J Reliable Intell Environ (2016) 2:131-144
DOI 10.1007/s40860-016-0027-5

@ CrossMark

ORIGINAL ARTICLE

One IoT: an IoT protocol and framework for OEMs to make
IoT-enabled devices forward compatible

Gourinath Banda! - Chaitanya Krishna Bommakanti' - Harsh Mohan!

Received: 31 May 2016 / Accepted: 2 August 2016 / Published online: 30 August 2016

© Springer International Publishing Switzerland 2016

Abstract Internet of Things (IoT) paradigm is going to
imbue and become ubiquitous in everyday living, rang-
ing from generic household, healthcare, public utility to
defence applications. The IoT as a technology realm is wit-
nessing advancement at a lightning speed. Consequently,
there is a growing number of IoT-related reference architec-
tures, frameworks, guidelines, platforms and standards. For
IoT vendors and original equipment manufacturers (OEMs),
however, such evolving IoT landscape means bountiful
amounts of both opportunities and risks. The same holds
for the consumers who are going to buy such products.
We present an IoT framework and protocol that is uncondi-
tionally forward compatible. Our work defines the minimal
criteria for adevice to qualify as an loT-enabled device, which
could be taken as reference by IoT OEMs to build their IoT
devices accordingly, across varied applications and domains.
Such knowledge could help them make an informed choice
amongst various available target hardware. With this proto-
col, it is possible to generate user interface/s on the fly, as per
the devices’ functionalities.

This work is supported jointly by the CPDA funding and PRIUS
grants from the Indian Institute of Technology Indore.

Research has been done with maiden name Chaitanya Krishna,
publication was made with the (new) name Chaitanya Krishna
Bommakanti.

B Gourinath Banda
gourinath @iiti.ac.in

Chaitanya Krishna Bommakanti
ee1200206 @iiti.ac.in

Harsh Mohan
mel1200315 @iiti.ac.in

Computer Science and Engineering, Indian Institute of
Technology Indore, Simrol, Indore, Madhya Pradesh, India

Keywords Internet of things - Reference architecture -
Forward compatibility - IoT Protocol - Application layer -
Security

1 Introduction

Cascaded successes of various information and commu-
nication technologies (ICT)—together with their reducing
cost—and maturity in sensor and actuator technologies led
to the birth of Internet of Things paradigm. The para-
digm of Internet of Things (IoT) is taking automation and
control to new heights. IoT is disrupting everyday living,
manufacturing industries, defence systems, healthcare, etc.
Estimates forecast the IoT device number—not counting
mobile phones—crossing 8 Billion by the year 2020 [1].
Furthermore by 2032, Industrial Internet is poised to cross
$10-$15 trillion worth [2].

IoT is all about connected systems via internet that can
both provide real time data, and handle requests based on this
real time data to make everyday systems act more intelligent.
Here ‘Things’ are physical objects consisting of processor/s,
sensor/s and/or actuator/s with some intelligence either in
situ or ex situ [3]. Though at core, 10T is all about connected
things and their access via internet, implementing loT-based
solutions is very challenging. The foremost challenges are
due to the heterogeneity factor inherent with the IoT. There is
heterogeneity in application domains, hardware and require-
ments from diverse perspectives. Due to this heterogeneity,
IoT happens to be the only technology that has several defin-
itions [3]. Besides this heterogeneity, since connectivity and
energy consumption is involved and information processing
opens venues for various sophisticated analytics [4], there
are functional requirements based on rich analytics and non-
functional requirements around security and minimal energy

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s40860-016-0027-5&domain=pdf

132

J Reliable Intell Environ (2016) 2:131-144

consumption and harvesting. Such challenges—due to het-
erogeneity, functional and nonfunctional requirements—can
be addressed by defining IoT reference architectures, frame-
works, guidelines, protocols and standards.

To address the challenges posed by the IoT paradigm,
several consortia have comeup—with partners having exper-
tise in various convergent technologies—and are working
towards developing IoT reference architectures, frameworks
and protocols. Some individual companies have released
developer platforms and ecosystem based on certain ref-
erence architectures. For instance, ThingWorx is one such
system released by PTC [5]. Open Interconnect Consor-
tium (OIC) has recently released a reference [oT architecture
[6] as well. The Industrial Internet Reference Architecture
(ITRA) is a reference architecture for industrial IoT [7] cater-
ing for the manufacturing sector. Identifying the gravity of
this drastically changing IoT paradigm, several nations have
released their own IoT policies [8], and founded working
groups involving their own national academic and industrial
experts in the related and relevant ICT areas. Several efforts
means several non-unified frameworks. Consequently, sev-
eral reference frameworks would only mean postponement
of heterogeneity due to multiple disjoint frameworks.

In this dynamic IoT landscape, no unified protocol exists
to support for diverse IoT-based devices [9]. For this very
reason, several IoT device OEMS—standing at the cross-
roads of evolving protocols and frameworks—have bountiful
options that might be opportunities or risks, which can only
be decided by time. The current situation of the IoT device
OEMs is similar to that of the DVD-vendors during the Blu-
ray Vs. HD-DVD war." On the other receiving end are IoT
device consumers or end users with dilemma about which
IoT-enabled device to buy. Again, the situation of these IoT
consumers is comparable to that of the DVD discs’ and play-
ers’ consumers during the same period. Moreover, majority
of these upcoming frameworks are trying to address several
issues in a single go, which from an OEM perspective is too
much to deliver from one single OEM. It is always good to
have a robust ecosystem, but then this requires pacts between
various vendors that is wishful thinking.

Therefore, in this paper, we present an operational frame-
work and an affiliated protocol which could be a guideline for
IoT-related OEMs on how to make their devices qualify as
IoT-enabled devices. This protocol allows discovery, adver-
tisement, invocation, and configuration of IoT devices. Such
steps would allow the protocol to adapt to many scenarios
where it may find an application, as the protocol has the abil-

! In mid 2000s, there were two competing high-definition DVD video
formats: Bluray and HD-DVD. Bluray was advocated by the group led
by Sony Corp.; while HD-DVD was from the other group led by Toshiba
Corp. In the end, Bluray was adapted by majority. Though Sony did
benefit by Bluray, it is well known how bad the DVD market suffered
due to the advent of streaming media.

