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Abstract Many designs of wireless sensor network
applications require the determination of the optimal loca-
tions of sensor nodes to be placed in a sensor field. Coverage
enables us to evaluate the supervision quality of each point
within an area of interest. In this paper, we address the prob-
lem of target coverage in wireless sensor networks. This
concern is trivial if each target must be covered by a sin-
gle sensor. However, it becomes an NP-complete problem
when the choice of the position of the sensor must take
into account the targets that it should cover in its vicin-
ity. Using amulti-objective evolutionary-based approach, we
propose a stochastic method to search for network configu-
rations that achieve good coverage with the fewest sensors.
A comparative experimental study of the model with well-
knownmulti-objective algorithms such asNSGA-II, SPEA2,
SMSEMOA and MOEA/D indicate that NSGA-II performs
better than others on most of the test instances.
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1 Introduction

Wireless sensor networks are one of the technologies devel-
oped to address the growing needs of the observation
and control of certain physical and biological phenomena
of the environment. Originally, the expansion of wireless
sensor network applications is conducted by military appli-
cations [1]. Nowadays, sensor networks are used in a wide
variety of applications including medicine, environmental
risk monitoring, traffic control, habitat monitoring and con-
trol of industrial processes [2–6]. A sensor is defined as a
device capable of transforming a physico-chemical quantity
to a measurable electrical signal [2]. Sensors are charac-
terized by a low processing capacity and data storage, a
limited battery, and a limited coverage range and commu-
nication range. Therefore, the implementation of wireless
sensor networks (WSN) applications like urban air quality
monitoring in our case requires the deployment of hundreds,
even thousands, of source nodes, relay nodes and collector
nodes for a finer spatial granularity measurement of pollu-
tants. The heterogeneity of nodes enables us to segment the
network into subnets around the collector nodes (e.g., cluster
head) for data collection within each monitoring area. This
subdivision offers the possibility of limiting the communi-
cations links between the nodes and consequently reducing
network energy consumption and improving the quality of
service [7–9]. Thus, WSN designs take the form of large
complex networks, consisting of spatial distributions of sen-
sor nodes that cooperate with each other by radio message
for the observation and the controlling of certain physical
phenomena.

In general, there are three types of sensor deployment sce-
narios, namely target coverage, area coverage and barrier
coverage [2–4,6]. Target coverage focuses on how to cover
the set of points defined into the monitoring region. Area
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coverage seeks to find a minimum number of sensors capa-
ble of completely covering the area of interest. Instead of
fully covering the space, barrier coverage finds the way to
place the sensors along a boundary defined by two parallel
curves to limit intrusions into the surveillance zone.

Depending on the objectives and the implementation step
of the network, coverage problem can be formulated in sev-
eral manner. When designing the network, coverage can be
built around the determination of the minimum number of
sensors required to cover the entire region, for example [3].
In the deployment phase, according to the accessibility of
the region (hostile or not), the interest may be focused on
random or deterministic deployment. Once the network is
deployed, the cover problem can be formulated in terms of
network lifetime extension, connectivity and quality of ser-
vice [4,10,11].

Most of the work on network lifetime extension focuses
on finding the maximum number of cover sets (disjoint
or not) and their scheduling once sensors are randomly
deployed [12–17]. However, by knowing the position of the
target and using the deterministic deployment approach, the
extension of the network lifetime can be taken into account
in the step of sensor nodes placement and the scheduling
phase [18].

In contrast to the sequential approach proposed in [18] for
target coverage, we introduce in [19] an approach that aims
to optimize the network lifetime by finding simultaneously
the “better” positions of the sensor nodes and the maximum
number of disjoint cover sets. This case of study includes
two main processes: (1) placing sensors around the targets,
(2) generating the maximum number of disjoint cover sets to
lengthen the network lifetime. To tackle this, we designed a
chromosome in which the genes contain both the position
and the identifier of the sensor owning group. The pro-
posed approach denoted as Combined Approach for Sensor
Deployment and Disjoint Cover sets problems (CASEDISC)
outperformed existing methods on most well-known test
instances. We also observed that efficient networks with
extended lifetime can be created by finding a single opti-
mized cover and placing redundant sensors at each of the
indicated sensor locations. Thus, the objective of this paper
is to design a method to obtain covers with fewer sensors and
better coverage. The proposed method computes the number
of “free sensors”, as introduced in [19], and the number of
“uncovered targets” to reduce sensor number while main-
taining good coverage.

