE access, reuse,
and customize existing ML models, and (2) how do they
synchronize knowledge related to reusable ML models from
RCCE and the original creator. In ML operation activities,
we need a newmeasurement and interpretation of robustness,
reliability, resilience, and elasticity quality in the context of
constrained resources and costs in RCCE.

To address this issue, we need to employ techniques from
requirement analysis, software engineering, and ML char-
acterization. We suggest (1) characterizingthe stakeholder
interactions in DEML-RCCE, e.g., following the recommen-
dation in [11], (2) addressing non-functional requirements
issues in DEML-RCCE, e.g., following the approach in [30],
and (3) summarizing best practices of ML engineering for
DEML-RCCE, such as following thework in [9]. In the scope
of this paper, we will focus on non-functional requirements
as they are strongly related to the operational contexts. Other
important aspects which are not considered in this paper are
fairness and ethics, in general FAIR in ML. The main reason
is that these aspects are very complex and their discussion
deserve a separate work.

4.1 Data synthesizing and data/model marketplace

What: Due to the lack of resources and data, data synthesizing
can be applied to create training (labeled) data from captured
(unlabeled) data.Additionally,with some incentives, data can
be obtained through data marketplaces [13] as described in
the data and model sharing layer in Fig. 5. In terms of data
quality, solving data problems to prepare high-quality data
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for ML is also challenging [54]. It is to be noted that data
labeling is a laborious process that requires not only human
effort, but also domain-specific knowledge. SMEs in RCCE
typically do not have sufficient resources to carry out data
collection in a long run.
How: It will be beneficial if DEML-RCCE has tools that
generate labeled data with a distribution close enough to real-
life scenarios; this would address several issues for RCCE,
including the lack of a qualified workforce. The biggest chal-
lenge is how to know the distribution of realistic data with
a few real samples, particularly caused by the lack of well-
prepared sensing and data infrastructures. The process of data
synthesizing will be implemented in the edge based on cap-
tured data (e.g., create new images). This process will be
scheduled and customized based on resource constraints and
other aspects such as resilience and network conditions. Dif-
ferent situations could be: fast synthesizing and update for
training, lazy synthesizing and lazy update.
Tooling: To some extent, for data synthesizing, existing
solutions, such as [47] for tabular datasets and [34] for
data modeling, could be useful for DEML-RCCE. In a
DEML framework, data collection at remote edge sites can
be unlabeled due to issues of sensors, e.g., connection,
communication failures, software bugs, or battery draining.
Therefore, approaches for labeling unlabeled data using col-
laborative learning [39], i.e., collaboration among nearby
sensors to label a data sample, could be a potential solution,
although deployment of such a technique is still challenging
in the distributed ML setting due to resource constraints. In
terms of datamarketplaces, the focus should be on the pricing
models and incentives. Pricing models for data market-
places have been discussed and supported bymany industrial
providers. Recently, pricing models for ML models [8,16]
have been discussed. We need to adapt them for RCCE. To
support the business requirements for direct IoT data shar-
ing ( B3 ) for ML training, the recent work Delta Sharing
[3], which fosters secured, direct data sharing integrated into
big data/ML code via an intermediate service, could stim-
ulate the development of new protocols and techniques for
DEML-RCCE.

4.2 Distributed resilient edgeML

What: A distributed end-to-end edge ML training/serving
pipeline consists ofmultiple edge devices,which are resource
constrained and connected with wired or wireless networks.
This raises new challenges in guaranteeing the resilience of
the pipeline against not only hardware and software failures,
but also the uncertainty of data collected (noise, adversarial
attacks, or unavailability). This challenge in RCCE is much
hard to address due to resource problems.

How: Common techniques with redundant devices/resources
are well understood, but are not well supported in RCCE.
Especially, the cost of equipment purchase, device oper-
ation, and maintenance could reduce the economic profit
of companies. Thus, from the research viewpoint, a less
costly approach, partially solving the cost problem, is to
develop better scheduling algorithms for ML pipelines that
take into account all the resource constraints, environment
uncertainties, and failures. From a software perspective, the
resilience of a DEML-RCCE system must focus on deal-
ing with data missing, network interruption and machine
failures. For instance, to deal with data missing, data syn-
thesizing could be a potential solution to generate data at the
edge from historical data and send the synthetic data to the
analysis module.
Tooling: In terms of software availability, there exist several
systems for distributed machine learning platforms [32,71].
However, the question is how to use them in distributed
edge-constrained resources, e.g., what would be the equiva-
lence of Apache Spark [70] but for DEML? Recently, more
advanced dataflow systems have been developed specifically
for distributed ML problems such as Google TensorFlow [7]
and MXNet [18]. In particular, TensorFlow has come with a
version of constrained resources that could be used to imple-
ment ML in resource-constrained infrastructures. However,
we will need to focus on the orchestration of such ML code
across various edge resources. To support software frame-
works in RCCE, it is also important to explore theoretical
aspects for (1) network issues, network performance opti-
mization [44], and (2) the Byzantine failures in a distributed
machine learning setting [12,17,69] in the context of RCCE.
In this view, edge-cloud testbeds for DEML-RCCE setting
could be developed, e.g., using containers, to study these
problems for RCCE.