@ Springer

ity to learn any device’s capabilities on the fly which is done
through a ’probing’ mechanism as described later. The pro-
tocol, though caters human-in-the-loop kind of interaction,
is fairly usable for Machine to Machine (M2M) interaction
as well. We also describe the end to end message format
used in the communication. This protocol addresses some
security hurdles faced in the IoT paradigm by its integrated
approach. We then demonstrate a system architecture that
may be used on an IoT device that leverages our protocol,
to create full-fledged IoT ecosystems and take support of
existing IoT ecosystems with sufficient plumbing in place.

2 Background

In this section, we will discuss a few preliminary concepts
that forms basis for our framework and protocol. Here we
also give our definition of IoT.

Embedded system

Embedded systems are microcontroller-based electronic con-
trol systems together with one or more sensors and/or
actuators. They are often embedded in a larger entity to con-
trol/monitor their operation. This embedding entity serves the
main functionality to the end user. For example, in a smart air
conditioner, air conditioner (AC) is the entity and the smart
controller is the embedded system. Here the end function of
AC is to condition the air as per user requested temperature.
The embedded system comprises: microcontroller execut-
ing the control law; thermometer and hygrometer as sensors
to read temperature and humidity, respectively, and control
switches to cooling system as the actuators.

Sensors and actuators

Sensors and actuators are the bridging links between dig-
ital and physical worlds. They are the end interfaces that
make it possible to access status and control operations of
IoT-enabled devices. Sensors detect changes in measurable
quantities of the environment around it, and relay this infor-
mation back as a signal. Actuators on being activated with a
signal generate a physical stimulus in its environment.

2.1 Internet of things

Inspired by definitions [10,11], we define IoT paradigm as
following.

Definition 1 (Internet of Things) A world wide network of
interconnected embedded devices that are natively (Internet
Protocol) IP-enabled, hence interconnectable and uniquely
addressable based on standard communication protocols. It

J Reliable Intell Environ (2016) 2:131-144 133
WiFi Bluetooth
NFC
IP Cloud
Communication Module
Microcontroller L
Network
/U\ Connectivity User Agents
A
Ik 4
/- Pl ,’l'

Entity

Fig. 1 IoT node architecture

also includes internet services monitoring and controlling
those devices.

The IoT architecture that we consider comprises four com-
ponents:

1. IoT node/s

2. Internet connectivity layer
3. Cloud layer and

4. User Agents.

Definition 2 (IoT node) 10T node is an embedded device
comprising a microcontroller with IP network interface and
sensors and/or actuator/s. It also includes the embedding
entity.

If a device qualifies to be an IoT node, we call it as an
IoT-enabled device or a Thing. Figure 1 summarises the com-
position of an IoT device. Since the interface between the
embedded device and the embedding entity is internal to
an IoT node, its upto the sole discretion of OEMs on how
they implement it, and hence is of no interest to this paper.
However, the vendor of the IoT device shall provide the IP
connectivity interface. The example for this could be stan-
dard ethernet interface, a GSM-based interface, etc.

U

loT Nodes

Fig. 2 IoT architecture

2.2 Minimum framework

There are a wide variety of definitions for IoT paradigm as
reported in [3]. But in this paper we give a minimum frame-
work that leaves room to develop loT-based applications as
per any of those definitions using appropriate plugins and
additional layers.

Our framework includes: remote-host/s (on Cloud), con-
nectivity layer (both wired and other wireless modes) and
IoT nodes. Figure 2 gives our IoT framework architecture.
This means any IoT device’s OEM shall provide:

1. toits end user the kind of remote-host service we present
in our later sections and

2. the IoT node with certain minimum behaviour which is
detailed below.

2.3 Minimum behaviour from an IoT node

The minimum behaviour expected of an IoT node essentially
includes:

1. receiving the commands from authorised remote host/s
and user agent/s (via wired and/or wireless media)

@ Springer

134

J Reliable Intell Environ (2016) 2:131-144

2. execute the commands accordingly and
3. periodically reporting operational status and sensor infor-
mation to authorised remote host/s.

The proposed IoT protocol specifies this minimum behaviour
in detail. Besides the earlier discussed minimum behaviour,
depending on the type of application and capabilities of the
entity and microcontroller, an IoT node could have additional
intelligence in situ and/or ex situ. It is always encouraged to
have minimum in situ intelligence to take care of abnormal
situations, such as on internet outage, detection of attacks
such as denial of service (DoS) and distributed denial of ser-
vice (DDoS).

2.4 Protocol entities

The proposed protocol operates on the application layer and
is theoretically communication medium independent. This
protocol involves three entities: an IoT device, User Agent
(Client), and Cloud. User agent is a client interface here for
the IoT device users. Smartphones could be user agents with
an appropriate app or web browser as the client interface. We
developed an app for Android-based phones which generates
an User interface on the fly to control the IoT device.

The Client is essentially a host machine that allows remote
access to IoT devices using various communication media
including, but not limited to Wi-Fi and Bluetooth. Such client
typically functions as a dashboard for end users to manage
their IoT device. However, same clients may exist as bridge
nodes as well to support inter-device communication from
the point of view of our protocol. This is discussed in Sect. 9.

A Cloud, on which the remote-host is running, is a neces-
sity here to keep track of large number of IoT devices and their
mapping to the authorised users. Since our protocol could be
integrated into any other ecosystem, such extensibility could
be easily achieved via cloud through this host. To use the
protocol via the Internet, a Cloud network first provides user
accounts to help users keep track of their IoT devices, and
to grant or revoke access to IoT devices owned by them.
All such users who have access rights of an IoT device are
called authorised users. Further, the cloud also makes possi-
ble seamless communication to [oT devices which may not
be on a static IP address. This is detailed in Sect. 4.

3 Protocol

In this section, we will go through the proposed protocol. As
mentioned before, the protocol will operate on three entities:
the Cloud, Client, and IoT-enabled device itself. To elucidate
core aspects of the protocol, we will demonstrate some of
the communication flows that are typically encountered in
an loT paradigm. The next subsections will describe these
communication flows:

@ Springer

— Discovery and Registration of IoT-enabled devices and
— Advertisement of a Thing’s capabilities.

Post these prerequisite communications, it becomes possible
to operate the IoT device. The following are the communi-
cation flows corresponding to operations on the IoT device:

— Invocation of a Thing’s operations and
— Configuration changes of the Thing can be carried out.