Given that the questions raised in the present study involve
trade-offs between the number of uncovered targets and the
number of free sensors, the objectives set can be tackled by
using multi-objective optimization techniques. Without loss
of generality, suppose that x1 and x2 are two solutions of a
multi-objective minimization problem with l objectives. The
solution x2 is dominated by x1, denoted by x1 ≺ x2, if ∀i ∈

{1, . . . , l}, fi (x1) ≤ fi (x2) ∧ ∃i ∈ {1, . . . , l}, fi (x1) <

fi (x2). The set of non-dominated solutions forms the Pareto
front. If the solutions in the front dominate all others in the
search space, this front is called Pareto-optimal or globally
Pareto-optimal set [20].

This paper proposes a method based on a multi-objective
evolutionary algorithm. To achieve the objectives, namely
minimizing the number of sensors while maintaining good
target coverage, a representation scheme is used where
chromosomes are vectors which give (x, y) coordinates of
multiple sensors.

The rest of the article is organized as follows. In Sect. 2,
we briefly present the related work on sensor deployment. In
Sect. 3, the problem definition is provided, and the proposed
approach is detailed. The simulation results and discussions
are presented in Sect. 4. Finally, Sect. 5 concludes this paper
and presents some future work.

2 Related work

Several researchers have proposed solutions for the sensor
placement problem for target monitoring in various situ-
ations. This problem is a kind of classical set-covering
problemwhich is known to beNP-hard [2]. To achieve this, in
most cases assumptions are made about the sensor coverage
model, the obstacles, and the number of targets and sensors
to be used. Thereafter, greedy algorithms and approxima-
tion algorithms are used to solve the problem. For example,
in [21], the authors assume that the detection of targets can
be influenced by the nature of the terrain and the distance.
They propose greedy algorithms to find a minimum number
of sensors that can cover all targets with a minimum degree
of confidence within a grid. In [22], a simulated anneal-
ing algorithm is used for sensors placement within a grid
to minimize the error of maximum distances between target
monitored by the same sensors under the constraint of cost.
Some genetic algorithms have also been used to cope with
the sensors placement problem [3,23–30]. In [30], a genetic
algorithm is proposed to find the position and the minimum
number of mobile sensors that has to be deployed to fill the
holes of coverage generated by the random deployment of
static sensors. In [3], three sensors with different sensing
radii are used to solve the area coverage problem by applying
genetic algorithms. Each solution (chromosome) is encoded
as a vector that contains the sensors’ geographic coordinates
(in a plane). The solution found by the algorithm is improved
by applying a local search algorithmusing amodified version
of the virtual force algorithm outlined in [31].

In addition to the above methods, some genetic frame-
works have also been used to find the cover sets. A multi-
objective genetic algorithm NSGA-II is used in [16] for area
coverage. The area to cover is discretized into a grid of size
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m × n and the chromosome is encoded as a binary string of
size n that represents the number of sensors. Two objective
functions are defined. The first one maximizes the coverage
rate of the constructed cover set and the second one seeks to
minimize the rate or the number of sensors used in the same
cover set.

Unlike the previous works, the main contributions of this
paper can be summarized as follows: (1) the definition of two
antagonist objective functions: minimizing the number of
uncovered target andmaximizing thenumber of free (unused)
sensors. These sensors canbeused to increase the redundancy
and lengthen the network lifetime; (2) the comparison of
results provided by different multi-objective algorithms in
the context of sensor deployment.

3 The proposed sensor deployment method

3.1 Problem description

Thework carried out in this paper focuses on twomain objec-
tives: (1) to compute the maximum number of “free sensors”
and (2) to determine the minimum number of uncovered tar-
gets.

There exists several abstract models to represent sensor
networks, especially unit disc graph and statistical channel
models [32].

The unit disc graph model (UDG) represents a wireless
sensor network as an intersection graph of equal size circle.
Each circle corresponds to a sensor that is located at the
center. The radius of the circle corresponds to the coverage
range of the sensor. Each sensor can monitor targets that
are inside the unit disc. The coverage function is defined in
Eq. 1 [3].

f (s, t) =
{
1 if d(s, t) ≤ rs
0 otherwise

, (1)

where d(s, t) is the Euclidian distance between a sensor s
and a target t .