4.3 Elasticity and dynamic scheduling

What: For some scenarios (e.g., shop andmobile work), edge
points want to have a powerful edge server2 for computation.
This could lead to a high operational cost and resource wast-
ing when they are underutilized, e.g., during the nighttime.
For other scenarios (e.g., fields and farms), equipping com-
puting resources at edge pointsmay not be possible due to the
environmental constraints. We may have to deal with scenar-
ios where a bust demand incurs and requires a quick response
from the system.
How: Scheduling in distributedML is an important aspect, as
models and data are geographically distributed. Nodes host-

2 “powerful” means that the edge server can have many cores (e.g.,
see https://www.ibm.com/docs/en/cloud-private/3.2.0?topic=servers-
preparing-install-edge-computing). Still, the resource is limited and
cannot be scaled elastically as in the cloud.
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ing ML relevant components are required to schedule their
training with new data samples, update new models, or even
schedule the synchronization among them. Furthermore,
dynamic scheduling algorithms are important for dealing
with constrained resources. First, the dynamic scheduling is
carried out in both edge-cloud elastically, but it is also based
on networks, data, etc. in RCCE, and the challenging task is
dynamic scheduling of training or updating models (trained
on new and unseen data samples), while the distributed ML
system is still in operation (i.e., prediction or analysis of the
data samples collected).
Tooling: There exist various approaches for retraining mod-
els to reflect the new data in the training dataset (with new
data samples added) thatmight be adopted forDEML-RCCE.
Naive algorithms to retrain the model with the entire dataset
are obviously a time-consuming and computing-intensive
task, as the number of data samples is increasing over time.
New techniques such as lifelong learning [55] could be
adopted to efficiently update the models with new data sam-
ples so as to minimize the amount of time and resources
required. While there is a lack of tools that can be used
directly for the dynamic scheduling scenario in RCCE, the
research community has developed several research pro-
totypes that can be adopted, such as an open-source ring
architecture framework over TensorFlow [56] and a dynamic
scheduling and scaling controller for managing distributed
deep learning jobs in theKubernetes cluster [40]. In our view,
the combination between containers/Kubernetes scheduling
and elasticity for local edges and coordination-aware elastic-
ity across edges should be explored.

5 Further related work

ML surveys and roadmaps: There is no lack of survey and
roadmap papers for distributed ML. However, such papers
do not discuss DEML-RCCE. The papers [37,48] raise tech-
nical issues in edge computing, including architecture design
and use cases. However, they do not discuss edge computing
specifically in RCCE as well as how edge computing works
with distributed ML. The paper [66] surveys distributed ML,
but this work only focuses on algorithms, methods, dis-
tributed architecture as well as network topology without
taking into account the context of RCCE. The work in [39]
surveys federated learning with edge networks. It focuses
only on one type of ML and does not concentrate on RCCE
conditions. The survey in [22] is about resource provisioning
challenges in ML in the edge. This is related to our feasi-
bility analysis of the distributed ML infrastructures and the
research areas of ML resource provisioning. However, the
work just reflects only one aspect of DEML and does not
focus on the RCCE context.

ML and developing worlds: The work in [21] discusses
ML research in RCCE by defining a roadmap and identify-
ing seven ML areas. However, this work does not analyze in
detail to identify the KPIs for ML solutions using edge com-
puting, which is the focus of our paper. Recently, various use
cases and papers were presented in two workshops such as
[43,62] and they discussed solutions for RCCE. However,
the main topics are about the applications and/or algorithms.
The discussion of resource constraints has been raised, as
this issue is quite obvious. Khan [35] developed concrete but
common applications focusing on data feature engineering;
however, these applications do not focus on distributed sce-
nario business use cases in the edge. The paper [51] outlines
several areas where AI can solve problems in RCCE, but it
does not address use cases, feasibility studies, and require-
ment analysis for DEML.
ML in resource-constrained devices: Many recent works
have concentrated on portingML frameworks from powerful
platforms into resource-constrained platforms. The solutions
from these works enable technologies for ML with con-
strained resources in RCCE. One of the common ways is to
utilize a cluster ofRaspberry Pi to coordinateML tasks.How-
ever, this does not solve the problem of distributedMLwhere
tasks are executed in different locations. Thework in [67] out-
lines issues in federated learning ML in constrained devices.
It is related to the infrastructures in DEML-RCCE. However,
it is just one aspect related to a specific type of ML and does
not consider business and other aspects in DEML. Sharma et
al. [57] developed a model selection, named ExpertMatcher,
for a remote client to search and use expert MLmodels in the
resource-constrained type. This type of work is just a very
specific solution for requirements in RCCE.

6 Conclusions

Advances in ML and edge computing introduce several
benefits for applications in RCCE. However, both ML and
edge computing are known to have strong demands of data
and computing resources and complex software engineer-
ing methods that are very challenging issues in RCCE. In
this paper, we have analyzed various contexts covering busi-
ness, infrastructure, cost and operation and their impact on
DEML-RCCE designs. We have discussed key impacts for
key components on common layers of data, ML models,
algorithms, and resources. To develop DEML-RCCE frame-
works, researchers and developers can rely on our identified
research areas which can provide specific problems, how to
approach the problems and which possible tools could be
leveraged. Our future work in this line is to explore the issue
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ofDEML-RCCE software development processes and incen-
tive models for sharing data and ML models in RCCE.
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