This protocol is in the application layer. By abstracting vari-
ous communication interfaces such as Bluetooth/NFC/USB
with appropriate wrappers, we can achieve uniform com-
munication abilities. Such capabilities are highly desirable,
for when in range, IoT devices could be accessed via the
Bluetooth/NFC/USB interfaces. Such non-IP-based commu-
nication also means bandwidth conservation. Furthermore, in
situations when there is internet outage, such direct commu-
nication becomes very essential.

3.1 Discovery

Before any communication can actually take place, discovery
of available nodes to communicate with is a vital part of
any protocol. Therefore, the DISCOVERY method performs
a local scan via Wi-Fi, Ethernet over LAN, Bluetooth and
other short ranged protocols. This discovery phase would not
be applicable for IP-based communication. The discovery
involving IP-based communication is explained through the
next phase. Further, discovery can be overridden with local
settings, if the IoT device has been chosen to be invisible by
the respective owner.

3.2 Registration

Typically, we can communicate with an IoT device once
we have its IP address and key. The concept of key will
be explained later. However, if the device is not on a sta-
tic IP address, it becomes mandatory to keep track of its
current IP address, which is not a trivial task. Our proto-
col addresses this problem as well, as described in Sect. 4.
To achieve this securely, on Cloud corresponding web host
maintains a many-to-many relationship between Things and
their authorised Users. To add a new Thing-User relationship
to this mapping, we have the "/REGISTER’ request. When-
ever a user wants to add a new Thing in his/her Thing account
(held on the cloud), he/she has to send his access credentials,
Thing-ID and Thing-key. Figure 3 illustrates the sequence
during Registration.

Definition 3 (Thing-ID) Thing-ID is a unique identifier pro-
vided by the vendor of the [oT device.

This Thing-ID is something similar to EPC[12].

J Reliable Intell Environ (2016) 2:131-144

135

Client Cloud Thing

user, pass, tid, tkey
»
»

validate(user)

e

k-_C
checkThingKey(tid, tkey)

i

P

grantAccess(user, thing)

e

P

€ m e e e DL oo L]

Fig. 3 Registration flow

Definition 4 (Thing-Key) Thing-Key is a private secret code
of sufficient length.

In this paper, we consider a key of length 128-bits. This
key shall be provided by the OEMs. It is conceptually similar
to bank users receiving a pincode for their debit and/or credit
cards.

Cloud, through a running instance of a web host, would
then first validate his/her credentials, check if Thing-ID and
Thing-Key match, and if they do, grants him/her access to
that particular Thing. By doing this, Client is now able to
send '/REQUEST-ADDRESS’ requests whenever it needs the
IP address of the Thing, making remote communications to
device possible even when its IP changes.

3.3 Advertisement

After a successful Registration, the user is authorised to
invoke a Thing. However, before invoking an operation, the
Client (a user agent) must be aware of:

1. The operations offered by the given IoT device and
2. The expected way to invoke any specific operation on
that IoT device.

To know this information about a specific thing, a client sends
out a "'PROBE’ request and expects a parseable manifest in
response (See Fig. 4), typically in an XML or a JSON for-
mat. As can be seen in the Listing 1, there could be several
operation tags corresponding to respective operations
offered by the device. The format must follow a specific

Client Thing

Probe Request

Parse-able Probe Response

Fig. 4 Advertisement flow

predefined template to include the details, such as operations
offered, operation invocation identifiers, expected I/O format
for each operation and even a small human readable descrip-
tion of each service with optional documentation. This also
makes possible to generate user interfaces dynamically on the
fly to make intuitive dashboards specific to each Thing. An
important feature worth noting is that advertisement allows
the device to be over-the-air update friendly, as new (soft)
operations can be invoked without changing the client or
device.

Listing 1 Example XML Probe Response

| <operations>

2 <operation name="SetLightColor"
>

3 <description>

4 Change the light color.

5 </description>

6 <input name="Red">

7 <input name="Green">

8 <input name="Blue">

9 <output name="Status">

10 </operation>

1 <operation name="GetStatus">

12 <description>

13 Know whether light is
switched on or off.

14 </description>

15 <output name="Status">

16 </operation>

17 </operations>

3.4 Invocation

After an IoT device has been registered, and its advertised
manifest has been parsed, it can be used like a normal IoT
device, and its operations may be invoked remotely. The
advertisement flow reveals a comprehensive device manifest
that is parsed and dynamic interfaces are generated on the go.
Documentation supplied about each operation should help
elucidate essential aspects about that operation and how to
invoke that operation, if not readable already. This way oper-
ations/services of a thing can be invoked using the INVOKE’
method of the protocol, along with a service identifier, and
input if any, and the outcome can be displayed on an inter-

@ Springer

136

J Reliable Intell Environ (2016) 2:131-144

Client Thing

Operation name, Arguments

Outputs

Fig. 5 Invocation flow

face built atop the output format taken from the manifest,
thus allowing for consumer friendly IoT implementations.
Figure 5 illustrates the invocation flow.

3.5 Configuration

Another use-case for IoT devices includes configuration
updates: changes in protocol variables and server parame-
ters. Configuration updates that change core functionality of
IoT devices should be addressed by appropriate Invocation
requests, supplied by the manufacturer. Other configura-
tions that are generic and not implementation specific, are
addressed by the "CONFIGURE’ method of the protocol.
These changes include changes to tick rates, security para-
meters and other protocol variables. These protocol variables
are explained later. The main reason these variables should
be altered is to improve performance metrics of these devices
relative to their use case. Since a wide array of IoT devices
would take over the technology market soon, with appli-
cations of varying uses, each implementation would have
their own ’sweet spot’ metrics, with some implementations
not being time critical, and thus being conservative on their
power requirements, while others being extremely time crit-
ical at the cost of a little extra power consumption. The
CONFIGURE method exactly serves for this cause.

4 Communication media

As mentioned in Sect. 3, the protocol is designed to work on
any communication medium. However, the protocol needs
to be tweaked for smooth performance in certain commu-
nication media. More specifically, we differentiate between
communication medium on the basis of the addresses used
to facilitate communication. In doing so, we classify media
into two classes:

— Static Addressed Media, or those media which operate
on static addresses, or hardware addresses like bluetooth
[13], NFC [14] including static IP address and

@ Springer

— Dynamic Addressed Media, including those which oper-
ate on addresses that are subject to change, such as
the Internet which operates on dynamic IP addresses
assigned by Internet Service Providers (ISP).