Statistical channel models take into account non-deter-
ministic characteristics of wireless communications. They
consider that the coverage area of sensors is not uniform;
it varies depending on obstacles, interference, signal fading,
etc. They introduce the concept of transition regions where
f (s, t) (Eq. 1) takes values form 0 to 1.
In the work presented in this paper, we use the UDG

model. This model is known to be extremely useful for sim-
plifying the analysis of large graphs [32]. Our work has as
its final goal to be extended to the deployment of sensors for
monitoring pollution in big cities.

We formulate sensor deployment for target coverage in the
followingmanner.There arem targetsT = {

t j , j ∈ {1, . . . ,

m} | t j is the target indexed by j
}

where each target has
a definite location within a given square region. The
objective is to find the locations of n (n ≤ m) sensor
nodes S = {si , i ∈ {1, . . . , n} | si is the sensor indexed
by i} in such a way that the number of sensors can be min-
imized and each target is monitored by at least one sensor
node.

To extend the network lifetime for target coverage, the
technique usually used is to deploy a large number of sen-
sors and activate redundant sensors at different times, so that
the maximum number of cover sets (disjoint or not) can be
formed. Alternating the sleep and awake phases leads to save
energy consumption. Thus, in this work, we try to favor the
redundancy of sensors to cope with the energy preservation.

3.2 Problem formulation

Sensors placement problem is NP-hard. This has been
pointed out in [2,3]. To tackle it, a good identification of
parameters among a lot that exist need to be done to reduce
the size of the problem. Thus, we need to select parameters
able to perform both efficient sensor deployment and net-
work lifetime extension. Because of the complexness of the
problem, approximation algorithms need to be used for the
resolution. Genetic algorithms are part of these algorithms.
Their implementation requires to design objective functions.
The objective functions allows to evaluate the quality of solu-
tions with respect to the considered problem. To set up the
objective functions of the model, we include the following
definitions:

• I a possible solution of the problem.
• δi j denotes the variable that equals to 1, if the sensor si
covers the target t j and 0 otherwise.

• f sensors(I ) the number of free sensors in the solution
I . A sensor is considered as free if it does not cover any
target.

• uncovered (I ) the number of uncovered targets in the
solution I .

• θ (si ) denotes the variable that equals to 1, if si does not
cover any target, and 0 otherwise.

The objective functions used by the genetic algorithm to
solve the problem are given by Eq. (2):

{
f0 : uncovered(I ) to minimize
f1 : fsensors(I ) to maximize

, (2)

where

uncovered(I ) = m −
m∑
j=1

δi j , (3)
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fsensors(I ) =
n∑

i=1

θ (si ) . (4)

f0 defines the number of uncovered targets in the solution I ,
and f1 the number of free sensors.

3.3 Pareto front analysis

For our optimization problem, the expected shape of the
Pareto front is illustrated in Fig. 1. XA and XC are extreme
solutions. Solution XA provides complete coverage (since
f0(XA) = 0), but few free sensors. Solution XC as all free
sensors (hence, no sensor in the cover) and no covered tar-
gets. The solution XB is a balance between the number of
free sensors and the number of uncovered targets.

3.4 Evolutionary approach

3.4.1 Evolutionary framework

Evolutionary algorithms are stochastic optimizationmethods
that are based on the theory of natural evolution proposed by
CharlesDarwin.This theory relies on the idea that individuals
who best fit their environment have more chance to survive
and to reproduce. Through the reproduction process, parents
transmit their characters to their children. This theory is trans-
posed in the optimization field. Individuals are represented
by solutions and the environment is replaced by the prob-
lem definition. At the beginning of the optimization process,
a solution set (population) is generated. These solutions are
evaluated using some objective functions to determine their
ability to solve the problem. Thereafter, some solutions are
selected for the recombination step. This selection is based
on the quality of the solutions: good solutions will have
greater probability of being selected. Thus, good characters
(or genes) will be transmitted from parents to offspring (new
solutions). The main reproduction steps are crossover and

Fig. 1 Expected shape of the Pareto front

mutation. Finally, a replacement strategy allows to regulate
the population size. The goal here is to choose among parents
and offspring who will survive. All these steps are repeated
over generations until a stop criterion is met (for example, a
number of evaluations or a convergence metric).