Since the Internet works on IP addresses, which are typ-
ically given on lease, they do not provide static addresses to
services on the web. Static addresses and routes are expen-
sive, and with the 8 Billion devices that are going to take over
consumer electronics by 2020, this is clearly not an option for
the general public. Therefore, to address this issue, we use the
Cloud as static reference on the internet. Each IoT device that
uses our protocol would periodically *ping’ the cloud when
given Internet access, therefore, giving the cloud a constant
visibility of the IoT device. This is done using the "UPDATE-
ADDRESS’ method of the protocol. The rate of pinging that
is the tick rate is configurable as stated earlier in Sect. 3. The
higher the real time demand of services of [oT devices are, the
higher would be the tick rate. The cloud is hardwired to listen
to such “heartbeats’ from Things, and updates its local cache
with the last known address. This address is used as a fallback
in the event of an IP address change. The Client itself stores
a local copy of the last known address, only this cache might
go stale faster as the Client is also dynamically addressed,
and thus making it impossible for the thing to notify the client
directly. Thus the client acts as a ’bridge’, as stated above.

To reiterate, the Client cache will always go stale faster
than the Cloud cache. On the event of an IP address change,
the Cloud gets notified of the change after the next ’heart-
beat’. The client, however, might still operate on the stale
cache, and any attempts to invoke a service results in: (i) a
timeout, because no device currently holds the address, or (ii)
a protocol failure or an authorisation failure on the event that
another device takes up the old IP, but either fails to under-
stand the protocol we use or understands the protocol and can-
not authorise the request due to a key mismatch. Both these
cases require a call for a cache update on the client side, and
the cloud uses the 'REQUEST-ADDRESS’ method of the
protocol to update its cache, and retry the request. This mech-
anism is depicted in the sequence diagram shown in Fig. 6.

5 Security

In this section, we will look at some of the security aspects
of the protocol that would otherwise leave it vulnerable
to exploitation. We are inclined to a security policy that
promises safety and availability. Security is abig concern[15,
16] for the IoT paradigm in general. Our protocol covers secu-
rity from the perspective? of IoT device security and associ-

2 The perspectives for security include: network security, server secu-
rity, data security

J Reliable Intell Environ (2016) 2:131-144

137

Client Cloud Unwanted Thing Thing

Request

GET P, Thing ID

validate(user)

4

- - 1
checkAccess(user,thing)

e

<777\

Request

Fig. 6 Handling IP changes in DAMs

ated data security. IoT paradigm essentially involves web-
based abstractions and/or interfaces for physical devices,
exploitation of these devices would not only cause the loss
of data, but also the loss of fidelity of the associated physical
systems [15]. When the IoT device numbers are in the order
of billions [1], it results in chaos. Therefore, security should
be natively built into IoT-based solutions [16], and thus IoT
solutions should offer at least a level of robustness that could
be affordable from the available processing power of the IoT
device. Since the processing power with an [oT device can
be limited, security can also be provided as a service from
cloud. Our protocol provides security that is affordable with
IoT devices. Besides constrained processing power, afford-
ability is defined by the available energy and bandwidth.

In the proposed protocol, we have strong urge and need
to encrypt ‘raw’ packet data from end to end, with accepted
encryption standards of sufficient encryption entropy. The
only fields worth exposing in plain text include a header
describing the protocol name and version, along with the
encryption type used. As mentioned in Sect. 4, communica-
tion is only possible: post successful registration that would
distribute an authorisation key, post registration for commu-
nication. The authorisation key itself could be the device key,
or an OAuth? like key, generated by the cloud which can be
revoked as and when needed, to better support multi-client
ecosystems and is recommended. Encryption must be per-
formed whenever data is exchanged between two entities,
and for maximum protection, a different key must be used
for each entity pair.

3 OAuth provides applications a ’secure delegated’ access for service
owners to authorise third party access to their resources

Another key security aspect to consider whilst design-
ing a secure packet, is the presence of a salt [17], to further
strengthen the encryption which is inevitable in the IoT
ecosystem. Consider the scenario where an attacker taps into
a private network and sniffs encrypted packets used to com-
municate with IoT devices. Considering a saltless encryption,
the packets used would lack sufficient entropy, as the cipher-
text of any invocation packet would not change as long as
the plain text or the actual request itself remains the same.
This would allow the attacker to correlate the encrypted pack-
ets to the physical outcomes performed by the IoT devices
either manually or by deployment of Trojan sensors in situ.
Either way, the outcomes would be cracked without the need
of cracking the encryption itself, thus nullifying the com-
plete encryption process. A salt that would consist of a well
generated random number would help make the encryption
much stronger by increasing the entropy of the cipher-text
by multiple orders of magnitude.

Another attack vector for IoT devices are Dos and/or
DDoS attacks [18,19], because of their taxing nature even
on full-fledged servers, DDoS prevention at IoT device level
is difficult. However, DDoS attacks can still be countered by
rerouting requests to a cloud with one of the several existing
state-of-the-art DDoS filter services to prevent direct attack
mechanisms on smaller embedded IoT devices, which would
otherwise cripple because of their limited hardware capac-
ity. One way to achieve this would be to implement minimal
logging support on the IoT device which would report failed
attempts at the communication step, and the source IP address
to the cloud that would then log these failed attempts, and
relay these to a DDoS detection filter in real time, which
would then analyse the logged requests with recent history
of logs from the same source IP address (or a range of certain
IP addresses), and classify the request as genuine or mali-
cious, and accordingly relay instructions to the IoT device to
block incoming connections from the malicious source. [20]
proposes a technique to identify DDoS attacks.

6 Message structures

After elaborating on the protocol itself, we will now substan-
tiate on how exactly the protocol will actually be transmitted
on the network. In this section, we will establish the appli-
cation level packet structures and byte sizes that are sent on
the wire, taking into consideration all the proposals made
so far. As mentioned earlier, security would be a vital part
of the protocol, thus most parts of the messages would be
encrypted leaving a small unencrypted header which would
identify the protocol name, version, and the encryption type
used. The Response message would contain an additional
unencrypted header Status. Also, the encryption would be

@ Springer

138

J Reliable Intell Environ (2016) 2:131-144

Protocol Name & Ver Encryption Type

Payload

Fig. 7 Request/response message structure

DISCOVER

Fig. 8 Discover request payload

Thing-1D Thing-Key Thing-Type
Fig. 9 Discover response payload
REGISTER Thing-ID Thing-Key

Fig. 10 Registration request payload

salted, to increase the entropy of the resulting digest and
making it harder to crack, as explained in Sect. 5.

These common headers to all message makes up the top
level packet and is structured as show in Fig. 7. The fields
Protocol Name, Protocol Name and Encryption Type take up
2 bytes each. Whereas the size of the field Payload depends
of type of message being sent. The payloads for each type
of message and their respective responses are as enlisted in
the next few subsections. Irrespective of the message type, it
is essential to note that particular payload would always sit
inside this top level packet, and will always be sent on the
wire in this format.

6.1 Payload structures

The payload structure for each of the type of message allowed
in our protocol as described in the Sects. 3 and 4, are concer-
tised in the below subsections. Figures 8, 9, 10, 11, 12, 13,
14, 15, 16 and 17 illustrate various payloads explained in the
following.

6.1.1 Discovery payload

The discovery payload is the only payload which is left unen-
crypted. It includes the data shared during discovery that is
the Thing-ID, Thing Name, and Thing-Type.

Authorisation Keys

Fig. 11 Registration response payload

@ Springer

PROBE

Fig. 12 Advertisement request payload

XML/JSON/Other Parse-able Format

Fig. 13 Advertisement response payload

INVOKE | Operation Name Arguments

Fig. 14 Invocation request payload

Outputs

Fig. 15 Invocation response payload

6.1.2 Registration payload

Registration payload contains information that is required
during the registration process: including the Thing-ID, and
Key combo in the Request, and Authorisation Keys if any in
the response.

6.1.3 Advertisement payload

Advertisement payload contains the data shared during the
advertisement phase that is only the parseable format in the
response.

The request payload contains a single byte which identifies
that the message is of the type PROBE.

The response payload will contain the details of metadata
of the thing and operations it provides in a parseable format,
which could be a verbose string format like XML/JSON or
a more compact format like BSON.

6.1.4 Invocation Payload

Invocation Payload contains information necessary to handle
a specific service/operation. The request includes Invoca-
tion token along with the required inputs, and the response
includes corresponding outputs.

CONFIG

Param name 1 |Param Value 1

Fig. 16 Invocation request payload

Param Param

’ Param | |
Value 1 Name 2

Param B ‘
name 1

Value 2

Fig. 17 Invocation response payload

J Reliable Intell Environ (2016) 2:131-144

139

The first byte of the request payload identifies that the
message is of the type INVOKE. The next byte of the payload
represents the size of the string Operation Name, the actual
bytes of which would follow next. The next byte represents
the number of arguments following, each of which contain
one byte representing the data size of the argument and the
argument itself.

The response is formatted in a similar fashion, with each
output having the first byte representing the size of output
followed by the byte data of the actual output.

6.1.5 Configuration payload

Configuration payload has configurations information, and
consists of param-name and param-value pairs in the request
payload, while the response would contain the final config-
uration of the Thing.

The first byte of the request payload identifies that the
message is of the type CONFIG. The next byte of the payload
represents the number of config changes being requested,
with the actual requests following next. Each of the config
requests contain a key-value pair: both of which begins with
one byte representing the data size of the key/value, followed
by those many bytes of the key/value itself.

The response is formatted in a similar fashion, with each
key-value pair representing the new, updated config data.

6.1.6 Heartbeat packet

The Heartbeat packet should be encrypted. In the event of
an incorrect key, the encryption algorithm fails. Figures 18
and 19 gives the Heartbeat request and response packets’
structures.

6.1.7 New address payload

New address payload operates on the device ID, and would
be authenticated by the user session/registration status on the
cloud. Figures 20 and 21 show the corresponding payloads.

Protocol Name & Ver Encryption Type

UPDATE-ADDRESS | Unencrypted Device ID

Encrypted Salt

Fig. 18 Heartbeat request packet

ACK/NACK

Fig. 19 Heartbeat response payload

GET-ADDRESS

Thing-1D

Fig. 20 New address request payload

Device ID Device Address

Fig. 21 New address response payload

7 Experimentation
7.1 Basic simulation: to analyse communication flows

The objective of the first experiment we conducted was to test
the integrity of various communication flows and the over-
all behaviour of the protocol. For this, we planned to carry
out the experiment with a handful of commonly used sample
Things. Also, since we are not concerned about any potential
hardware specific problems of Things, we experimented with
simulated models of Things instead of real hardware. Each
thing is modelled as a process. The process models phases of
the Things’ operation cycle: initialisation step, functionality
step, interaction step and termination step, corresponding
to: booting of the IoT device, delivering the functionality,
waiting & listening for the client requests and shutdown,
respectively. We modelled various types of Things, such as
Microwave, Washing Machine, Fridge, along with that of an
instance one each of Client and Cloud. Thus, the simulation
setup consisted of a set of processes running on different com-
puters connected via internet. On such a simulation setup, we
tested various communication flows corresponding to vari-
ous use-cases and scenarios.

Our experimental simulation setup consisted of multiple
computers, one corresponding to a particular Thing acting as
an IoT node, another acting as a Client. Each of the Things
and Client were written in Python [21] using the Twisted
framework [22], and are essentially processes able to commu-
nicate through the Internet. For Cloud node, we deployed it
on an Amazon Web Service’s Elastic Compute Cloud (AWS
EC2) instance, making it run on a static IP address. Thus, all
in all we had three different types of processes corresponding
to things, clients and cloud in our framework, each running
on a different host.

We initially experimented with the IP Handling flow
described earlier, on a single machine by running three dif-
ferent processes to emulate each of the following: the Cloud,
a Client and a Thing. The Cloud and the Thing simulations
act as servers, with the Cloud always listening on a fixed
port. The Thing, however, listening on a random port which
changes periodically. This is to simulate IP address changes /
reallocations which occur on the Internet. The Client process
works like a shell, allowing commands of the form (target,
opcode), which would relay messages to the target address

@ Springer

140

J Reliable Intell Environ (2016) 2:131-144

Fig. 22 Three process 2]
simulation on single machine r

£ python thing.py 44x13

stored in cache locally. If the address lease of the target has
expired, then the request would result in a timeout, proto-
col mismatch, or authorisation failure, as explained in earlier
sections. This is followed by a "GETADDRESS’ request to
the cloud to get the new address (if address has changed),
and request the same service on the new address.