Since themain goal of this paper is the sensor deployment,
it does not intend to introduce a new evolutionary algorithm.
Hence, thewell-knownmulti-objective algorithmsNSGA-II,
SPEA2, SMSEMOA, MOEA/D [33–36] are used, because
they give good results in various types of optimization prob-
lems, and especially when dealing with multiple objective
functions

Applying an evolutionary algorithm to solve a given prob-
lem requires firstly to design a chromosome representing the
solution of the problem.

3.4.2 Chromosome encoding

The topic addressed in this paper aims to find the good posi-
tions of sensor nodes. To achieve this goal, we consider that
each sensor si of a solution I is characterized by two infor-
mation: its coordinates (xi , yi ) in the plan. Therefore, we
design a solution (chromosome) as a vector of integers of
size 2×m, where m represents the initial number of targets.
The genes representing the coordinates of sensor si take the
values between 0 and the length of side of the square region
defining the sensor field. An example of the structure of chro-
mosome is shown in Fig. 2 where we have five sensors. The
coordinates (x1, y1) of sensor s1 are expressed by the couple
(89, 69) for example.

3.4.3 Population initialization

The initialization phase involves generating initial solutions,
which can be done by a dedicated heuristic or by randomly
assigning values to the genes of the chromosome. In the ini-
tialization phase, for a population of size N , we randomly
generate N − 1 solutions (they may or may not cover all
the targets). Thereafter, we generate a single solution that
guarantees the coverage of all the targets. We empirically
observed that adding this solution improves the exploration
of the search space.

Fig. 2 Chromosome encoding

123



J Reliable Intell Environ (2016) 2:209–220 213

Table 1 Test instances

Instance Number of sensors Sensor field size Number of targets

S1-25 25 500 × 500 25

S2-25 25 1000 × 1000 25

S1-50 50 1000 × 1000 50

S2-50 50 1500 × 1500 50

S1-100 100 5000 × 5000 100

S1-150 150 5000 × 5000 150

S1-200 200 5000 × 5000 200

3.5 Test data set

Since the minimum number of sensors can give the informa-
tion about the network lifetime extension and the investment
cost, we investigated here how to calculate it. For this pur-
pose, we used four types of square regions as sensor fields.
The sensing radius is equal to 75 m. Seven random test
instances given in Table 1 were generated. For each test
instance, the algorithms are executed 30 times for each tar-
get locations. At each execution, the number of uncovered
targets and the number of free sensors are saved. The moni-
toring area is a square region that varies from 500 to 5000 m.
In the first group of the test instance, the number of targets
is 25, the number of sensors is 25 and the region varies from
500 to 1000 mwith increments 500. The second group of the
test instance uses 50 targets, 50 sensors, and the region that
varies from 1000 to 1500 mwith increments 500. In the third
group of the test instance, the region is 5000 m × 5000 m
(25 km2), and the number of targets (receptively, the number
of sensors) varies from 100 to 200 with increments 50.

4 Experiments

In this section, we describe the experiments we conducted
to assess the validation and the efficiency of the proposed
model. First, we show the optimal results obtained with the
best multi-objective algorithms,.ie., NSGAII. Second, we
detail the comparison results between methods. And third,
we present the results provided by indicators such as inverted
generational distance (IGD), spread and hypervolume. The
parameters of multi-objective algorithms used in the simula-
tion are summarized in Table 2.

4.1 Performance indicators

The indicators we used to compare the set of solutions of
different algorithms are described in this section. Let l be the
number of objectives ; let us set P∗, P to be, respectively, the

Table 2 Parameters of NSGAII, SPEA2, SMSEMOA, MOEA/D

NSGAII, SPEA2, and SMSEMOA parameters

Crossover: simulated binary crossover (SBX) with probability:0.9,
distribution:20

Mutation: polynomial mutation, with probability: 1.0
(2×m)

, distribution:
20

Selection: binary tournament

Number of evaluations: 100,000. Population Size:100

SPEA2 Archive size: 100

SMSEMOA Offset size: 100

MOEA/D parameters

Crossover: differential evolution crossover with probability:0.9,
distribution:20

Mutation: polynomial mutation, with probability: 1.0
(2×m)

,
distribution: 20

Number of evaluations: 150,000. Population size:300

Independent runs number: 30

Pareto-optimal and the Pareto front returned by an algorithm.
Let xi be the solution of the problem.