Figure 22, for example, shows one of such experiments
where IoT node used is a model of Fridge, and the communi-
cation flow which is being tested is the IP Handling flow. The
image shows the simulation corresponding to the scenario
when where the Fridge had an IP address change from some
earlier address to http://localhost:8388. It can be seen only
when the Client tries to connect to Fridge. It first fails as it
tries to connect to the earlier IP address, but then realises this
and sends a request to the cloud to get the new address being
used by the Fridge. Cloud has the knowledge of the current IP
address of the Fridge because of the periodic heartbeat sent
by the Fridge, and hence responds with this information to
the Client. With the new address available, Client now sends
the request again on the new address, this time succeeding
to connect to it. This confirms the expected operation of our
protocol.

7.2 Example client (android application)

To demonstrate a real life and consumer friendly applica-
tion of the protocol, we have made an android application
(screenshots of this App can be seen in Fig. 23) which oper-
ates on our protocol, and provides an interface to manage
IoT devices online. Each screenshot corresponds to different
steps in the user interaction with the IoT device/s. Application
operates on the cloud authentication, prompting a login on
first use. The top row leftmost screenshot corresponds to this
login and authentication. This generates a list of registered

@ Springer

python cloud.py 44x13

" python client.py 44x28
python client.py
Available things:
fridge
Enter: [THING|cloud] [messagel
fridge GetTemp
Available things:
fridge
Enter: [THING|cloud] [messagel
Couldn't connect. Checking if stale ip..
>> b*localhost:8388"
IP updated. Resending message to new IP.
>> b'response of GetTemp®

devices, whose services may be invoked. The second screen-
shot in the top row corresponds to post successful login where
the user is shown the list of IoT devices over which s/he has
access rights. An IoT device’s services list is populated using
"PROBE’ method of the protocol, and the supplied manifest
that follows. This is seen in the top row rightmost screenshot.
All in all, the client attempts to deliver an intuitive way to
interact with IoT devices using the proposed protocol. It is
intuitive because the user interface is generated on the fly
based on the response to PROBE-request. For the air condi-
tioner kind of IoT device, we can access specific operation
such as fan speed and temperature set point. The screenshots
in the bottom row correspond to this interaction. This android
app also lets the users to login to their things’ collection, recall
that we had in the protocol a step where user-thing mapping
is established. The android app, after successful login, gives
a view of this mapping.

7.3 IoT hardware setup

The goal of the final experiment is to replicate the exact
scenario of how the end deliverables might be actually used.
For this, we had run the proposed protocol on the actual
hardware devices. Our setup consists of one Client node,
one IoT node and a Cloud. The Client node is an android
application we developed which includes the implementation
of protocol, specific to a client node. The android phones,
which we used for testing purposes include Samsung GT-
N7000 and Samsung GT-19300, both running Android 6.0.1.
The IoT node is a smart bulb, which is a configurable LED
with certain functionality. This LED bulb can be configured
regarding its blinking frequency, colour of the light from LED
via changing the Red, Green and Blue component values, etc.
Furthermore, it can report whether it is turned ON or OFF.

J Reliable Intell Environ (2016) 2:131-144

141

Fig. 23 An example
android-based client

chaitan®4

Set Fan Speed

The thing interface for this IoT node included Intel Edi-
son with an x86 microprocessor architecture running Yocto
Linux. This board consisted of a python (v2.7) implementa-
tion of the framework. The experimental setup can be seen
in Fig. 25. This frameworks thing server abstracts bluetooth
and Wi-Fi servers, which accept packets and relay them to
underlying modules. The received packets are then checked
for validity, failing which results in an immediate drop of
the packet. Valid packets are then parsed and routed to the
appropriate request handlers (See Fig. 24). Once a request
is serviced, we generate response based on the result of
the respective handler, and convert it into a packet, and
relay the response packet. This also represents the minimal

v 48

<Alir Conditioning C Mode @

Vv 4Enm
€Alr Conditioning C e @
Get Temperad.ra
Wiksrirg Mactns Set Fan Speed
Micromave St Tarpat Tempersture
Swich On

Swich OF

V 48 mn

’(—Alr Conditioning G mode: @

Get Temperature

24

framework required at the IoT device to operate on the pro-
tocol.

8 Related work

The work in the field of IoT has been very diverse. There are
a multitude of protocols being developed by various research
groups, both from industry and academia. Constrained Appli-
cations Protocol (CoAP) [23] is one such protocol that has
gained broad popularity. There is also a software frame-
work, being developed by the AllSeen Alliance, known as
the AllJoyn Framework [24]. Although started by Qual-

@ Springer

142

J Reliable Intell Environ (2016) 2:131-144

| Packet |Validity|)

Fig. 24 Thing’s software
architecture in our hardware
setup —3»| BLE [
Thing
Server
—3| WIFI [
Respose

Mux

Fig. 25 LED IoT node using an Intel Edison

comm, many established organisations are now collaborating
towards it, including companies such as Cisco, Sony, LG,
Microsoft and Panasonic. Currently AllJoyns source code
has been signed over to the Linux Foundation and is under
a very active development. There are also many proprietary
organisations contributing to the field of IoT. Wigwag [25] is
one such IoT Platform. There exists dense collection of IoT
frameworks [26], platforms [5] and standards [27] proposed
by many consortia which can be consulted in [3]. Majority of
them have no flexibility and forward compatibility as offered
by our protocol. One example for flexibility in our protocol
is generation of user interface (at the client side) on the fly
depending on the operations defined in the manifest. The for-
ward compatibility of our protocol is due to the abstraction
defined in our framework. No matter what the technology
landscape might look like, it always consists of the entities—
in one form or the other—as defined in our framework. This
brings in the unconditional forward compatibility of the IoT
devices, which are implemented as per our framework and
protocol.

@ Springer

Packet
Handler
Meta Data / Demux
_Erfqr

l
v v v

PROBE | |CONFIG %g%'ggg?
Handler| |Handler Handler

RFC 7252 [23] defines CoAP as “The Constrained Appli-
cation Protocol (CoAP) is a specialised web transfer protocol
for use with constrained nodes and constrained networks in
the Internet of Things. The protocol is designed for M2M
applications such as smart energy and building automa-
tion...”. CoAP is heavily inspired by the simplicity and
versatility of representational state transfer (REST) style of
the usage of HTTP. While being consistent to RESTful prin-
ciples, CoAP also adds specialised features like support to
multicast messages. Though such multicast feature is useful
in group communications, it has poor reliability. For this rea-
son, it exploits unicast via an intermediate agent that interacts
with the members of a group. Like our protocol the security
is via key-based encryption.

The AllJoyn protocol is in many ways similar to our proto-
col. Both our proposed protocol and AllJoyn have an adver-
tisement and discovery phase. Both are independent of, the
programming language used, operating system of the device
and transport layer of the communication medium. M2M is
made possible via event-driven actions and finally both of
the protocols implement security measures at the application
level. There are, however, major differences between our pro-
posed protocol and AllJoyn. AllJoyn divides the participating
agents of the protocol into two types: AllJoyn App and an
AllJoyn Router. Whereas, in our protocol we have three cat-
egories of participating devices: IoT node, Client Node and
a Cloud Node. AllJoyn App and an AllJoyn Router are in
many ways analogous to IoT node and Client Node, how-
ever, by the introduction of Cloud Node in our protocol we
are able to handle dynamic changes in IP addresses when
devices move across networks and also gain easier and more
control over security of the system by making the Cloud act
as a key distribution center. AllJoyn also can handle changes
in IP addresses of the devices, but through the usage of Wi-Fi
Hotspot 2.0 [28], which is as defined by the Wi-Fi Alliance.

J Reliable Intell Environ (2016) 2:131-144

143

9 Discussion and future work

This reported work could guide the OEMs to develop forward
compatible IoT-enabled devices. The proposed protocol,
which we named as One IoT, allows device discovery, adver-
tisement, registration, invocation and configuration; while
the framework includes authentication-host, internet, clien-
t/s and thing/s. We further address connectivity and security
concerns in the protocol. While the protocol was designed
for Human to Machine interaction, its simplicity makes it
applicable and adaptable for Machine to Machine (M2M)
communication as well. We are working on Version 2 of
our One IoT protocol that works for M2M as well. This
could be done by running scripts on Clients, or by mak-
ing Broker Clients that act like smart hubs and help create
smart IoT ecosystems. These scripts could be triggered syn-
chronously (periodically) or asynchronously (event-based).
However, identifying attacks and mitigation of those attacks
are equally important. For attacks’ identification and miti-
gation, our protocol being on the cloud, can plugin the state
of the art attack filter services that become available on the
cloud.

From a cultural perspective, application of loT—irrespec-
tive of the domain of application—is going to positively
disrupt both the people’s ways of thinking (hence interact-
ing and describing patterns) and the material objects that
together shape a people’s way of life. IoT technology land-
scape shall be such that this change happens in a seamless
fashion. Our One IoT protocol is exactly an attempt in that
pursuit.

9.1 Future work

The IoT paradigm makes it possible to implement a range of
applications both in civilian and military domains. Further-
more, such [oT-based systems could be safety critical systems
as well. The utilities industry is envisaging to realise unfore-
seen applications with IoT technology. No matter what the
end application is and what kind of sophistication is made
possible by the IoT paradigm, one should not forget that the
Internet itself is the essential constituent of this technology.
This means when an internet outage occurs, there is a risk
that the IoT devices might carry out operations that might
not be in the positive interest to the owners. We are working
on the next version of One IoT protocol, which addresses
this concern of internet outage. The solution we propose is
on detecting an internet outage bring the IoT devices into a
no-internet-mode. Such a mode is specific to the IoT device
and the type of application domain. The idea is “ whenever
for an IoT device such a safe mode is defined, our protocol
(on the Thing-side) would—on detecting the internet outage
event—imposes the actuation controls bringing the device
into that safe mode. We could achieve this behaviour in our

protocol by having a method that actively reads the inter-
net status. But again, the safe mode needs to be defined per
device basis.

Furthermore, to facilitate: (a) training in IoT paradigm
through our protocol and framework and (b) modelling and
analysis of deployed IoT systems based on our protocol, we
are developing a simulator for [oT deployments. This simula-
tor envisages to make possible formal verification of Quality
of Services in IoT paradigm both from qualitative and quanti-
tative perspectives. The underlying verifier is from the work
reported in [29].

10 Conclusion

We have seen how, through our protocol we are not only
able to learn the capabilities of any generic IoT-enabled
device, but also actually be able to utilise these function-
alities through a generic client as well. With the advent of
such a unified protocol, we fragment the IoT realm into two
viscerally disjoint classes:

1. Hardware devices that react with the physical world, and
2. Clients that moderate the above-mentioned hardware.

We believe that this fragmentation is key to simplify and
conquer the complexity inherent with the IoT paradigm.
First, such a fragmentation allows efficient manufacture of
these IoT solutions as both of these development phases are
disparate, with one focusing on development of hardware
specific implementations and device-specific logic develop-
ment, or the backend of IoT, and the other on solutions to
moderate and control a large number of such IoT devices,
with possible emphasis laid on intuitiveness of their design,
especially for end users—or the frontend for IoT. Further, this
fragmentation would also pave way for the rise of small-time
developers in the IoT paradigm allowing for domain specific
innovations in fields like medicine, etc., and allowing each
class to mature independently.

The advent of a universal protocol would also help IoT
manufacturers in a plethora of ways, by reducing invest-
ment towards research and development of IoT protocols that
reduce manufacturing costs and enable economic IoT imple-
mentations, and can also help systematise the manufacturing
process. This allows OEMs to make their devices future proof
and would allow interplay between IoT devices in the future,
thus making these devices attractive from the point of view
of end consumers. End consumers would also benefit from
such unified protocols, as this allows wider variety, and thus
pave way for personalised IoT ecosystems, which may also
be tailored to user specific implementations.

@ Springer

144

J Reliable Intell Environ (2016) 2:131-144

References

b

10.

11.

12.

13.

14.

15.