The Inverted generational distance (IGD) [37] is an indica-
tor of convergence. The best algorithm is the one associated
with the smallest value of IGD. The IGD computes the low-
est distance form every point of P∗ toward each point of P ,
as follows:

IGD =
(∑|P∗|

i=1 d∗
l ( 	x∗

i )
)1/ l

|P∗| , (5)

where

d∗
l ( 	x∗

i ) = |P|
min
j=1

√√√√ l∑
k=1

( fk( 	x∗
i ) − fk( 	x j ))2. (6)

The distribution of the solutions into the Pareto front is
evaluated by the spread. The spread uses theminimal distance
between two consecutive solutions to assess the distribution
of the solutions in the search space [37]. The best algorithm
in terms of spread is the one associated with the lowest value
of spread. Equation (7) gives the expression for the spread.

S =
√√√√ 1

|P|
|P|∑
i=1

(Di − D), D is the mean of Di , (7)

where

Di = min
j∈P∧i 
= j

(
l∑

k=1

∣∣ fk( 	xi ) − fk( 	x j )
∣∣
)

. (8)

To measure the volume covered by each point of P in the
objective space, we choose a reference point 	W and define
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Fig. 3 Pareto Front for test instance S1-25

vi to be the rectangular region whose diagonal is given by
the segment [ 	xi , 	W ]. The hypervolume indicator is defined
as the volume of the union of vi for all i in P[37]:

HV = volume

⎛
⎝ |P|⋃

i=1

vi

⎞
⎠ . (9)

The hypervolume indicator measures both the conver-
gence and the diversity. A bigger hypervolume indicates a
better algorithm.

4.2 Validation tests

For all figures of sensor deployment presented in this section,
the red stars indicate targets deployed into themonitored area.
Free sensors and sensors included in the cover solution are
represented by red and blue circles, respectively.

4.2.1 Simulation for test instance S1-25

Figure 3 shows the Pareto front of the present test instance
where each solution is a couple of the number of uncov-
ered targets and the number of free sensors. To illustrate the
distribution of the sensor nodes in the sensor field, among
the solutions in the Pareto front, we take the one which has
f0 = 0.0 and f1 = 18 in this case. Sensor deployment with
free sensors andwithout free sensors is shown inFigs. 4 and5,
respectively. Figure 4 clearly shows that the position assigned
to the sensor takes into account the targets within its vicin-
ity. We can also observe that we need only seven sensors to
cover all targets. Thus, because the initial number of sensors
was 25, we can say that the number of disjoint cover sets
can be 3.

Fig. 4 Sensor deployment for test instance S1-25 with 18 free sensors

Fig. 5 Sensor deployment for test instance S1-25

4.2.2 Simulation for test instance S2-25

The Pareto distribution of S2-25 is presented in Fig. 6. The
minimum number of sensor nodes returned is 15. This value
is obtained by selecting the solution in the Pareto front where
the value of f0 = 0.0, i.e., f0 = 0.0 and f1 = 15. Fig-
ures 7 and 8 illustrate, respectively, sensor deployment with
free sensors and without free sensors. For this test instance,
the number of cover sets can be 1.

4.2.3 Simulation for test instance S1-50

The Pareto front and sensor deployment obtained are given
in Figs. 9 and 11, respectively. Figure 10 shows the sensor
deployment with 30 free sensors. The minimum number of
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Fig. 6 Pareto Front for test instance S2-25

Fig. 7 Sensor deployment for test instance S2-25 with ten free sensors

Fig. 8 Sensor deployment for test instance S2-25

Fig. 9 Pareto Front for test instance S1-50

Fig. 10 Sensor deployment for test instance S1-50with 30 free sensors

sensor nodes obtained is 20. As the initial number of senors
is 50, two disjoint cover sets can be found.

Simulation for test instance S2-50

In Fig. 12, we present the Pareto front. Figures 13 and 14
are dedicated for sensor deployment. The optimal number of
sensor nodes found is 29. Thus, only one disjoint cover set
can be generated from the initial sensors.

4.2.4 Simulation for test instance S1-100, S1-150,
and S1-200

When the number of target is equal to 100, 150 and 200, the
illustration of sensor deployment is no longer visible. From
the Pareto front in Figs. 15, 16 and 17, we observed that the
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Fig. 11 Sensor deployment for test instance S1-50

Fig. 12 Pareto Front for test instance S2-50

Fig. 13 Sensor deployment for test instance S2-50with 21 free sensors

Fig. 14 Sensor deployment for test instance S2-50

Fig. 15 Pareto Front for test instance S1-100

Fig. 16 Pareto Front for test instance S1-150
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Fig. 17 Pareto Front for the test instance S1-200

Fig. 18 Pareto front obtained by NSGAII, SPEA2, SMSEMOA and
MOEA/D for test instance S1-25

minimum number of sensors needed are 90, 128 and 167 for
test instances S1-100, S1-150 and S1-200, respectively.

4.3 Comparative study of Pareto fronts

This section compares the performance of multi-objective
algorithms NSGAII [33], SPEA2 [34], SMSEMOA [35] and
MOEA/D [36]. The seven test instances are those presented
previously in Table 1.

Figures 18, 19, 20, 21, 22, 23 and 24 show that NSGAII
always gives the best Pareto front for all test instances. The
performance of NSGAII is nearly matched by SPEA2 in
almost all cases. For test instancesS1-100 toS1-200, Figs. 22,
23, and 24 show thatMOEA/D gives the poorest Pareto front.

Fig. 19 Pareto front obtained by NSGAII, SPEA2, SMSEMOA and
MOEA/D for test instance S1-50

Fig. 20 Pareto front obtained by NSGAII, SPEA2, SMSEMOA and
MOEA/D for test instance S2-25

4.4 Indicators study

In this section, we use IGD, spread and hypervolume indi-
cators to compare the performance of NSGAII, SPEA2,
SMSEMOA and MOEA/D. We keep the same test instances
and algorithm parameters presented previously.

Tables 3, 4 and 5 compare means and standard deviations
for IGD, spread and hypervolume, respectively. Except for
test instance S1-100, Table 3 illustrates that for over all test
instances, NSGAII achieves lower standard deviations and
means in IGD than SPEA2, SMSEMOA and MOEA/D. In
Table 4, the best values of spread are provided bySMSEMOA
followed by SPEA2. Table 5 indicates that NSGAII provides
the best values of hypervolume on most test instances.
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Fig. 21 Pareto front obtained by NSGAII, SPEA2, SMSEMOA and
MOEA/D for test instance S2-50

Fig. 22 Pareto front obtained by NSGAII, SPEA2, SMSEMOA and
MOEA/D for test instance S1-100

The simulation results can be summarized as follows:

• For cases with few targets, all algorithms find solutions
which cover all targets. This also occurs when targets are
close to each other.

• When the region size grows, the density of targets
decreases and thus the number of sensors required to
maintain full coverage of targets grows (see Figs. 5, 8,
11 and 14).

• Statistical analysis from Tables 3, 4 and 5 shows that
NSGAII provides better results in comparison to SPEA2,
SMSEMOA and MOEA/D. IGD and hypervolume indi-
cator results support this conclusion.

Fig. 23 Pareto front obtained by NSGAII, SPEA2, SMSEMOA and
MOEA/D for test instance S1-150

Fig. 24 Pareto front obtained by NSGAII, SPEA2, SMSEMOA and
MOEA/D for test instance S1-200

5 Conclusion

In this paper, we optimize the locations of sensor nodes
for target detection using multi-objective evolutionary algo-
rithms such that the number of sensors is minimized while
maintaining good target coverage. We have formulated the
sensor deployment problemas amulti-objective optimization
problem which includes two main objectives: (1) maximize
the number of free sensors and (2) minimize the number of
uncovered targets. Computational results were used to vali-
date the proposed model. The comparative studies between
various multi-objective evolutionary algorithms show that
NSGAII outperfoms other algorithms and can converge to
the approximate Pareto front. Our future work will improve
the proposed model and extend it to solve the problem raised
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Table 3 IGD. Mean and standard deviation study between NSGAII, SPEA2, SMSEMOA and MOEA/D

Test instances NSGAII SPEA2 SMSEMOA MOEA/D

Avg. Stdev. Avg. Stdev. Avg. Stdev. Avg. Stdev.