Harbor Research (2014) What exactly is the ’internet of
things’?. http://harborresearch.com/wp-content/uploads/2014/03/
Harbor-Postscapes-Infographic_March-2014.pdf

Evans PC, Annunziata M (2012) Industrial internet: pushing
the boundaries of minds and machines. http://www.ge.com/sites/
default/files/Industrial_Internet.pdf

IEEE: Towards a definition of the Internet of Things (IoT) (2015)
Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing
and its role in the internet of things. In: Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing, MCC
’12, pp 13-16. ACM, New York, NY, USA. doi:10.1145/2342509.
2342513

Thingworx Platform. http://www.thingworx.com

Open Interconnect Consortium: The Open Interconnect Consor-
tium and IoTivity (2015). http://openinterconnect.org/wp-content/
uploads/2015/07/O1C-IoTivity_White-Paper_Final.pdf

Industrial Internet Consortium: Industrial internet reference archi-
tecture. Tech. rep., Industrial Internet Consortium (2015). http:/
www.iiconsortium.org/IIRA-1-7-ajs.pdf

Ministry of Communication and Information Technology India D.:
Draft policy on internet of things. Tech. rep., Government of India
(2015)

EU 2012 (2012) The artemis embedded computing systems initia-
tive. http://www.artemis-ju.eu/

Information and Communications (ICT) Services businesses and
technologies: Internet of Things Strategic Research Agenda (IoT-
SRA) (2011)

Shelby Z, Bormann C (2009) 6lowpan—the wireless embedded
internet

Thiesse F, Floerkemeier C, Harrison M, Michahelles F, Roduner C
(2009) Technology, standards, and real-world deployments of the
EPC network. IEEE Internet Comput 13(2):36

Bluetooth-SIG (2007) Bluetooth core specification version 2.1+
edr. Specification of the Bluetooth system

Baddeley D (1999) Identification cards—contactless integrated cir-
cuit (s) cards—proximity cards—part 2: radio frequency power and
signal interface. ISO/IEC, pp 14443-2

Oltsik J (2014) The internet of things: a ciso and network security
perspective. Tech. rep, Cisco Systems

@ Springer

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Wind River (2015) Security in the internet of things. Tech. rep,
Wind River Systems

Morris R, Thompson K (1979) Password security: a case history.
Commun ACM 22(11):594-597

Mirkovi¢ J., Prier G, Reiher P (2002) Attacking ddos at the source.
In: 10th IEEE International Conference on Network Protocols,
2002. Proceedings. IEEE, pp. 312-321

Wood AD, Stankovic JA (2004) A taxonomy for denial-of-service
attacks in wireless sensor networks. Handbook of Sensor Networks:
Compact Wireless and Wired Sensing Systems, pp 739-763
Yogesh DS, Rajendra K, Neminath H (2015) An experience report
on scalable implementation of ddos attack detection. In: Advanced
Information Systems Engineering Workshops. Springer, Berlin, pp
518-529

Rossum GV (1995) Python Tutorial. Technical Report CS-R9526,
Centrum voor Wiskunde en Informatica

Kinder K (2005) Event-driven programming with twisted and
python. Linux J 2005(131):6

IETF: The constrained application protocol (coap) (2014). https://
tools.ietf.org/html/rfc7252

AllJoyn. https://allseenalliance.org/framework/documentation/
learn. Accessed 21 Oct 2015

Wigwag IoT Platform. URL http://www.wigwag.com. Accessed
23 Sep 2015

Industrial Internet Consortium: Industrial internet reference archi-
tecture (2015). http://www.iiconsortium.org/IIRA-1-7-AJS.pdf
Open Internet Consortium: Reference implementation of the
internet of things (2015). URL http://www.openinterconnect.org/
developer-resources-specs.pdf

Orlandi B, Scahill F (2012) Wi-fi roaming-building on andsf and
hotspot 2.0. Alcatel-Lucent and British Telecommunications, Tech.
Rep

Banda G, Gallagher JP (2010) Constraint-based abstract semantics
for temporal logic: A direct approach to design and imple-
mentation. In: Logic for Programming, Artificial Intelligence,
and Reasoning—16th International Conference, LPAR-16, Dakar,
Senegal, April 25-May 1, 2010, Revised Selected Papers, pp 27—
45. doi:10.1007/978-3-642-17511-4-3

http://harborresearch.com/wp-content/uploads/2014/03/Harbor-Postscapes-Infographic_March-2014.pdf
http://harborresearch.com/wp-content/uploads/2014/03/Harbor-Postscapes-Infographic_March-2014.pdf
http://www.ge.com/sites/default/files/Industrial_Internet.pdf
http://www.ge.com/sites/default/files/Industrial_Internet.pdf
http://dx.doi.org/10.1145/2342509.2342513
http://dx.doi.org/10.1145/2342509.2342513
http://www.thingworx.com
http://openinterconnect.org/wp-content/uploads/2015/07/OIC-IoTivity_White-Paper_Final.pdf
http://openinterconnect.org/wp-content/uploads/2015/07/OIC-IoTivity_White-Paper_Final.pdf
http://www.iiconsortium.org/IIRA-1-7-ajs.pdf
http://www.iiconsortium.org/IIRA-1-7-ajs.pdf
http://www.artemis-ju.eu/
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
https://allseenalliance.org/framework/documentation/learn
https://allseenalliance.org/framework/documentation/learn
http://www.wigwag.com
http://www.iiconsortium.org/IIRA-1-7-AJS.pdf
http://www.openinterconnect.org/developer-resources-specs.pdf
http://www.openinterconnect.org/developer-resources-specs.pdf
http://dx.doi.org/10.1007/978-3-642-17511-4-3

	One IoT: an IoT protocol and framework for OEMs to make IoT-enabled devices forward compatible
	Abstract
	1 Introduction
	2 Background
	Embedded system
	Sensors and actuators

	2.1 Internet of things
	2.2 Minimum framework
	2.3 Minimum behaviour from an IoT node
	2.4 Protocol entities

	3 Protocol
	3.1 Discovery
	3.2 Registration
	3.3 Advertisement
	3.4 Invocation
	3.5 Configuration

	4 Communication media
	5 Security
	6 Message structures
	6.1 Payload structures
	6.1.1 Discovery payload
	6.1.2 Registration payload
	6.1.3 Advertisement payload
	6.1.4 Invocation Payload
	6.1.5 Configuration payload
	6.1.6 Heartbeat packet
	6.1.7 New address payload

	7 Experimentation
	7.1 Basic simulation: to analyse communication flows
	7.2 Example client (android application)
	7.3 IoT hardware setup

	8 Related work
	9 Discussion and future work
	9.1 Future work

	10 Conclusion
	References