S1-25 1.27e−03 8.8e−04 9.70e−04 6.9e−04 4.89e−03 2.3e−03 2.48e−03 7.7e−04

S2-25 1.08e−04 9.3e−05 1.16e−04 1.0e−04 4.08e−04 1.2e−04 2.29e−04 1.3e−04

S1-50 6.97e−04 3.5e−04 8.73e−04 4.5e−04 2.14e−03 1.2e−03 5.19e−04 1.2e−04

S2-50 1.73e−04 9.6e−05 2.38e−04 1.0e−04 4.38e−04 2.2e−04 2.69e−04 1.2e−04

S1-100 6.87e−05 1.2e−05 4.65e−05 3.8e−05 3.80e−05 2.9e−05 9.26e−04 1.9e−04

S1-150 4.22e−04 1.2e−04 5.93e−04 2.4e−04 6.35e−04 2.2e−04 3.01e−03 7.3e−04

S1-200 8.89e−04 2.0e−04 1.82e−03 5.8e−04 1.80e−03 4.5e−04 3.52e−03 9.1e−04

Table 4 Spread. Mean and standard deviation study between NSGAII, SPEA2, SMSEMOA and MOEA/D

Test instances NSGAII SPEA2 SMSEMOA MOEA/D

Avg. Stdev. Avg. Stdev. Avg. Stdev. Avg. Stdev.

S1-25 1.60e+00 9.6e−02 1.64e+00 9.0e−02 1.35e+00 1.3e−01 1.55e+00 6.7e−02

S2-25 1.65e+00 3.9e−02 1.65e+00 4.2e−02 1.57e+00 1.8e−02 1.79e+00 2.7e−02

S1-50 1.44e+00 4.0e−02 1.42e+00 4.0e−02 1.38e+00 2.8e−02 1.62e+00 3.2e−02

S2-50 1.37e+00 2.6e−02 1.35e+00 2.6e−02 1.32e+00 2.3e−02 1.69e+00 3.5e−02

S1-100 5.18e−01 1.1e−01 1.99e−01 1.7e−02 2.10e−01 2.2e−02 1.39e+00 1.3e−02

S1-150 5.34e−01 4.6e−02 3.61e−01 1.9e−02 3.69e−01 3.0e−02 1.22e+00 2.1e−02

S1-200 4.79e−01 4.2e−02 2.97e−01 3.0e−02 3.42e−01 3.3e−02 1.03e+00 3.6e−02

Table 5 Hypervolume. Mean and standard deviation study between NSGAII, SPEA2, SMSEMOA and MOEA/D

Test instances NSGAII SPEA2 SMSEMOA MOEA/D

Avg. Stdev. Avg. Stdev. Avg. Stdev. Avg. Stdev.

S1-25 4.76e−01 4.0e−02 4.83e−01 3.2e−02 2.52e−01 1.4e−01 3.81e−01 5.3e−02

S2-25 5.71e−01 7.7e−03 5.68e−01 1.0e−02 5.35e−01 1.5e−02 5.56e−01 1.8e−02

S1-50 5.67e−01 1.1e−02 5.58e−01 1.5e−02 5.29e−01 3.2e−02 5.49e−01 9.4e−03

S2-50 6.07e−01 1.0e−02 5.97e−01 1.3e−02 5.78e−01 1.7e−02 5.98e−01 9.5e−03

S1-100 5.36e−01 2.2e−03 5.35e−01 4.5e−03 5.37e−01 3.1e−03 4.84e−01 1.1e−02

S1-150 5.53e−01 5.3e−03 5.51e−01 6.0e−03 5.51e−01 6.7e−03 5.02e−01 1.7e−02

S1-200 5.63e−01 8.1e−03 5.59e−01 7.4e−03 5.63e−01 7.3e−03 5.10e−01 1.6e−02

in this paper when different types of sensors are used. It
would be also interesting to investigate how to use variable-
size chromosomes to address very large-scale applications
of sensor networks. The principal challenge here is to design
an approach with low computational complexity.
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